Wydział

WNiG

Łukasz Kut

Łukasz Mizera

Artur Badzioch

Rok

II

Grupa

2

Zespół

4

0x01 graphic

Temat: Wyznaczanie bezwymiarowego współczynnika liniowego

Nr ćwiczenia

1

Data wykonania

Data oddania

24.05.2005

Zwrot do popr.

Data oddania

Data zaliczenia

Ocena

1. Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie bezwymiarowego współczynnika oporu liniowego przy przepływie powietrza przez prostoosiową rurę o stałym przekroju.

2. Wstęp teoretyczny

Twierdzenie π Buckinghama analizy wymiarowej mówi , że strata ciśnienia przy przepływie płynu przez rurę jest funkcją prędkości średniej v , średnicy przewodu D , długości przewodu L , chropowatości ( bezwzględnej k lub względnej ε) ścianek przewodu, lepkości μ i gęstości ρ płynu .

Funkcję tę można zapisać w postaci bezwymiarowej

0x01 graphic

W powyższej zależności występują wielkości bezwymiarowe:

Liczba Reynoldsa 0x01 graphic

Chropowatość względna 0x01 graphic

Współczynnik oporu liniowego 0x01 graphic

Współczynnik (przy przepływach laminarnych) λ nie zależy od chropowatości i jest równy

0x01 graphic

Przy przepływach turbulentnych w przewodach gładkich (ε = 0 ) współczynnik λ dla

0x01 graphic
< Re < 0x01 graphic
ze wzrostem liczby Reynoldsa maleje i w tym przedziale wynosi

0x01 graphic
wzór Blasiusa

W przewodach chropowatych podczas przepływu turbulentnego współczynnik 0x01 graphic
jest w ogólności funkcją liczby Reynoldsa 0x01 graphic

Dla mniejszych liczb Reynoldsa współczynnik 0x01 graphic
zależy zarówno od Re jak i od0x01 graphic

Natomiast przy dużych liczbach Reynoldsa 0x01 graphic
zależy tylko od chropowatości względnej i jest równy

0x01 graphic

straty ciśnienia wyliczany ze wzoru Darcy`ego-Weisbacha

0x01 graphic

Pomiędzy stratą ciśnienia a prędkością przepływu przy ruchu laminarnym zachodzi zależność liniowa.

Przy ruchu turbulentnym obowiązuje zależność kwadratowa.

Na podstawie wyżej wymienionych wzorów mamy zależność:

0x01 graphic

3. Tabele pomiarowo-obliczeniowe

d1 = 13 mm - średnica żółtej rurki

d1 = 13 mm - średnica szarej rurki

ts = 22ºC - temp. powietrza w środowisku suchym

tm = 13,5ºC - temp. powietrza w środowisku wilgotnym

p = 990hPa = 741mmHg - ciśnienie powietrza

ρ = 1,16 kg/m3 - gęstość powietrza odczytana z nomogramu dla ts, tm i p

υ = 0,0000157 m2/s - lepkość powietrza odczytana z funkcji tm i p

S1 = 0,000134 m2 - pole przekroju żółtej rurki

S2 = 0,000452 m2 - pole przekroju szarej rurki

Tab.1. Rurka o średnicy d=13 mm (rurka żółta)

Lp.

0x01 graphic
h [m]

0x01 graphic
p[Pa]

0x01 graphic

0x01 graphic

Re

0x01 graphic

ln(0x01 graphic
)

ln(Re)

1

0,004

39,24

5,845

1,733

1434,968

0,0446

7,269

-3,110

2

0,009

88,29

8,769

2,600

2152,866

0,0297

7,675

-3,516

3

0,01

98,10

9,242

2,740

2268,790

0,0282

7,727

-3,568

4

0,009

88,29

8,768

2,599

2152,038

0,0297

7,674

-3,515

5

0,002

19,62

4,133

1,225

1014,331

0,0631

6,922

-2,763

6

0,001

9,81

2,923

0,867

717,898

0,0891

6,576

-2,417

7

0,031

304,11

16,273

4,824

3994,395

0,0397

8,293

-3,226

8

0,043

421,83

19,165

5,682

4704,841

0,0382

8,456

-3,264

9

0,059

578,79

22,450

6,656

5511,338

0,0367

8,615

-3,305

10

0,076

745,56

25,479

7,554

6254,904

0,0355

8,741

-3,337

11

0,09

882,90

27,727

8,220

6806,369

0,0348

8,826

-3,358

12

0,107

1049,67

30,232

8,963

7421,592

0,0340

8,912

-3,380

Tab.2. Rurka o średnicy 24mm (rurka szara)

Lp.

0x01 graphic
l[m]

0x01 graphic
p[Pa]

0x01 graphic

0x01 graphic

Re

0x01 graphic

ln(Re)

ln(0x01 graphic
)

1

0,002

7,848

2,959

0,877

726,178

0,0881

6,588

-2,429

2

0,004

15,696

4,185

1,241

1027,580

0,0623

6,935

-2,776

3

0,004

15,696

4,185

1,241

1027,580

0,623

6,935

-2,776

4

0,005

19,62

4,679

1,387

1148,471

0,0557

7,046

-2,887

5

0,005

19,62

4,679

1,387

1148,471

0,0557

7,046

-2,887

6

0,006

23,544

5,126

1,520

1258,599

0,0509

7,138

-2,979

7

0,015

58,86

8,129

2,410

1995,541

0,0320

7,599

-3,440

8

0,018

70,632

8,878

2,632

2179,363

0,0294

7,687

-3,528

9

0,023

90,252

10,036

2,975

2463,376

0,0449

7,809

-3,104

10

0,030

117,72

11,462

3,398

28,13,631

0,0434

7,942

-3,138

11

0,039

153,036

13,068

3,874

3207,771

0,0420

8,073

-3,170

12

0,031

121,644

11,651

3,454

2860,000

0,0432

7,959

-3,142

gdzie:

Δ p- spadek ciśnienia,

0x01 graphic

0x01 graphic

dla rurki o średnicy 24 0x01 graphic
bo 0x01 graphic

0x01 graphic
- liczba Reynoldsa,

gdy Re < 2300 jest to przepływ laminarny wówczas: 0x01 graphic

gdy Re > 2300 jest to przepływ turbulentny wówczas: 0x01 graphic
- wzór Blasiusa

0x01 graphic
0x01 graphic

dla d=13mm dla d=24mm

0x01 graphic
0x01 graphic
,

gdzie 0x01 graphic
gdzie 0x01 graphic
, 0x01 graphic

4. Wnioski

Przy przepływach laminarnych współczynnik λ nie zależy od chropowatości, wynosi0x01 graphic
i maleje wraz ze wzrostem Re. Zaś przy przepływach turbulentnych (ε=0) współczynnik λ oblicza się z wzoru Blasiusa 0x01 graphic
, lecz nie maleje ze wzrostem Re tak szybko jak w poprzednim przypadku.

1