Egzamin dla Aktuariuszy z 11 października 2003 r.

Prawdopodobieństwo i Statystyka

Zadanie 1

10 ⋅ 5 !

4

10

P( X = )

1 =

=

5 !

5

55

9 ⋅ 5 !

4

9

P( X = 2) =

=

5 !

5

55

.......

5 !

4

1

P( X = 10) =

=

5 !

5

55

10

EX

∑ i 1(1−

=

i) = 1 (11⋅55 − ) = 220

385

= 4

i=

55

55

55

1

Zadanie 2

=

=

P( S = k A =

n

) P( AS k

n

) P( S k

n

)

P( )

A

n

n

!

P( A) = ∑ k  n k n− k

k

n

k

n k

a

  p 1

( − p)

= ∑

−

a

p 1

( − p)

=

n k

n k!( n

k)!

k =0

 

k =1

−

n

n−1

= ∑

( n − )

1 !

n 1

k

n−

a

p 1

( −

k

p)

= k −1 = l = ∑  −  l+1

n− l−1

ap

a

 p

1

( − p)

=

( k

)

1 !( n

k)!

l

1

p

k =1

−

−

l =0





−

2

1

1

1

E(

k

n

p

p

n

S A

a

p 1

(

p)

kp 1

(

p)

k

1

l

n

) n

n

= ∑

  k

n− k

−

−

k

n k

 

−

=

∑ − 

−





−

= − = =

n

k

ap

p

k

1

k =0

 

k =1 

− 

n−

1 −

1

=

p ∑ n − 

1

l +1

n− l−1

1 − p

p



( l + )

1 p

1

( − p)

=

(( n − )1 p + )1 = np − p +1

p

l

p

p

l =

1

0 



−

Zadanie 3

n

 t 

P( M ≤ t) =  

 θ 

n



θ 

 1 

100

20

n

n

P θ

( < aM ) = P M >

 = 1−   = ,

0 05 → a =

=



a 

 a 

95

19

n



θ 

 1 

n

n

P M <

 =   = ,

0 05 → b = 20 → b = 20



b 

 b 







20

n

n



bM − aM = M  20 −





19 

Zadanie 4

2

2

2

2

2

2

2

ES = var S + ( ES ) = d µ + σ

m

+ µ m

ES = m

µ

2

2

E( SN ) = cov( S, N ) + ESEN = d µ

+ m

µ

cov( S, N ) = E(cov( S, N N ) + cov( E( S N ), E( N N ) = cov( Nµ N ) 2

,

= d

µ

E( 2 2

a S + 2 abS − 2 aSN − 2 bN +

2

N ) =

2

= a ( 2 2

2

2

2

d µ + σ

m

+ µ m )+ 2 ab( m µ )

2

+ b − 2 a( 2

2

d

µ

+ m

µ

)−2

2

2

bm + d + m → min

∂ = 2( 2 2

2

2

2

d µ + σ

m

+ µ m ) a + 2 b m µ

− 2 2

d

µ

− 2

2

m

µ

= 0

∂ a

∂ = 2 a m

µ

+ 2 b − 2 m = 0

∂ b

b = m − a m

µ

(2 2 2

d µ + 2

2

σ

m

+ 2 2 2

µ m ) a + 2 m

µ ( m − a m

µ ) − 2

2

d

µ

− 2

2

m

µ

= 0

2

2

2

2

2 d

µ

+ 2 m

µ

− 2 m

µ

d

µ

a =

=

2

2

2

2

2

2

2

2

2

2

2 d µ + 2 σ

m

+ 2 µ m − 2 µ m

d µ + σ

m

2

2

2

2

2

2

2

2

2

d

µ

m

µ

md µ + m σ − µ d m m σ

b = m −

=

=

2

2

2

2

2

2

2

2

2

d µ + σ

m

d µ + σ

m

d µ + σ

m

2

∂

2

2

2

2

2

= 2 d µ + 2 σ

m

+ 2 µ m

2

a

∂

2

∂ = 2

2

∂ b∂ =2 mµ

a

∂ b

∂

2 2 2

d µ + 2

2

σ

m

+ 2 2 2

µ m

2 m

µ

= 4 2 2

d µ + 4

2

σ

m

+ 4 2 2

µ m − 4 2 2

µ m > 0 bo m>0 bo N

2 m

µ

2

nieujemne

Z tego wynika, Ŝe jest to minimum Zadanie 5

10

L =

6

P ( X > 10 ⋅ ∏ 1

)

θ

i=1

θ −10

ln L = 6 ln

−10ln θ

θ

∂

6 θ

10

10

60 −10( θ −10)

ˆ

=

−

=

= 0 → θ = 16

∂ θ θ −10 2

θ

θ

θ( θ −10)

Zadanie 6

∑( Xi− )2

1

−

2

e

∑ Xi−1

H

H

=

n

2

e

X

N

n

X

N n n

2

∑

0

1

i ≅

( ,

0

∑

)

i ≅

∑

( , )

X

−

i

2

e

1





 ≅ }

N (0 )

1

,



∑ X − n

i



1











1  1 

1

1

P e

2

> t = P ∑ X − n > ln t = P

X

> ln t + n

= → ln t = − n

0

0

i

0







2







2



 n

2

2











1 

β = P 

ln

0

1 ∑ X

< t + n = P 1 ∑

< = 1

< −

= −

n

i

( Xi ) P ( X

n ) F (

n )



2 

− 1

1

− / 2

1

e n

2Π n

β

H

n

2 n

2Π

2Π

lim

= lim

⋅ 2Π =

n

n

lim

=

−

e n / 2 / 2Π n

1 − n/ 2

− n / 2

1

2Π

− e

2Π n − e

2Π

2Π n +

2

2 n

n

2Π n n

2Π n

1

= lim

= lim

= lim

= 1

1

2Π n + 2Π

2Π ( n + )

1

1 + n

Zadanie 7

 48

 48



 + 

4



5 

 4 

1 −

52





A = P(

P A

A

5

2

1

≥

A

A

2

≥1 )

( ≥ ∩ ≥ )





=

P( ≥

A 1 )

=

 48





5 

1 − 52





5 

a

2 sy

a

3 sy

8

7

6

8

7

6

}



a

4 sy

48

 48



3

 + 

3

 + 48

3 

 2 

52

B = P(

5

≥

A

A

2

pik )









=

5 

1





 4 

52





5 

!

52

!

48

4 ⋅

!

48

−

−

3 ⋅

!

48

3 ⋅

!

48

+

+ 48

!

47

!

5

!

43

!

5

!

44

!

4

⋅

A =

≈ 1222

,

0

!

45

!

3

2

!

46

B =

≈ ,

0 2214

!

52

!

48

−

!

51

!

47

!

5

!

43

!

5

!

47

!

4

Zadanie 8

2

 ≅ χ )

1

(







P( X < Y )

}

2

2

= P X < Y



Y = 3 Z Z ≅ N (

)

1

,

0









 X



= P( X < 3 Y ) = P

< 3 = P( X < ) 3 X ≅ F

)

1

,

1

(

 Y



−1

3

2

1

x

x =

3

∫

dx =

t =

1

2

2

dt

arctg 3

(

)

5

,

0

2

∫

2

Γ ( )

5

,

0

( x + )

1

x

t

(

)

5

,

0

t

1

(

)

5

,

0

0

= 2

Γ2

2

2

0

( + ) =

Γ

= Π

Γ

f ( x) = arctgx 1

f (

′ x) =

2

1 + x

2 x

f (

′ x) = − (

+ x )2

2

1

2

6 x − 2

f (

′ x) = (

1 + x )3

2

12 x(1+ x )3

2

− ( 2

6 x − 2)⋅ 3⋅ (1+ x )2

2

2 x

f IV ( x) =

(

1 + x )6

2

rozwinięcie Taylora wokół x = 1

0

f IV

)

1

(

≈ 0 → arctg 3 ≈ ,105 bo: Π 1

1 ( x − )

1 2

4 ( x − )

1 3

+ ( x − )

1 −

+

4

2

2

2

8

6

N

( k

f

) ( x 0 )( x − x 0 ) k f ( x) ≈ ∑

k!

k =0

Z tego odpowiedź około 0,6667

Zadanie 9

1 1

θ

X

∏ − i

L =

n

θ

 1



ln L = 

− 

1 ∑ ln X

ln

i − n

θ

 θ



∂

∑ln X

+ ∑ln

∑ln

i

n

θ

n

X

X

i

= −

− = 0 →

= → θ

i

ˆ

0

= −

θ

∂

θ 2

θ

θ 2

n

2

∂

2∑ ln X

n

2

X

θ

n

i

∑ln i +

=

+

=

< 0 → max

ˆ

2

3

2

3

∂

θ

θ

θ

θ

θ

1 −

1

1

1

θ

 1 

t

P(

−

−

x

ln X < t)

 1



= P

< t

e  = P( X > − t e ) = ∫

dx =  θ

x 

= − θ

e

≅ wykl(1

1

θ )

 X



−

θ

t







 − t

e

e

− ∑



1 

ln X

,

i ≅ Γ n





θ 

+

 + −

+ 

2

2

n 1 2

2

2

2

n 1 2 n

n

θ 2

R θ

(

= Eθˆ

)

− E

θ θˆ

2

+ θ =

θ − θ

2

+ θ = θ 

 =

n



n



n

+

2

1

2

n 1 2

ˆ

Eθ =

n( n + )

1 θ =

θ

2

n

n

Eθ = 1

ˆ

⋅ nθ = θ

n

Zadanie 10

EY = βx

i

i

2

2

var Y = x σ

i

i

∑ βc x β

c x

i

i =

→ ∑ i = 1

i

2

2

1

1

βˆ

var

= ∑( c x σ

mi

n m

in g

dy c

x

c

i

i )

→

i

i =

→ i =

n

nxi

1

1

Y

Z tego: βˆ = ∑ c Y

Y

i i = ∑

= ∑ i

i

nx

n

x

i

i