Uniwersytet Warmińsko – Mazurski Olsztyn, dn. 08.01.2016r.
Wydział Geodezji, Inżynierii Przestrzennej
I Budownictwa
Instytut Geodezji
Wyrównanie sieci geodezyjnej na elipsoidzie odniesienia.
Małgorzata Faderewska
GiG rok 3 Grupa 2
ZESTAW 45
Wyrównanie sieci: metoda obliczenia wyrównanych współrzędnych punktów 1, 3, 4 w sieci.
Obliczenie przybliżonych współrzędnych – zadanie wprost,
Wykonanie zadań odwrotnych metodą średniej szerokości Gaussa dla 6 linii,
Ułożenie układu równań poprawek V=AX+L,
Eliminacja stałej orientacji na stanowisku gdzie pomierzono kierunki,
Eliminacja niewiadomej z równania warunkowego,
Ułożenie układu równań normalnych (ATPA)X+ATPL=0,
Rozwiązanie układu równań normalnych,
Obliczenie wyrównanych współrzędnych i ich błędów,
Kontrola obliczeń.
Dane:
B2= 53° 54’ 11’’,1745
L2= 20° 43’ 07’’,0149
A21 = 180° 09’ 37”,67
S12= 23979,828 m
S43= 22984,999 m
Kierunki |
---|
1-2 |
1-3 |
1-4 |
3-1 |
3-2 |
3-4 |
4-1 |
4-2 |
4-3 |
Kąty | |
---|---|
γ | 35° 02′ 37,80″ |
δ | 52° 28′ 10,60″ |
Błędy:
mk= ± 0,7″
mα=± 0,9″
ms=± [12mm + 2mm*Lkm]
Parametry elipsoidy WGS80
a = 6378137
e2 = 0,00669438
e’2 = 0,006739497
ρ’’ = 206264,8062’’
Obliczenie trójkąta 134
$$N = \frac{a}{{(1 - e^{2}\sin^{2}B_{1})}^{\frac{1}{2}}}$$
$$M = \frac{a(1 - e^{2})}{{(1 - e^{2}\sin^{2}B_{1})}^{\frac{3}{2}}}$$
$$P_{} = \frac{1}{2}{*S}_{43}^{2}*\frac{\sin( + )*\ \sin}{\sin}$$
$$\varepsilon^{''} = \frac{P_{}}{\text{MN}}*\rho^{''}$$
$$V^{''} = \frac{1}{3}*(180 + \varepsilon^{''} - - - \varepsilon - )$$
$\frac{S_{14}}{\sin()'} = \frac{S_{43}}{\sin'}$ $S_{14} = S_{43}*\frac{\sin()'}{\sin'}$
$\frac{S_{43}}{\sin'} = \frac{S_{13}}{{\sin\left( + \right)}^{'}}$ $S_{13} = S_{43}*\frac{{\sin{( + )}}^{.}}{\sin'}$
[m] | Sekundy | [m] | |
---|---|---|---|
N | 6392148,4592 | ||
M | 6377284,1007 | ||
Pole | 191114268,49 [m2] | ||
ε" | 0’’,96702038 | ||
V | 1’’,02234013 | ||
β w | 52°,7754229 | ||
σ w | 35°,2017284 | ||
η+εw | 92°,0231173 | ||
β ‘ | 52°,7753333 | ||
σ ‘ | 35°,2013549 | ||
η+ε ‘ | 92°,0227438 | ||
S14 | 16639,7676 | ||
S13 | 28847,8654 |
Obliczenie trójkąta 234
$$N = \frac{a}{{(1 - e^{2}\sin^{2}B_{1})}^{\frac{1}{2}}}$$
$$M = \frac{a(1 - e^{2})}{{(1 - e^{2}\sin^{2}B_{1})}^{\frac{3}{2}}}$$
$$P_{} = \frac{1}{2}{*S}_{43}^{2}*\frac{\sin( + )*\ \sin}{\sin}$$
$$\varepsilon^{''} = \frac{P_{}}{\text{MN}}*\rho^{''}$$
$$V^{''} = \frac{1}{3}*(180 + \varepsilon^{''} - - - - )$$
$\frac{S_{23}}{\sin()'} = \frac{S_{43}}{\sin'}$ $S_{23} = S_{43}*\frac{\sin()'}{\sin'}$
$\frac{S_{43}}{\sin'} = \frac{S_{24}}{{\sin\left( + \right)}^{'}}$ $S_{24} = S_{43}*\frac{{\sin{( + )}}^{.}}{\sin'}$
[m] | sekundy | [m] | |
---|---|---|---|
N | 6392148,459 | ||
M | 6377284,101 | ||
Pole | 187725089,72 [m2] | ||
ε" | 0’’,94987145 | ||
V | -0’’,71670952 | ||
η w | 52°,469412 | ||
δ w | 36°,1818287 | ||
ζ+σw | 91°,3490231 | ||
η ‘ | 52°,4693241 | ||
δ ‘ | 36°,1817407 | ||
ζ+σ ‘ | 91°,3489352 | ||
S23 | 17110,5825 | ||
S24 | 28975,8362 |
Obliczenie przybliżonych współrzędnych
$$u = S_{\text{ik}}*cos(A_{\text{ik}} - \frac{2}{3}\varepsilon^{''})$$ |
---|
$$v = S_{\text{ik}}*sin(A_{\text{ik}} - \frac{1}{3}\varepsilon^{''})$$ |
$$P_{} = \frac{1}{2}\text{uv}$$ |
---|
$$\varepsilon^{''} = \frac{P_{}}{\text{MN}}*\rho^{''}$$ |
$$B_{C}^{o} = \frac{u}{M_{i}}*\rho''$$ |
---|
$$B_{S} = B_{i} + \frac{B_{C}^{o}}{2}$$ |
$$M_{s} = \frac{a(1 - e^{2})}{{(1 - e^{2}\sin^{2}B_{s})}^{\frac{3}{2}}}$$ |
---|
$${B}_{C} = u*\frac{\rho''}{M_{S}}$$ |
---|
BC = Bi + BC |
$$M_{C} = \frac{a(1 - e^{2})}{{(1 - e^{2}\sin^{2}B_{C})}^{\frac{3}{2}}}$$ |
---|
$$N_{C} = \frac{a}{{(1 - e^{2}\sin^{2}B_{C})}^{\frac{1}{2}}}$$ |
$$= v^{2}\text{tg}B_{C}*\frac{\rho''}{2M_{C}N_{C}}$$ |
---|
Bk = BC− |
$$L = \left( \frac{v}{cos(B_{k} - \frac{1}{3}\omega)} \right)*\frac{\rho''}{N}$$ |
Lk = Li + L |
$$\gamma = Lsin(B + \frac{2}{3}\omega)$$ |
Aki = Aik − ε″ + γ + 180 |
Clark dla punktu 1
Dane | Stopnie | Minuty | Sekundy | |
---|---|---|---|---|
B2 | 53°,90310 | 53 | 54 | 11,1745 |
L2 | 20°,71862 | 20 | 43 | 7,0149 |
A2-1 | 180°,16046 | 180 | 9 | 37,67 |
S1-2 | 23979,828 m | |||
ε" | 0,0000011318 | 0,004074406765 | ||
u | -23979,7895095 | |||
v | -67,0618782 | |||
ΔB0C | -0,21545 | -12 | -775,60254294 | |
BS | 53,79538 | |||
ΔBC | -0,21545 | -12 | -775,61655 | |
BC | 53,68765 | |||
ω | 0,00000 | 0,00001553 | ||
B1 | 53,68765 | 41 | 15,55793 | |
ΔL | -0,00102 | -3,65953 | ||
L1 | 20,71760 | 43 | 3,35537 | |
γ | -0,00082 | -2,94885 | ||
A1-2 | 0,15964 | 9 | 34,71707 |
Clark dla punktu 3
Dane | Stopnie | Minuty | Sekundy | |
---|---|---|---|---|
B2 | 53°,90310 | 53 | 54 | 11,1745 |
L2 | 20°,71862 | 20 | 43 | 7,0149 |
A2-3 | 92°,64702 | 92 | 38 | 49,27 |
S2-3 | 17110,582 m | |||
ε" | -0,0000094921 | -0,034171638147 | ||
u | -23979,7895095 | |||
v | -67,0618782 | |||
ΔB0C | -0,00710 | -0 | -25,55881 | |
BS | 53,89955 | |||
ΔBC | -0,00710 | -0 | -25,55883 | |
BC | 53,89600 | |||
ω | 0,00028 | 1,01346 | ||
B3 | 53,89572 | 53 | 44,60221 | |
ΔL | 0,26000 | 936,00444 | ||
L3 | 20,97862 | 58 | 43,01934 | |
γ | 0,21007 | 36,24275 | ||
A3-2 | 272,85710 | 51 | 25,54692 |
Clark dla punktu 4
Dane | Stopnie | Minuty | Sekundy | |
---|---|---|---|---|
B2 | 53°,90310 | 53 | 54 | 11,1745 |
L2 | 20°,71862 | 20 | 43 | 7,0149 |
A2-4 | 145°,11663 | 145 | 6 | 59,87 |
S2-4 | 28975,83623m | |||
ε" | -0,0002768200 | -0,996552109662 | ||
u | -23769,45083 | |||
v | 16571,46829 | |||
ΔB0C | -0,21356 | -0 | -768,8011276 | |
BS | 53,79633 | |||
ΔBC | -0,21356 | -0 | -768,8148939 | |
BC | 53,68954 | |||
ω | 0,00026 | 0,94549993 | ||
B4 | 53,68928 | 41 | 21,41411 | |
ΔL | 0,25084 | 3,03637 | ||
L4 | 20,96946 | 58 | 10,05127 | |
γ | 0,20213 | 7,68416 | ||
A4-2 | 325,31904 | 19 | 8,55071 |
Obliczenie zadań odwrotnych
B″ = B2 − B1 |
---|
L″ = L2 − L1 |
$$B = {\frac{1}{2}(B}_{2} + B_{1})$$ |
---|
$$C = \left( \frac{L''cosB}{\rho''} \right)^{2}$$ |
---|
$$S = \left( \frac{L''sinB}{\rho''} \right)^{2}$$ |
$$D = \left( \frac{B''}{\rho''} \right)^{2}$$ |
$$p = \frac{B''}{1_{B}*\left( 1 + C*3_{B} + D*4_{B} \right)}$$ |
---|
$$q = \frac{L''cosB}{2_{B}*\left( 1 + \frac{S}{24} - D*5_{B} \right)}$$ |
A″ = L″sinB(1 + C * 6B + D * 7B) |
---|
$$S_{12} = \sqrt{p^{2} + q^{2}}$$ |
---|
$$A = arctg\left( \frac{q}{p} \right)$$ |
$$A_{12} = A - \frac{A}{2}$$ |
---|
$$A_{21} = A + \frac{A}{2} + 180$$ |
Linia 1-2
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B1 | 53°,6876 | 53 | 41 | 15,5579 | M |
L1 | 20°,7176 | 20 | 43 | 3,3554 | N |
B2 | 53°,9031 | 53 | 53 | 11,1745 | 1 |
L2 | 20°,7186 | 20 | 20 | 07,0149 | 2 |
ΔB | 775,61656952 | ||||
ΔL | 3,65953386 | ||||
B | 53,7954 | ||||
C | 0,0000000001 | ||||
S | 0,0000000002 | ||||
D | 0,00001414 | ||||
u | 23979,7344 | ||||
v | 66,9867 | ||||
ΔA | 0,0008 | 2,9529 | |||
S1-2 | 23979,8280m | ||||
A | 0,1598 | 9 | 36,1936 | ||
A1-2 | 0,1594 | 9 | 34,7171 | ||
A2-1 | 180,1602 | 9 | 37,6700 |
Linia 1-3
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B1 | 53°,6876 | 53 | 41 | 15,5579 | M |
L1 | 20°,7176 | 20 | 43 | 3,3554 | N |
B3 | 53°,8957 | 53 | 53 | 44,6022 | 1 |
L3 | 20°,9786 | 20 | 58 | 43,0193 | 2 |
ΔB | 749,044284 | ||||
ΔL | 939,663972 | ||||
B | 53,7917 | ||||
C | 0,0000072 | ||||
S | 0,0000135 | ||||
D | 0,0000132 | ||||
u | 23158,1318 | ||||
v | 17201,7814 | ||||
ΔA | 0,2106 | 12,64 | 38,1927 | ||
S1-3 | 28847,8829m | ||||
A | 36,6048 | 36,3 | 17,42131 | ||
A1-3 | 36,4995 | 30,0 | 58,32494 | ||
A3-1 | 216,7101 | 42,6 | 36,51767 |
Linia 1-4
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B1 | 53°,6876 | 53 | 41 | 15,5579 | M |
L1 | 20°,7176 | 20 | 43 | 3,3554 | N |
B4 | 53°,6893 | 53 | 41 | 21,4141 | 1 |
L4 | 20°,9695 | 21 | 58 | 10,0513 | 2 |
ΔB | 5,8561757 | ||||
ΔL | 906,6959000 | ||||
B | 53,4542 | ||||
C | 0,00000678 | ||||
S | 0,00001255 | ||||
D | 0,0000000008 | ||||
U | 181,0517 | ||||
V | 16638,9701 | ||||
ΔA | 0,2030 | 12 | 10,6242 | ||
S1-4 | 16639,9551m | ||||
A | 89,3766 | 22 | 35,6289 | ||
A1-4 | 89,2751 | 16 | 30,3708 | ||
A4-1 | 269,4781 | 28 | 40,9950 |
Linia 2-3
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B2 | 53°,9031 | 53 | 54 | 11,1745 | M |
L2 | 20°,7186 | 20 | 43 | 07,0149 | N |
B3 | 53°,8957 | 53 | 53 | 44,6022 | 1 |
L3 | 20°,9786 | 21 | 58 | 43,0193 | 2 |
ΔB | -26,55229 | ||||
ΔL | 936,00444 | ||||
B | 53,89941 | ||||
C | 0,00000715 | ||||
S | 0,00001344 | ||||
D | 0,00000002 | ||||
U | -821,5477 | ||||
V | 17090,8481 | ||||
ΔA | 0,2101 | 13 | 36,2769 | ||
S2-3 | 17110,5824m | ||||
A | 92,7521 | 45 | 7,4100 | ||
A2-3 | 92,6470 | 38 | 49,2716 | ||
A3-2 | 272,8571 | 51 | 25,5485 |
Linia 2-4
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B2 | 53°,9031 | 53 | 54 | 11,1745 | M |
L2 | 20°,7186 | 20 | 43 | 07,0149 | N |
B4 | 53°,6893 | 53 | 41 | 21,4141 | 1 |
L4 | 20°,9695 | 21 | 58 | 10,0513 | 2 |
ΔB | -769,760394 | ||||
ΔL | 903,036366 | ||||
B | 53,79619 | ||||
C | 0,00000669 | ||||
S | 0,00001248 | ||||
D | 0,00001393 | ||||
U | -23798,6319 | ||||
V | 16529,4954 | ||||
ΔA | 0,2024 | 12 | 8,6804 | ||
S2-4 | 28975,8365m | ||||
A | 145,2178 | 13,1 | 4,2095 | ||
A2-4 | 145,1166 | 6,998 | 59,8691 | ||
A4-2 | 325,3190 | 19,1 | 8,5499 |
Linia 3-4
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B3 | 53°,8957 | 53 | 53 | 44,6022 | M |
L3 | 20°,9786 | 20 | 58 | 43,0193 | N |
B4 | 53°,6893 | 53 | 41 | 21,4141 | 1 |
L4 | 20°,9695 | 21 | 58 | 10,0513 | 2 |
ΔB | -743,188108 | ||||
ΔL | -32,968072 | ||||
B | 53,7925 | ||||
C | 0,00000001 | ||||
S | 0,00000002 | ||||
D | 0,00001298 | ||||
U | -22977,1327 | ||||
V | -603,5125 | ||||
ΔA | -0,0074 | 0 | -26,6014 | ||
S3-4 | 22985,0572m | ||||
A | 181,5046 | 30 | 16,4620 | ||
A3-4 | 181,5083 | 30 | 29,7627 | ||
A4-3 | 1,5009 | 3 | 0,3161 |
Ułożenie układu rownań poprawek
Obliczenie współczynników
$$P_{\text{IK}} = \frac{M_{I}}{S_{\text{IK}}}*sinA_{\text{IK}}$$
$$Q_{\text{IK}} = - \frac{N_{I}}{S_{\text{IK\ }}}*cosB_{I}\cos A_{\text{IK}}$$
$$U_{\text{IK}} = - \frac{M_{I}}{\rho^{''}}*cosA_{\text{IK}}$$
$$W_{\text{IK}} = - \frac{N_{I}\cos B_{I}\sin A_{\text{IK}}}{\rho^{''}}$$
N1 = 6392044,4708 |
---|
M1 = 6376972,8659 |
N2 = 6392121,4978 |
---|
M2 = 6377203,4048 |
N3 = 6392118,8619 |
---|
M3 = 6377195,5155 |
N4 = 6392045,0531 |
---|
M4 = 6376974,6086 |
12 | 21 | 13 | 31 | 14 | 41 | 23 | 32 | 24 | 42 | 34 | 43 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | 42,2740 | -0,7448 | 131,4872 | -132,1441 | 383,2019 | -383,2168 | 372,3075 | -372,2415 | 125,8694 | -125,2264 | -7,3028 | 7,2668 |
Q | -155,8456 | 157,0453 | -105,4790 | 104,6721 | -2,8780 | 2,0722 | 10,1645 | -10,9725 | 106,6152 | -107,4221 | 163,8149 | -164,6217 |
U | -30,5233 | 30,9174 | -24,8525 | 24,7856 | -0,3911 | 0,2816 | 1,4279 | -1,5411 | 25,3622 | -25,4236 | 30,9068 | -30,9058 |
W | -2,9173 | 0,0511 | -10,9158 | 10,9158 | -18,3501 | 18,3501 | -18,2383 | 18,2383 | -10,4418 | 10,4418 | 0,4807 | -0,4807 |
Brak stałej orientacji ze stanowiska 2, ponieważ nie pomierzono z niego kierunków.
Eliminacja stałej orientacji ze stanowisk na których pomierzono kierunki
$$Z_{1} = \frac{\left( A_{12} - K_{12} \right) + \left( A_{13} - K_{13} \right) + (A_{14} - K_{14})}{3}$$
$$Z_{3} = \frac{\left( A_{31} - K_{31} \right) + \left( A_{32} - K_{32} \right) + (A_{34} - K_{34})}{3}$$
$$Z_{4} = \frac{\left( A_{41} - K_{41} \right) + \left( A_{42} - K_{42} \right) + (A_{43} - K_{43})}{3}$$
|
|
|
|
---|---|---|---|
|
|
|
|
|
|||
|
|||
|
|
544,5248414 |
|
|
|||
|
|||
|
|
|
|
|
|||
|
Stopnie | min | sek | |
---|---|---|---|
Z1p | 0°,15983 | 9 | 35,37094 |
Z3p | 181°,50828 | 30 | 29,80963 |
Z4p | 269°,47811 | 28 | 41,20205 |
Równania poprawek:
VS1-2= -30,5233dB1-2,9173dL1- 0,000008m
VS3-4=30,9068dB3+0,4807dL3+0,0582m
Vk1-2= 42,2740dB1-155,8456dL1-dz’1-0,000182o
Vk1-3= 131,4872dB1-105,4790dL1+131,4872dB3-105,4790dL3-dz’1-0,000124 o
Vk1-4= 383,2019dB1-2,8780dL1-383,2168dB4+2,0722dL4-dz’1+0,000306 o
Vk3-1= 131,4872dB1-105,4790dL1-132,1441dB3+104,6721dL3-dz’3 - 0,000419 o
Vk3-2= -372,2415dB3-10,9725dL3-dz’3 -0,000406 o
Vk3-4= -7,3028dB3+163,8149dL3+7,2668dB4-164,6217dL4-dz’3-0,000 13 o
Vk4-1=383,2019dB1-2,8780dL1-383,2168dB4+ 2,0722dL4-dz’4 -0,000058 o
Vk4-2=-125,2264dB4-107,4421dL4-dz’4+0,000124 o
Vk4-3= -7,3028dB3+163,8149dL3+7,2668dB4-164,6217dL4-dz’4+ 0,000067 o
Vk421=-42,2740dB1-155,8456dL1-125,2264dB4-107,4421dL4-dz’4+0,0009 o
Vk324= -372,2415dB3-10,9725dL3-125,2264dB4-107,4421dL4-dz’4-0,0025 o
dB1 | dL1 | dB3 | dL3 | dB4 | dL4 | dz1 | L [°] | |
---|---|---|---|---|---|---|---|---|
VK12 | 42,2740 | -155,8456 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | -1,0000 | -0,000182 |
VK13 | 131,4872 | -105,4790 | 131,4872 | -105,4790 | 0,0000 | 0,0000 | -1,0000 | -0,000124 |
VK14 | 383,2019 | -2,8780 | 0,0000 | 0,0000 | -383,2168 | 2,0722 | -1,0000 | 0,000306 |
S | 556,9631 | -264,2026 | 131,4872 | -105,4790 | -383,2168 | 2,0722 | -3,0000 | 0,000000 |
S/n | -185,6544 | 88,0675 | -43,8291 | 35,1597 | 127,7389 | -0,6907 | 1,0000 | 0,000000 |
VK12 | -143,3803 | -67,7781 | -43,8291 | 35,1597 | 127,7389 | -0,6907 | 0,0000 | -0,000182 |
VK13 | -54,1672 | -17,4115 | 87,6581 | -70,3193 | 127,7389 | -0,6907 | 0,0000 | -0,000124 |
VK14 | 197,5475 | 85,1895 | -43,8291 | 35,1597 | -255,4779 | 1,3814 | 0,0000 | 0,000306 |
dB1 | dL1 | dB3 | dL3 | dB4 | dL4 | dz2 | L [°] | |
---|---|---|---|---|---|---|---|---|
VK31 | 131,4872 | -105,4790 | -132,1441 | 104,6721 | 0,0000 | 0,0000 | -1,0000 | 0,000419 |
VK32 | 0,0000 | 0,0000 | -372,2415 | -10,9725 | 0,0000 | 0,0000 | -1,0000 | -0,000406 |
VK34 | 0,0000 | 0,0000 | -7,3028 | 163,8149 | 7,2668 | -164,6217 | -1,0000 | -0,000013 |
S | 131,4872 | -105,4790 | -511,6884 | 257,5144 | 7,2668 | -164,6217 | -3,0000 | 0,000000 |
S/n | -43,8291 | 35,1597 | 170,5628 | -85,8381 | -2,4223 | 54,8739 | 1,0000 | 0,000000 |
VK31 | 87,6581 | -70,3193 | 38,4187 | 18,8340 | -2,4223 | 54,8739 | 0,0000 | 0,000419 |
VK32 | -43,8291 | 35,1597 | -201,6787 | -96,8107 | -2,4223 | 54,8739 | 0,0000 | -0,000406 |
VK34 | -43,8291 | 35,1597 | 163,2600 | 77,9767 | 4,8445 | -109,7478 | 0,0000 | -0,000013 |
dB1 | dL1 | dB3 | dL3 | dB4 | dL4 | dz1 | L [°] | ||
---|---|---|---|---|---|---|---|---|---|
VK41 | 383,2019 | -2,8780 | 0,0000 | 0,0000 | -383,2168 | 2,0722 | -1,0000 | -0,000058 | |
VK42 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | -125,2264 | -107,4221 | -1,0000 | 0,000124 | |
VK43 | 0,0000 | 0,0000 | -7,3028 | 163,8149 | 7,2668 | -164,6217 | -1,0000 | -0,000067 | |
S | 383,2019 | -2,8780 | -7,3028 | 163,8149 | -501,1764 | -269,9717 | -3,0000 | 0,000000 | |
S/n | -127,7340 | 0,9593 | 2,4343 | -54,6050 | 167,0588 | 89,9906 | 1,0000 | 0,000000 | |
VK41 | 255,4679 | -1,9187 | 2,4343 | -54,6050 | -216,1580 | 92,0627 | 0,0000 | -0,000058 | |
VK42 | -127,7340 | 0,9593 | 2,4343 | -54,6050 | 41,8324 | -17,4315 | 0,0000 | 0,000124 | |
VK43 | -127,7340 | 0,9593 | -4,8685 | 109,2099 | 174,3256 | -74,6312 | 0,0000 | -0,000067 |
dB1 | dL1 | dB3 | dL3 | dB4 | dL4 | L [”] | |
---|---|---|---|---|---|---|---|
S12 | -30,5233 | -2,9173 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | -0,000008m |
S34 | 0,0000 | 0,0000 | 30,9068 | 0,4807 | 0,0000 | 0,0000 | 0,0582m |
VK12 | -143,3803 | -67,7781 | -43,8291 | 35,1597 | 127,7389 | -0,6907 | -0,6539 |
VK13 | -54,1672 | -17,4115 | 87,6581 | -70,3193 | 127,7389 | -0,6907 | -0,4460 |
VK14 | 197,5475 | 85,1895 | -43,8291 | 35,1597 | -255,4779 | 1,3814 | 1,0998 |
VK31 | 87,6581 | -70,3193 | 38,4187 | 18,8340 | -2,4223 | 54,8739 | 1,5080 |
VK32 | -43,8291 | 35,1597 | -201,6787 | -96,8107 | -2,4223 | 54,8739 | -1,4611 |
VK34 | -43,8291 | 35,1597 | 163,2600 | 77,9767 | 4,8445 | -109,7478 | -0,0469 |
VK41 | 255,4679 | -1,9187 | 2,4343 | -54,6050 | -216,1580 | 92,0627 | -0,2070 |
VK42 | -127,7340 | 0,9593 | 2,4343 | -54,6050 | 41,8324 | -17,4315 | 0,4478 |
VK43 | -127,7340 | 0,9593 | -4,8685 | 109,2099 | 174,3256 | -74,6312 | -0,2408 |
V421 | 42,2740 | -155,8456 | 0,0000 | 0,0000 | 125,2264 | 107,4221 | 0,0009 |
V324 | 0,0000 | 0,0000 | 372,2415 | 10,9725 | -125,2264 | -107,4221 | -0,0025 |
Eliminacja niewiadomej z równania warunkowego:
VA21 = P12dB1 + Q12dL1 + L = 0
42,2740dB1-155,8456dL1 +3,98E-09=0
dL1= (42,2740/-155,8456)dB1
dL1= --0,27125593 dB1
Macierz A po eliminacji dL1
dB1 | dB3 | dL3 | dB4 | dL4 | L [‘’] | |
---|---|---|---|---|---|---|
S12 | -29,7320 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | -0,000008m |
S34 | 0,0000 | 30,9068 | 0,4807 | 0,0000 | 0,0000 | 0,0582m |
VK12 | -124,9951 | -43,8291 | 35,1597 | 127,7389 | -0,6907 | -0,6539 |
VK13 | -49,4442 | 87,6581 | -70,3193 | 127,7389 | -0,6907 | -0,4460 |
VK14 | 174,4394 | -43,8291 | 35,1597 | -255,4779 | 1,3814 | 1,0998 |
VK31 | 106,7327 | 38,4187 | 18,8340 | -2,4223 | 54,8739 | 1,5080 |
VK32 | -53,3663 | -201,6787 | -96,8107 | -2,4223 | 54,8739 | -1,4611 |
VK34 | -53,3663 | 163,2600 | 77,9767 | 4,8445 | -109,7478 | -0,0469 |
VK41 | 255,9884 | 2,4343 | -54,6050 | -216,1580 | 92,0627 | -0,2070 |
VK42 | -127,9942 | 2,4343 | -54,6050 | 41,8324 | -17,4315 | 0,4478 |
VK43 | -127,9942 | -4,8685 | 109,2099 | 174,3256 | -74,6312 | -0,2408 |
V421 | 84,5481 | 0,0000 | 0,0000 | 125,2264 | 107,4221 | 0,0009 |
V324 | 0,0000 | 372,2415 | 10,9725 | -125,2264 | -107,4221 | -0,0025 |
Ułożenie układu równań:
ATPAX+ATPL=0 X=(ATPA)-1ATPL V=AX+L
-29,7320 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000m | 487,74 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0,0000 | 30,9068 | 0,4807 | 0,0000 | 0,0000 | 0,0582m | 0,00 | 468,08 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | |||||
-124,9951 | -43,8291 | 35,1597 | 127,7389 | -0,6907 | -0’’,6539 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | |||||
-49,4442 | 87,6581 | -70,3193 | 127,7389 | -0,6907 | -0’’,4460 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | |||||
A= | 174,4394 | -43,8291 | 35,1597 | -255,4779 | 1,3814 | 1’’,0998 | 0,00 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | ||||
106,7327 | 38,4187 | 18,8340 | -2,4223 | 54,8739 | L= | 1’’,5080 | P= | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | |||
-53,3663 | -201,6787 | -96,8107 | -2,4223 | 54,8739 | -1’’,4611 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | |||||
-53,3663 | 163,2600 | 77,9767 | 4,8445 | -109,7478 | -0’’,0469 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | |||||
255,9884 | 2,4343 | -54,6050 | -216,1580 | 92,0627 | -0’’,2070 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | 0,00 | |||||
-127,9942 | 2,4343 | -54,6050 | 41,8324 | -17,4315 | 0’’,4478 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | 0,00 | |||||
-127,9942 | -4,8685 | 109,2099 | 174,3256 | -74,6312 | -0’’,2408 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 2,04 | 0,00 | 0,00 | |||||
84,5481 | 0,0000 | 0,0000 | 125,2264 | 107,4221 | 0’’,0009 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 1,24 | 0,00 | |||||
0,0000 | 372,2415 | 10,9725 | -125,2264 | -107,4221 | -0’’,0025 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 1,24 |
-29,7320 | 0,0000 | -124,9951 | -49,4442 | 174,4394 | 106,7327 | -53,3663 | -53,3663 | 255,9884 | -127,9942 | -127,9942 | 84,5481 | 0,0000 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0,0000 | 30,9068 | -43,8291 | 87,6581 | -43,8291 | 38,4187 | -201,6787 | 163,2600 | 2,4343 | 2,4343 | -4,8685 | 0,0000 | 372,2415 | |
AT= | 0,0000 | 0,4807 | 35,1597 | -70,3193 | 35,1597 | 18,8340 | -96,8107 | 77,9767 | -54,6050 | -54,6050 | 109,2099 | 0,0000 | 10,9725 |
0,0000 | 0,0000 | 127,7389 | 127,7389 | -255,4779 | -2,4223 | -2,4223 | 4,8445 | -216,1580 | 41,8324 | 174,3256 | 125,2264 | -125,2264 | |
0,0000 | 0,0000 | -0,6907 | -0,6907 | 1,3814 | 54,8739 | 54,8739 | -109,7478 | 92,0627 | -17,4315 | -74,6312 | 107,4221 | -107,4221 | |
-14501,4895 | 0,0000 | -255,0921 | -100,9066 | 355,9987 | 217,8218 | -108,9109 | -108,9109 | 522,4253 | -261,2126 | -261,2126 | 104,3804 | 0,0000 | |
ATP= | 0,0000 | 14466,7953 | -89,4471 | 178,8941 | -89,4471 | 78,4055 | -411,5891 | 333,1837 | 4,9679 | 4,9679 | -9,9358 | 0,0000 | 459,5574 |
0,0000 | 224,9821 | 71,7544 | -143,5088 | 71,7544 | 38,4367 | -197,5728 | 159,1361 | -111,4387 | -111,4387 | 222,8773 | 0,0000 | 13,5463 | |
0,0000 | 0,0000 | 260,6917 | 260,6917 | -521,3834 | -4,9434 | -4,9434 | 9,8868 | -441,1388 | 85,3723 | 355,7665 | 154,6004 | -154,6004 | |
0,0000 | 0,0000 | -1,4096 | -1,4096 | 2,8193 | 111,9876 | 111,9876 | -223,9751 | 187,8831 | -35,5746 | -152,3085 | 132,6199 | -132,6199 | |
774432,9991 | 1192,3015 | -25993,3158 | -293534,5304 | 102023,3877 | 934,0290763 | ||||||||
1192,3015 | 782200,1289 | 58802,2595 | -23447,9982 | -103288,9565 | 1428,178714 | ||||||||
ATPA= | -25993,3158 | 58802,2595 | 84164,5406 | 30242,3879 | -52454,1561 | ATPL= | 367,7261793 | ||||||
-293534,5304 | -23447,9982 | 30242,3879 | 399540,9967 | -38144,8500 | -816,4380273 | ||||||||
102023,3877 | -103288,9565 | -52454,1561 | -38144,8500 | 94653,7450 | 2,709276057 | ||||||||
2,140E-06 | -2,201E-07 | -1,412E-06 | 1,402E-06 | -2,764E-06 | |||||||||
(ATPA)-1= | -2,201E-07 | 1,542E-06 | 5,924E-08 | 1,151E-07 | 1,999E-06 | ||||||||
-1,412E-06 | 5,924E-08 | 1,916E-05 | -1,372E-06 | 1,165E-05 | |||||||||
1,402E-06 | 1,151E-07 | -1,372E-06 | 3,576E-06 | -7,045E-07 | |||||||||
-2,764E-06 | 1,999E-06 | 1,165E-05 | -7,045E-07 | 2,190E-05 |
-0’’,0000 | 0,0004 | 0,0004m | |||||
---|---|---|---|---|---|---|---|
X= | -0’’,0019 | -0,0630 | -0,0048m | ||||
-0’’,0070 | AX= | 0,0943 | -0’’,5595 | ||||
0’’,0020 | 0,5740 | V= | 0’’,1280 | ||||
-0’’,0052 | -0,6683 | 0’’,4315 | |||||
-0,4963 | 1’’,0118 | ||||||
0,7742 | -0’’,6869 | ||||||
-0,2780 | -0’’,3249 | ||||||
-0,5278 | -0’’,7348 | ||||||
0,5493 | 0’’,9971 | ||||||
-0,0215 | -0’’,2623 | ||||||
-0,3144 | -0’’,3135 | ||||||
-0,4814 | -0’’,4838 |
VT= | 0,0004 | -0,0048 | -0,5595 | 0,1280 | 0,4315 | 1,0118 | -0,6869 | -0,3249 | -0,7348 | 0,9971 | -0,2623 | -0,3135 | -0,4838 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VTP= | 0,1841 | -2,2552 | -1,1419 | 0,2613 | 0,8806 | 2,0649 | -1,4018 | -0,6631 | -1,4996 | 2,0349 | -0,5353 | -0,3870 | -0,5973 |
VTPV= | 8,0125 | mo= | 1,0699 | ||||||||||
LT= | 0,0000 | 0,0582 | -0,6539 | -0,4460 | 1,0998 | 1,5080 | -1,4611 | -0,0469 | -0,2070 | 0,4478 | -0,2408 | 0,0009 | -0,0025 |
LTP= | -0,0039 | 27,2248 | -1,3344 | -0,9102 | 2,2446 | 3,0776 | -2,9818 | -0,0958 | -0,4225 | 0,9139 | -0,4914 | 0,0011 | -0,0030 |
LTPA= | 934,0291 | 1428,1787 | 367,7262 | -816,4380 | 2,7093 | ||||||||
LTPAX= | -6,9367 | ||||||||||||
LTPL= | 14,9482 | ||||||||||||
LTPAX+LTPl= | 8,0125 |
Wyrównanie współrzędnych
Biw = Bip + dBi
Liw = Lip + dLi
dL1 = 0,’’ 000003520963
Współrzędna | ° | ‘ | ‘’ |
---|---|---|---|
B1 | 53 | 41 | 15,55793 |
L1 | 20 | 43 | 3,35536 |
B3 | 53 | 53 | 44,60221 |
L3 | 20 | 58 | 43,01933 |
B4 | 53 | 41 | 21,41606 |
L4 | 20 | 58 | 10,04607 |
Wyrównanie obserwacji:
Sikw = Sikw + VS
Kikw = Kikp + VK
S12 | 23979,8284m | ||
---|---|---|---|
S34 | 22985,0523m | ||
VK12 | 359°,999845 | 59’ | 59’’,440483 |
VK13 | 36°,339869 | 20’ | 23’’,528018 |
VK14 | 89°,115092 | 06’ | 54’’,331499 |
VK31 | 35°,201725 | 12’ | 06’’,211788 |
VK32 | 91°,349031 | 20’ | 56’’,513121 |
VK34 | 359°,99991 | 59’ | 59’’,675091 |
VK41 | 359°,999796 | 59’ | 59’’,265206 |
VK42 | 55°,841083 | 50’ | 27’’,897114 |
VK43 | 92°,022760 | 01’ | 21’’,937679 |
V431 | 35°,043746 | 02’ | 37’’,486515 |
V132 | 52°,469477 | 28’ | 10’’,1118634 |
$$m_{\text{Bi}} = \ m_{0}\ *\sqrt{{\left( A^{T}\text{PA} \right)^{- 1}}_{\text{Bi}}}$$
$$m_{\text{Li}} = \ m_{0}\ *\sqrt{{\left( A^{T}\text{PA} \right)^{- 1}}_{\text{Li}}}$$
Błędy= | [ ‘’ ] |
---|---|
B1 | 0,0015650 |
L1 | 0,0004245 |
B3 | 0,0013284 |
L3 | 0,0046828 |
B4 | 0,0020233 |
L4 | 0,0050064 |
Suma kątów w trójkącie = 180°+ Ɛ° dla azymutów
Trójkąty | |
---|---|
123 | |
dla azymutów |
N |
M | |
Pole | |
Ɛ° | |
Ɛ°= |
Trójkąt | Suma kątów (kąty obliczone z azymutów) |
180°+ Ɛ° |
---|---|---|
stopnie | min | |
123 | α+γ+δ+ζ | 180°,0002881 |
234 | δ+η+ζ+σ | 180°,0002763 |
341 | β+σ+η+ε | 180°,0002686 |
124 | α+β+γ+ε | 180°,0002804 |
Suma kątów w trójkącie = 180°+ Ɛ° dla kierunków
Trójkąty | |
---|---|
123 | |
dla kierunków |
N |
M | |
Pole | |
Ɛ° | |
Ɛ°= |
Trójkąt | Suma kątów (kąty obliczone z kierunków) |
180°+ Ɛ° |
---|---|---|
stopnie | min | |
123 | α+γ+δ+ζ | 180°,0005539 |
234 | δ+η+ζ+σ | 180°,00027701 |
341 | β+σ+η+ε | 180°,00000035 |
124 | α+β+γ+ε | 180°,00028039 |
Kontrolne Gauss’y
Linia 1-2
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B1 | 53°,6877 | 53 | 41 | 15,55793 | M |
L1 | 20°,7176 | 20 | 43 | 3,35536 | N |
B2 | 53°,9031 | 53 | 54 | 11,1745 | 1 |
L2 | 20°,7186 | 20 | 20 | 07,0149 | 2 |
ΔB | 775,6165825 | ||||
ΔL | 3,6595303 | ||||
B | 53,7954 | ||||
C | 0,0000000001 | ||||
S | 0,0000000002 | ||||
D | 0,0000141398 | ||||
u | 23979,7348 | ||||
v | 66,9867 | ||||
ΔA | 0,0008 | 0 | 2,95292 | ||
S1-2 | 23979,8284m | ||||
A | 0,1601 | 9 | 36,1929856 | ||
A1-2 | 0,1596 | 9 | 34,71652 | ||
A2-1 | 180,1605 | 9 | 37,66944 |
Linia 1-3
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B1 | 53°,6877 | 53 | 41 | 15,55793 | M |
L1 | 20°,7176 | 20 | 43 | 3,35536 | N |
B3 | 53°,8957 | 53 | 53 | 44,6002 | 1 |
L3 | 20°,9786 | 20 | 58 | 43,0193 | 2 |
ΔB | 749,0423674 | ||||
ΔL | 939,6570064 | ||||
B | 53,7917 | ||||
C | 0,0000072420 | ||||
S | 0,0000135114 | ||||
D | 0,0000131875 | ||||
u | 23158,0725 | ||||
v | 17201,6540 | ||||
ΔA | 0,2106 | 12 | 38,1871068 | ||
S1-3 | 28847,7594m | ||||
A | 36,6047 | 36 | 16,9426496 | ||
A1-3 | 36,4994 | 30 | 57,8490962 | ||
A3-1 | 216,7100 | 42 | 36,0362030 |
Linia 1-4
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B1 | 53°,6876 | 53 | 41 | 15,55793 | M |
L1 | 20°,7176 | 20 | 43 | 3,35536 | N |
B4 | 53°,6893 | 53 | 41 | 21,41606 | 1 |
L4 | 20°,9694 | 20 | 58 | 10,04607 | 2 |
ΔB | 5,858140656 | ||||
ΔL | 906,69070472 | ||||
B | 53,68846 | ||||
C | 0,000006775 | ||||
S | 0,0000125467 | ||||
D | 0,0000000008 | ||||
U | 181,1124743 | ||||
V | 16638,87464 | ||||
ΔA | 0,2030 | 12 | 10,6200 | ||
S1-4 | 16639,86031m | ||||
A | 89,3764 | 22 | 34,9170 | ||
A1-4 | 89,2749 | 16 | 29,6070 | ||
A4-1 | 269,4778 | 28 | 40,2270 |
Linia 2-3
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B2 | 53°,9031 | 53 | 54 | 11,1745 | M |
L2 | 20°,7186 | 20 | 43 | 07,0149 | N |
B3 | 53°,8957 | 53 | 53 | 44,6002 | 1 |
L3 | 20°,9786 | 20 | 58 | 43,0124 | 2 |
ΔB | -26,574215002 | ||||
ΔL | 935,997476068 | ||||
B | 53,89941316 | ||||
C | 0,0000071488 | ||||
S | 0,0000134433 | ||||
D | 0,0000000166 | ||||
U | -821,607364 | ||||
V | 17090,721070 | ||||
ΔA | 0,21000753 | 12 | 36,2712956 | ||
S2-3 | 17110,45836m | ||||
A | 92,752278 | 45 | 8,2018911 | ||
A2-3 | 92,647240 | 38 | 50,06624 | ||
A3-2 | 272,85731 | 51 | 26,337538 |
Linia 2-4
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B2 | 53°,9031 | 53 | 54 | 11,1745 | M |
L2 | 20°,7186 | 20 | 43 | 07,0149 | N |
B4 | 53°,6893 | 53 | 41 | 21,41606 | 1 |
L4 | 20°,9694 | 21 | 58 | 10,04607 | 2 |
ΔB | -769,7584418 | ||||
ΔL | 903,0311743 | ||||
B | 53,796193 | ||||
C | 0,0000066870 | ||||
S | 0,0000124801 | ||||
D | 0,0000139270 | ||||
U | -23798,57158 | ||||
V | 16529,400241 | ||||
ΔA | 0,202410 | 12 | 8,67655 | ||
S2-4 | 28975,73263m | ||||
A | 145,217922 | 13 | 4,506829 | ||
A2-4 | 145,116717 | 7 | 0,1824053 | ||
A4-2 | 325,319127 | 19 | 8,8589606 |
Linia 3-4
Oznaczenia | Wartości | Stopnie | Minuty | Sekundy | Obliczenia pomocnice |
---|---|---|---|---|---|
B3 | 53°,8957 | 53 | 53 | 44,6002 | M |
L3 | 20°,9786 | 20 | 58 | 43,0124 | N |
B4 | 53°,6893 | 53 | 41 | 21,41606 | 1 |
L4 | 20°,9694 | 21 | 58 | 10,04607 | 2 |
ΔB | -743,18422682 | ||||
ΔL | -32,966301689 | ||||
B | 53,7925022 | ||||
C | 0,0000000089 | ||||
S | 0,0000000166 | ||||
D | 0,0000129820 | ||||
U | -22977,01266 | ||||
V | -603,480048 | ||||
ΔA | -0,007388 | 0 | -26,5999 | ||
S3-4 | 22984,9363m | ||||
A | 181,50449 | 30 | 16,199515 | ||
A3-4 | 181,5082 | 30 | 29,499511 | ||
A4-3 | 1,5008054 | 30 | 2,899518 |
Kontrola kątów:
Azymuty |
---|
Katy |
α |
β |
γ |
δ |
ζ |
σ |
η |
ε |
|
|
---|---|
Katy | Wzór |
α | K13-K12+360o |
β | K14-K13 |
γ | K21-K24 |
δ | K24-K23 |
ζ | K32-K31 |
σ | K31-K34+360O |
η | K43-K42 |
ε | K42-K41+360O |