background image

Egzamin dla Aktuariuszy z 11 października 2003 r. 
 
Prawdopodobieństwo i Statystyka 
 
Zadanie 1 
 

55

10

!

55

!

54

10

)

1

(

=

=

=

X

P

 

55

9

!

55

!

54

9

)

2

(

=

=

=

X

P

 

....... 

55

1

!

55

!

54

)

10

(

=

=

=

X

P

 

(

)

=

=

=

=

=

10

1

4

55

220

385

55

11

55

1

55

)

11

(

i

i

i

EX

 

 
Zadanie 2 
 

(

) (

)

(

)

)

(

A

P

k

S

P

k

S

A

P

A

k

S

P

n

n

n

=

=

=

=

 

=

=

=

=





=

n

k

n

k

k

n

k

k

n

k

p

p

k

n

k

n

n

k

a

p

p

k

n

n

k

a

A

P

0

1

)

1

(

)!

(

!

!

)

1

(

)

(

 

=

=

+

=





=

=

=

=

n

k

n

l

l

n

l

k

n

k

p

ap

p

p

l

n

a

l

k

p

p

k

n

k

n

a

1

1

0

1

1

1

)

1

(

1

1

)

1

(

)!

(

)!

1

(

)!

1

(

 

( )

=

=

=

=

=





=





=

n

k

n

k

k

n

k

k

n

k

n

l

k

p

kp

k

n

p

p

ap

p

p

p

k

n

n

k

a

A

S

E

0

1

2

1

)

1

(

1

1

1

1

)

1

(

 

(

)

=

+

+

=

+

=

+





=

1

0

1

1

1

1

)

1

(

1

1

)

1

(

)

1

(

1

1

n

l

l

n

l

p

np

p

n

p

p

p

p

p

p

l

l

n

p

p

 

 
Zadanie 3 
 

n

θ

t

t

M

P

=

)

(

 

n

n

n

a

a

a

θ

M

P

aM

θ

P

19

20

95

100

05

,

0

1

1

)

(

=

=

=

=

>

=

<

 

n

n

n

b

b

b

b

θ

M

P

20

20

05

,

0

1

=

=

=

=

<

 



=

n

n

M

aM

bM

19

20

20

 

 
 
 
 

background image

Zadanie 4 
 

2

2

2

2

2

2

2

)

(

var

m

µ

σ

m

µ

d

ES

S

ES

+

+

=

+

=

 

m

µ

ES

=

 

2

2

)

,

cov(

)

(

m

µ

d

µ

ESEN

N

S

SN

E

+

=

+

=

 

(

)

(

)

( ) ( )

(

)

(

)

2

,

cov

,

cov

,

cov

)

,

cov(

d

µ

N

µ

N

N

N

E

N

S

E

N

N

S

E

N

S

=

=

+

=

 

(

)

=

+

+

2

2

2

2

2

2

N

bN

aSN

abS

S

a

E

 

(

)

(

)

min

2

2

)

(

2

2

2

2

2

2

2

2

2

2

2

2

+

+

+

+

+

+

+

=

m

d

bm

m

µ

d

µ

a

b

m

µ

ab

m

µ

σ

m

µ

d

a

 

(

)

0

2

2

2

2

2

2

2

2

2

2

2

=

+

+

+

=

m

µ

d

µ

m

µ

b

a

m

µ

σ

m

µ

d

a

 

0

2

2

2

=

+

=

m

b

m

µ

a

b

 

m

µ

a

m

b

=

 

(

)

(

)

0

2

2

2

2

2

2

2

2

2

2

2

2

2

=

+

+

+

m

µ

d

µ

m

µ

a

m

m

µ

a

m

µ

σ

m

µ

d

 

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

σ

m

µ

d

d

µ

m

µ

m

µ

σ

m

µ

d

m

µ

m

µ

d

µ

a

+

=

+

+

+

=

 

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

σ

m

µ

d

σ

m

σ

m

µ

d

m

d

µ

σ

m

µ

md

σ

m

µ

d

m

µ

d

µ

m

b

+

=

+

+

=

+

=

 

2

2

2

2

2

2

2

2

2

2

m

µ

σ

m

µ

d

a

+

+

=

 

2

2

2

=

b

 

m

µ

b

a

2

=

 

0

4

4

4

4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

>

+

+

=

+

+

m

µ

m

µ

σ

m

µ

d

m

µ

m

µ

m

µ

σ

m

µ

d

 bo m>0 bo N 

nieujemne 
Z tego wynika, Ŝe jest to minimum 
 
Zadanie 5 
 

=

>

=

10

1

6

1

)

10

(

i

θ

X

P

L

 

θ

θ

θ

L

ln

10

10

ln

6

ln

=

 

16

ˆ

0

)

10

(

)

10

(

10

60

10

10

10

6

2

=

=

=

=

θ

θ

θ

θ

θ

θ

θ

θ

θ

 

 
 
 
 
 

background image

Zadanie 6 
 

(

)

=

)

,

(

    

)

,

0

(

    

1

0

2

2

2

1

2

2

1

n

n

N

X

n

N

X

e

e

e

H

i

H

i

n

X

X

X

i

i

i

 

}

n

t

n

n

t

X

P

t

n

X

P

t

e

P

N

i

n

X

i

2

1

ln

2

1

1

2

1

ln

ln

2

1

)

1

,

0

(

0

0

2

1

0

=

=

+

>

=

>

=

>

 

(

)

(

) ( )

n

F

n

X

P

X

P

n

t

X

P

β

i

i

n

=

<

=

<

=

+

<

=

1

1

1

0

2

1

ln

 

=

Π

+

Π

Π

Π

=

Π

Π

Π

Π

=

Π

n

n

n

n

n

n

e

n

e

e

n

n

e

β

n

n

n

H

n

n

2

2

2

2

1

lim

2

2

1

2

2

2

1

2

1

2

1

lim

2

/

lim

2

/

2

/

2

/

2

/

 

1

1

1

1

lim

)

1

(

2

2

lim

2

2

2

lim

=

+

=

+

Π

Π

=

Π

+

Π

Π

=

n

n

n

n

n

n

 

 
Zadanie 7 
 

(

)

(

)

( )

















+





=

=

=

5

52

5

48

1

5

52

4

48

4

5

48

1

1

1

2

1

2

A

P

A

A

P

A

A

P

A

 

(

)

}













+





+





=

=

5

52

4

51

5

52

48

2

48

3

3

48

3

asy

 

4

asy

 

3

asy

 

2

2

8

7

6

8

7

6

pik

A

A

P

B

 

 
 
 
 

background image

1222

,

0

!

43

!

5

!

48

!

47

!

5

!

52

!

44

!

4

!

48

4

!

43

!

5

!

48

!

47

!

5

!

52

=

A

   

2214

,

0

!

47

!

4

!

51

48

!

46

2

!

48

3

!

45

!

3

!

48

3

+

+

=

B

 

 
Zadanie 8 
 

(

)

}

)

1

,

0

(

  

3

          

2

)

1

(

2

2

N

Z

Z

Y

Y

X

P

Y

X

P

χ

=

<

=

<

 

)

1

,

1

(

   

)

3

(

3

)

3

(

F

X

X

P

Y

X

P

Y

X

P

<

=

<

=

<

=

 

( )

Π

=

Γ

Γ

=

+

Γ

=

=

=

=

+

Γ

3

0

2

2

2

2

2

2

1

3

0

2

)

5

,

0

(

     

3

)

5

,

0

(

2

1

2

)

5

,

0

(

1

)

1

(

)

5

,

0

(

1

arctg

dt

t

t

x

t

x

dx

x

x

 

 

arctgx

x

f

=

)

(

 

2

1

1

)

(

x

x

f

+

=

 

(

)

2

2

1

2

)

(

x

x

x

f

+

=

′′

 

(

)

3

2

2

1

2

6

)

(

x

x

x

f

+

=

′′′

 

(

) (

) ( )

( )

6

2

2

2

2

3

2

1

2

1

3

2

6

1

12

)

(

x

x

x

x

x

x

x

f

IV

+

+

+

=

 

rozwinięcie Taylora wokół 

1

0

=

x

 

05

,

1

3

0

)

1

(

arctg

f

IV

   bo: 

6

)

1

(

8

4

2

)

1

(

2

1

)

1

(

2

1

4

3

2

+

+

Π

x

x

x

 

( )(

)

=

N

k

k

k

k

x

x

x

f

x

f

0

0

0

)

(

!

)

(

 

Z tego odpowiedź około 0,6667 
 
Zadanie 9 
 

n

θ

i

θ

X

L

=

1

1

 

=

θ

n

X

θ

L

i

ln

ln

1

1

ln

 

 
 

background image

n

X

θ

θ

X

θ

n

θ

n

θ

X

θ

i

i

i

=

=

+

=

=

ln

ˆ

0

ln

0

ln

2

2

 

max

0

ln

2

ln

2

ˆ

3

2

3

2

2

<

+

=

+

=

θ

i

i

θ

θ

n

X

θ

n

θ

X

θ

 

(

)

(

)

( )

=



=

=

>

=

<

=

<

1

1

1

1

1

1

1

1

ln

t

t

e

θ

t

e

θ

θ

t

t

θ

wykl

e

x

dx

θ

x

e

X

P

e

X

P

t

X

P

 

Γ

θ

n

X

i

1

,

ln

 

n

θ

n

n

n

n

θ

θ

θ

θ

n

n

θ

θ

E

θ

θ

E

θ

R

2

2

2

2

2

2

2

2

1

2

1

ˆ

2

ˆ

)

(

=

+

+

=

+

+

=

+

=

 

2

2

2

2

1

)

1

(

1

ˆ

θ

n

n

θ

n

n

n

θ

E

+

=

+

=

 

θ

θ

n

n

θ

E

=

=

1

ˆ

 

 
Zadanie 10 
 

i

i

x

β

EY

=

 

2

2

var

σ

x

Y

i

i

=

 

=

=

1

i

i

i

i

x

c

β

x

c

β

 

( )

=

=

=

i

i

i

i

i

i

nx

c

n

x

c

σ

x

c

β

1

1

gdy  

min 

   

min

ˆ

var

2

2

 

Z tego: 

=

=

=

i

i

i

i

i

i

x

Y

n

Y

nx

Y

c

β

1

1

ˆ