DANE: |
OBLICZENIA: |
|
WYNIKI: |
|
||
P[N] = 20000,000 |
T=30*P / (π * n) = 30 *20000 / 3,14 * 1200 = 159,155 |
|
T = 159,155 [Nm] |
|
||
n[obr/min] = 1200,000 |
|
|
|
|
||
d1[m] = 0,220 |
d2= d1 / i = 0,22 / 3 = 0,073 |
|
d2 = 0,073 [m] |
|
||
i = 3,000 |
|
|
|
|
||
d1 [m] = 0,220 |
Ft1 = 2*T / d1 = 2 * 159,155 / 0, 22 = 1446,863 |
|
Ft1 = 1446,863 [N] |
|
||
T[N] = 159,155 |
|
|
|
|
||
|
stopnie |
radiany |
|
|
|
|
|
1,000 |
0,017 |
|
|
|
|
alfan |
20,000 |
0,349 |
tan(alfan) = 0,364 |
|
cos(beta1) = 0,978 |
|
beta1 |
12,000 |
0,209 |
tan(beta1) = 0,213 |
|
|
|
|
|
|
|
|
||
tan(alfan) = 0,364 |
tan(alfa1)=tan(alfan)/cos(beta1) = 0,364 / 0,978 = 0,372 |
|
tan(alfa1) = 0,372 |
|
||
cos(beta1) = 0,978 |
|
|
|
|
||
Ft1[N] = 1446,863 tan(alfa1) = 0,372 |
Fr1= Ft1 * tan(alfa1) = 1446,863 * 0,372 = 538,380 |
|
Fr1 = 538,380 [N] |
|
||
|
|
|
|
|
||
tan(beta1) = 0,213 |
Fa1=Ft1 * tan(beta1) = 1446,863 * 0,213 = 307, 540 |
|
Fa1 = 307,540 [N] |
|
||
Ft1 [N] = 1446,863 |
Ft2 = Ft1 * i = 1446,863 * 3 = 4340,589 |
|
Ft2 = 4340,589 [N] |
|
||
Fr1[N] = 538,380 |
Fr2 = Fr1 * i = 538,380 * 3 = 1615,140 |
|
Fr2 = 1615,140 [N] |
|
||
Fa1[N] = 307,540 |
Fa2=Fa1 * i = 307,540 * 3 = 922,621 |
|
Fa2 = 922,621 [N] |
|
||
i = 3,000 |
|
|
|
|
h
Fa2
Fr2
d2/2
FAh A B Fr1 C FDh D
0
FAx Fa1 d1/2 x
a b c
x: FAx + Fa2 - Fa1 = 0
y: FAh - Fr2 + Fr1 + FDh = 0
MA: -Fr2 a + Fr1 (a+b) + FDh (a+b+c) - Fa2 (d2/2) - Fa1 (d1/2) = 0
FAx = Fa1 - Fa2 = -615,080 minus oznacza jedynie zwrot
FAh = Fr2 - Fr1 - FDh = 600,752
FDh = [ Fr2 a - Fr1(a+b) + Fa2 (d2/2) + Fa1 (d1/2) ] / (a+b+c) = 476,008
x ∈ < 0 ; a )
Mg = FAh x =
x ∈ < a ; a+b )
Mg = FAh x - Fr2 (x-a) + Fa2 (d2/2)
x ∈ < a+b ; a+b+c >
Mg = FAh * x - Fr2 * (x-a) + Fa2 * d2/2 + Fr1(x-a-b) + Fa1 (d1/2)
V
FAV
A B Fa2 Fa1 C FDV D
0
FAx Ft2 Ft1 x
a b c
x: FAx + Fa2 - Fa1 = 0
y: FAV - Fr2 - Ft1 + FDV = 0
MA: -Ft2 a - Ft1 (a+b) + FDV (a+b+c) = 0
FAV = Fr2 + Ft1 - FDV = 3307,116
FDV = [ Ft2 a + Ft1 (a+b) ] / (a+b+c) = 2480,337
x ∈ < 0 ; a )
Mg = FAV x
x ∈ < a ; a+b )
Mg = FAv x - Ft2 (x-a)
x ∈ < a+b ; a+b+c >
Mg = FAv x - Ft2 (x-a) - Ft1 (x-a-b)
Momenty w punkcie D:
Mgh(a+b+c) = 0,000
Mgv(a+b+c) = 0,000
Momenty w punkcie B:
Mgh1(a) = 42052,649
Mgh2(a) = 75882,076
Mgv(a) = 231498,099
Momenty w punkcie C:
Mgh1(a+b) = -6806,656
Mgh2(a+b) = 28560,473
Mgv(a+b) = 148820,207
Momenty główne w punktach B i C:
MgB [Nmm] = [ Mgv(a) 2 + Mgh2(a) 2 ] 0.5 = 243617,445
MgC [Nmm] = [Mgh2(a+b) 2 + Mgv(a+b)] 0.5 = 151535,984
Momenty zastępcze w punktach B i C:
MzB[Nmm] = [ MgB2 + ( T/2 * kgo / ksj )2 ] 0.5 253622,921
MzC[Nmm] = [ Mgc2 + ( T/2 * kgo / ksj )2 ] 0.5 = 167147,483
kgo = 78
ksj = 88
Średnice obliczeniowe:
dB = [ ( 32 * MzB / π ) / kgo ] 1/3 = 32,114 [mm]
dC = [ ( 32 * MzC / π ) / kgo ] 1/3 = 27,947 [mm]
Średnice dobrane z norm:
dB = 38 [mm]
dC = 35 [mm]
Dobór wpustów:
Stal E295
Lh = 10000 [h]
Pdop = 90 [Mpa]
L= Lh * 60 * n * 1000000 = 720 [mln obr]
W punkcie B:
l = 4 * T / dB / Pdop / 8 = 23,268 [mm]
lpn = 36 [mm]
10x8
W punkcie C:
l = 4 * T / dC / Pdop / 8 = 35,263 [mm]
lpn = 36 [mm]
10x8
Dobór łożysk:
RD = FrD = [ FDh2 / FDv2 ]0.5 = 2525,6 [N]
RA = FrA = [ FAh2 / FAv2 ]0.5 = 3361,237 [N]
FA = 615,08 [N]
Cwym D = RD * L1/3 = 22636,469
Cwym A = RA * L1/3 = 30126,131
Pkt A:
C = 33200
łożysko kulkowe: 6307
Łożysko swobodne
Pkt D:
C = 28100
łożysko kulkowe: 6306
C0 = 14600
Łożysko ustalające
FA / C0 = 0,042
e = 0,24
FA / RA = 0,183
e > 0,183
Cyprian Foremny
Gr. 12A1
Rok akademicki 2009/2010
POLITECHNIKA KRAKOWSKA
WYDZIAŁ MECHANICZY
INSTYTUT KONSTRUKCJI MASZYN
„ELEMENTY I PODZESPOŁY W ROBOTYCE”
Projekt:
WAŁ POŚREDNI REDUKTORA
Moc P[kW] |
n[obr/min] |
d1[mm] |
i = d1/d2 |
a[mm] |
b[mm] |
c[mm] |
20 |
1200 |
220 |
3 |
70 |
80 |
60 |
B3
c
b
a
D
C
B
A
Ft2
Fa2
Fr2
d2
Fa1
Ft1
Fr1
d1
x
v
h