rdzeń śruby:
Rw = R0 − R1s
$$\sigma_{c} = \frac{4Q}{\pi{d_{r}}^{2}}$$
$$\sigma_{c} = \frac{R_{w}}{x_{w}}$$
$$\frac{4Q}{\pi{d_{r}}^{2}} \leq \frac{R_{0} - R_{1}s}{x_{w}}$$
$$s = \frac{4l_{w}}{d_{r}}$$
lw = 2(H + 100)
$$\frac{4Q}{\pi{d_{r}}^{2}} \leq \frac{R_{0} - R_{1}\frac{4l_{w}}{d_{r}}}{x_{w}}$$
$$R_{0}{d_{r}}^{2} - 4R_{1}l_{w}d_{r} - \frac{4Qx_{w}}{\pi} = 0$$
$$= {( - 4R_{1}l_{w})}^{2} - 4R_{0}( - \frac{4Qx_{w}}{\pi})$$
warunek nieprzekraczania dopuszczalnych nacisków spoczynkowych
przeczspocz ≤ pdopspocz
$$p_{\text{rzeczspocz}} = \frac{Q}{\begin{matrix}
\frac{\pi}{4}\left( {d_{\text{zn}}}^{2} - {d_{\text{otw}}}^{2} \right) \\
\\
\end{matrix}}$$
$$p_{\text{rzeczspocz}} \times \frac{\pi}{4}\left( {d_{\text{zn}}}^{2} - {d_{\text{otw}}}^{2} \right) = Q$$
średnica zewnętrzna nakrętki
$$d_{\text{zn}} = \sqrt{\frac{Q}{p_{\text{rzeczspocz}} \times \frac{\pi}{4}} + {d_{\text{otw}}}^{2}}$$
$$p_{\text{rzeczruch}} = \frac{Q}{\frac{\pi}{4}({d_{r}}^{2} - {D_{\text{otwnakr}}}^{2})n}$$
$$n = \frac{4Q}{\pi p_{\text{rzeczruch}}({d_{r}}^{2} - {D_{\text{otwnakr}}}^{2})}$$
wysokość nakrętki
Hn = (n+1,5)p
wyjściowa średnica do toczenia śruby
dt = 1, 5d
dcz = 1, 5d − 10
$$p_{\text{rzeczywiste}} = \frac{Q}{\frac{\pi}{4}\left( {d_{\text{cz}}}^{2} - {d_{0}}^{2} \right)}$$
momenty sił
Mt = 0, 5 × Q × dm × μ
$$d_{m} = \frac{d_{\text{cz}} + d_{0}}{2}$$
Ms = 0, 5 × Q × dsr × tg(γ + ρ′)
$$tg\gamma = \frac{p}{\pi \times d_{sr}}$$
$$tg\rho' = \frac{\mu}{\cos\frac{\alpha}{2}}$$
$$\sigma_{c} = \frac{4Q}{\pi{d_{\min}}^{2}}$$
$$\tau_{\text{Ms}} = \frac{M_{s}}{W_{0}}$$
$$\sigma_{\text{zast}} = \sqrt{{\sigma_{c}}^{2} + 3{\tau_{\text{Ms}}}^{2}}$$
korpus
$$p = \frac{4Q}{\pi({D_{p}}^{2} - {d_{w}}^{2})}$$
$$D_{p} = \sqrt{\frac{4Q}{\text{pπ}} + {d_{w}}^{2}}$$
$$\sigma_{g} = \frac{M_{g}}{W_{x}}$$
Mg = Qa
a=Dp − d
d = drury + 10
$$W_{x} = \frac{\text{Qa}}{\sigma_{g}}$$
$$W_{x} = \frac{bh^{2}}{6}$$
$$h = \sqrt{\frac{6W_{x}}{b}}$$
śruba zabezpieczająca
$$k_{r} = \frac{R_{0}}{x_{sr}}$$
$$wk_{r} \geq \frac{0,5Q}{\frac{\pi}{4}{d_{1}}^{2}} = \sigma_{\text{rzecz}}$$
$$d_{1} = \sqrt{\frac{0,5Q}{wk_{r}\frac{\pi}{4}}}$$
długość drąga
Mc = Mt + Ms = R × Fr
$$R = \frac{M_{t} + M_{s}}{F_{r}}$$