Genom, Medycyna, Biologia medyczna, 1) Genetyka 1 i komórka


GENOM CZŁOWIEKA

Zawiera 50-100 tys. genów rozmieszczonych na 23 chromosomach.

Geny stanowia 25% całego genomu, reszta to DNA pozajądrowy.

GENY:

RODZINY GENÓW

Pewne geny wystepują w licznych kopiach o identycznych lub podobnych sekwencjach, które mogą być grupowane w rodziny. Rodziny genow mogą być grupowane na wiele sposobów:

W niektórych rodzinach wielogenowych geny są identyczne ===> kodują duże ilości tego samego białka, np. histony.

Geny w rodzinach mogą być nieidentyczne ===> geny kodują białka podobne, ale o odmiennych właściwościach, np. rodziny alfa i beta-globulin.

Geny homeotyczne - grupa genów kontrolujących rozwój morfologiczny poszczególnych części ciała w początkowych stadiach rozwoju zarodkowego, zarówno u bezkręgowców jak i kręgowców. Mutacje w obrębie tych genów zazwyczaj nie wpływają negatywnie na układ segmentów ciała ale prowadzą do stanu określanego mianem homeosis, w którym określony segment zostaje zastąpiony przez inny. Wynika to z tego, że w przypadku takiej mutacji niektóre komórki otrzymały w czasie rozwoju zarodka błędną informację pozycyjną i dlatego zachowują się w niewłaściwy dla siebie sposób. Geny homeotyczne bezkręgowców oznacza się HOM, u kręgowców Hox, a u człowieka - HOX.

Geny homeotyczne klasy I u człowieka tworzą cztery grupy:

HOXA (HOX1) - chromosom 7q 21-p 14

HOXB (HOX2) - chromosom 17q 12.1-q 22

HOXC (HOX3) - chromosom 12q 12 - q 13

HOXD (HOX4) - chromosom 2q 31-q 37

Cechy genów homeotycznych:

PSEUDOGENY to zmienione elementy rodzin genowych, które w wyniku inaktywujących mutacji utraciły zdolność do produkowania aktywnego biologicznie białka. Innymi słowy pseudogen to zmutowana wersjea genu wyjściowego.

Wyróżniamy:

POZAGENOWY DNA to sekwencje, które nie są ani eksonami ani intronami ani pseudogenami. Stanowią większość DNA w genomie człowieka, ale ich funkcja nie jest znana. 20-30% stanowią tzw. rozproszone sekwencje powtórzone:

TRANSPOZON to sekwencja DNA, która może przemieszczać się na inną pozycje w genomie tej samej komórki w wyniku procesu zwanego transpozycją. Transpozycja często powoduje mutacje i może zmieniać ilość DNA w genomie. Transpozony są także nazywane "wędrującymi genami" lub "skaczącymi genami" (ang. jumping genes) oraz "mobilnymi elementami genetycznymi" (ang. mobile genetic elements).

Rozróżniamy dwie klasy transpozonów:

Istnieje hipoteza, że transpozony są po prostu dawnymi wirusami, które utraciły geny odpowiedzialne za zjadliwość. Transpozony nigdy bowiem nie występują poza komórką, jako zdolne do infekcji chorobotwórczych.

1.Transpozony DNA

a)Transpozony Procaryota:

-sekwencje insercyjne

-transpozony złożone

-transpozony niezłożone

-fagi zdolne do transpozycji

b)Transpozony Eucaryota

2.Transpozony RNA (RETROELEMENTY)

a)elementy LTR

-retrowirusy endogenne

-elementy retrowirusopodobne

-retrotranspozony

b)elementy poly-A (retropozony)

-sekwencje LINE

-sekwencje SINE

ZESPOLONE SEKWENCJE POWTÓRZONE - rozległe regiony, w których powtarzające się sekwencje połączone są końcami tworząc długie szeregi tandemowe.

POLIMORFIZM ILOŚCI TANDEMOWYCH POWTÓRZEŃ (VNTR) - powtarzalne sekwencje, które różnią się krotnością zawartych w nich motywów sekwencji. W danym locus VNTR między osobnikami i między parami chromosomów istnieje znaczna zmienność. Do wykrycia tych zmienności można zastosować łańcuchową reakcję polimeryzacji (PCR).

Zastosowanie VNTR:

Reakcja łańcuchowa polimerazy, PCR- łańcuchowa reakcja polimerazy, metoda powielania łańcuchów DNA w warunkach laboratoryjnych, polegająca na sekwencji wielokrotnego podgrzewania i oziębiania próbki.

Do reakcji wprowadza się matrycowy DNA, trifosforany deoksyrybonukleozydów, startery (primery), czyli krótkie (najczęściej ok. 20 nukleotydów) fragmenty DNA komplementarne do matrycy oraz termostabilną polimerazę DNA. W wyższej temperaturze (zwykle około 95°C) pękają wiązania wodorowe i podwójna helisa DNA rozdziela się na dwa pojedyncze łańcuchy. W temperaturze niższej, ściśle określonej dla danej pary starterów (pomiędzy 45-70°C), przyłączają się one do matrycy. Podwyższenie temperatury do około 72°C powoduje utworzenie się na matrycy, z przyłączonymi do niej starterami, kompleksu z polimerazą DNA, wskutek czego rozpoczyna się synteza nici komplementarnej do matrycy.

Gdyby wydajność metody była stuprocentowa, po n cyklach reakcji z jednej cząsteczki można by uzyskać 2n cząsteczek. W praktyce wydajność procesu jest mniejsza, co nie zmienia faktu, że metoda PCR pozwala na geometryczne zwielokrotnienie pożądanego łańcucha DNA. PCR znajduje wiele zastosowań, m.in. w klonowaniu genów, diagnostyce klinicznej, identyfikacji osób zaginionych, kryminalistyce, paleontologii.

REPLIKACJA DNA to proces, w którym podwójna nić DNA (podwójna helisa) ulega skopiowaniu. Replikacja jest semikonserwatywna (półzachowawcza) - w każdej z dwóch uzyskanych podwójnych nici DNA będzie jedna nić macierzysta i jedna nowa. Nie licząc niewielkiego prawdopodobieństwa (ok. 1 błąd na 109 nukleotydów, dla porównania błąd transkrypcji - 1 na 104) wystąpienia błędu obie cząsteczki DNA będą identyczne.

Substratami tego procesu są:

matryca DNA;

trifosforany deoksyrybonukleotydów (dNTP);

ATP - energia dla helikaz.

W procesie tym stwierdzono wiele aktywności enzymatycznych (udział enzymów) tj.:

Zasady replikacji są podobne u wszystkich organizmów, przy czym największe różnice występują między bakteriami z jednej strony, a archeowcami i eukariontami z drugiej.

U bakterii replikacja zaczyna się w ustalonym miejscu i postępuje bardzo szybko, z prędkością rzędu 1000 nukleotydów na sekundę. U eukariotów replikacja jest o wiele wolniejsza, ok. 50 nukleotydów na sekundę, jednak zachodzi równocześnie w wielu miejscach.

Polimeraza DNA działa jedynie w kierunku od końca 3' do końca 5' (czyli syntetyzuje nową nić w kierunku od 5' do 3'). Z tego powodu jedna z nici jest syntezowana w sposób ciągły, druga (ta, którą chcielibyśmy zsyntezować w przeciwną stronę) fragmentami (tzw. fragmenty Okazaki).

0x01 graphic

Kopiowanie podwójnej helisy DNA jest procesem złożonym.

Muszą także zostać spełnione następujące warunki:

TRANSKRYPCJA w genetyce oznacza proces syntezy RNA na matrycy DNA przez różne polimerazy RNA. Inaczej - przepisywanie informacji zawartej w DNA na RNA.

Matryca jest odczytywana w kierunku 3' → 5', a nowa cząsteczka RNA powstaje w kierunku 5' → 3'. Transkrypcję można podzielić na trzy etapy: inicjację, elongację i terminację. Transkrypcji podlega odcinek DNA od promotora do terminatora. Nazywamy go jednostką transkrypcji.

Podczas transkrypcji polimeraza RNA buduje cząsteczkę RNA łącząc zgodnie z zasadą komplementarności pojedyncze rybonukleotydy według kodu matrycowej nici DNA.

Transkrypcja u prokariota

Inicjacja transkrypcji u prokariontów polega na związaniu się polimerazy RNA z odpowiednim odcinkiem pasma matrycowego DNA - tzw. promotorem. Polimeraza rozpoznaje sekwencje -35 i -10 promotora (a transkrypcja zaczyna się od nukleotydu +1). Specyficzność wiązania zapewnia czynnik σ (sigma). Rozsunięcie nici DNA na odcinku kilkunastu nukleotydów (czyli powstanie tzw. kompleksu otwartego) umożliwia wstawianie (włączenie) kolejnych, odpowiednich nukleotydów. Substratami są trifosforany rybonukleozydów (ATP, GTP, CTP i CTU i UTP). Transkrypcja zaczyna się od produkcji kilku krótkich (kilka nukleotydów) transkryptów. Dopiero po oddysocjowaniu czynnika σ może rozpocząć się kolejny etap - elongacja transkrypcji (wydłużanie RNA). Polimeraza RNA przesuwa się systematycznie wzdłuż helisy DNA, rozplatając ją (na odcinku kilkunastu par zasad) i wydłużając łańcuch RNA, przy czym nukleotydy włączane są zgodnie z zasadą komplementarności. Powyżej aktualnego miejsca syntezy powstający hybrydowy kompleks DNA - RNA ulega rozpadowi, DNA powraca do swojej pierwotnej dwuniciowej struktury, a łańcuch powstającego mRNA oddziela się. Etap elongacji kończy się, gdy polimeraza RNA dotrze do terminatora - sekwencji kończącej, wyznaczającej miejsce terminacji (zakończenia) transkrypcji. Sekwencja taka tworzy strukturę szpilki do włosów (hairpin), która zatrzymuje polimerazę RNA, co powoduje rozpad kompleksu enzym - DNA - RNA. Drugim mechanizmem terminacji wykorzystywanym przez bakterie jest terminacja rho-zależna, gdzie do terminacji transkrypcji potrzebne jest działanie czynnika rho (ρ). Transkrypt prokariotyczny nie wymaga dalszej obróbki, a translacja rozpoczyna się, zanim transkrypcja dobiegnie końca.

Transkrypcja u eukariotów

U eukariontów występuje kilka rodzajów polimeraz RNA, w tym zbudowane z wielu podjednostek polimerazy RNA działające w jądrze komórkowym oraz specyficzne dla mitochondriów i chloroplastów polimerazy RNA, które budową przypominają polimerazy RNA prokariontów. Różne jądrowe polimerazy RNA biorą udział w transkrypcji różnych klas RNA. Polimeraza RNA II (Pol II) syntetyzuje pre-mRNA i większość snRNA, polimeraza RNA I (Pol I) transkrybuje część rRNA, a polimeraza RNA III (Pol III) odpowiada za syntezę tRNA, 5S rRNA i innych małych jądrowych RNA.

W przeciwieństwie do polimerazy RNA bakterii, jądrowe polimerazy RNA organizmów eukariotycznych potrzebują do rozpoczęcia transkrypcji zestawu właściwych dla danej polimerazy podstawowych czynników transkrypcyjnych, ponieważ rozpoznają nie sekwencję promotora, ale kompleks kwas nukleinowy-białko. Pierwszym etapem transkrypcji jest powstanie kompleksu preinicjacyjnego (PIC) składającego się z ogólnych czynników transkrypcyjnych, który wiąże się z sekwencją promotora. Na dostępność miejsc wiązania się czynników transkrypcyjnych wpływa struktura (upakowanie) chromatyny. Należy jednak zaznaczyć, że białka remodelujące chromatynę mogą wpływać na jej strukturę przed, w trakcie i po powstaniu PIC.

Wiele promotorów genów transkrybowanych przez jądrową polimerazę RNA II zawiera sekwencję TATA (ang. TATA box) położoną ok. -25 par zasad przed miejscem rozpoczęcia transkrypcji. Sekwencja ta jest rozpoznawana przez białko TBP (ang. TATA-box binding protein), które staje się zalążkiem kompleksu preinicjacyjnego. Drugą sekwencją rozpoznawaną przez ogólne czynniki transkrypcyjne jest sekwencja otaczająca miejsce startu transkrypcji (+1). Polimeraza RNA II wiąże się do kompleksu preinicjacyjnego i rozpoczyna transkrypcję. Do inicjacji transkrypcji przez polimerazę RNA II in vivo konieczny jest też kompleks białkowy zwany Mediatorem. W regulacji transkrypcji u eukariontów mogą brać udział także inne czynniki transkrypcyjne wiążące się z sekwencjami enhancerów i silencerów, często położone w znacznej odległości od miejsca inicjacji transkrypcji. Do rozpoczęcia transkrypcji przez polimerazę RNA I i III potrzebne są inne sekwencje oraz zestaw ogólnych czynników transkrypcyjnych specyficznych dla tych polimeraz.

Następny etap transkrypcji to elongacja. Polimeraza RNA przesuwa się dalej, a ogólne czynniki transkrypcyjne są uwalniane. Terminacja transkrypcji nie wymaga białek uwalniających, a jej sygnały są inne, niż u prokariontów. Zaproponowano dwa modele terminacji transkrypcji u eukariotów. Według pierwszego po transkrypcji miejsca poliadenylacji w polimerazie zachodzi zmiana konformacji, która ułatwia terminację transkrypcji. Według drugiego modelu w terminacji transkrypcji bierze udział trawiąca RNA egzonukleaza, która przecina cząsteczkę mRNA, a następnie niszczy ten fragment RNA, który ciągle jest związany z polimerazą.

Obróbka posttranskrypcyjna

Taki pierwotny transkrypt - pre-mRNA - musi jednak zostać poddany obróbce posttranskrypcyjnej, aby można go było wykorzystać do translacji. W przeciwnym wypadku mRNA po wydostaniu się z jądra zostałoby zniszczone w cytozolu przez białka, których zadaniem jest niszczenie kwasów nukleinowych. Jest to obrona przed dostaniem się do komórki obcego kwasu nukleinowego np. wirusa. Aby mRNA był rozpoznawany jako "swój" ma miejsce obróbka posttranskrypcyjna. Polega ona na:

0x01 graphic

TRANSLACJA to proces syntezy łańcucha polipeptydowego białek na matrycy mRNA. W jego wyniku dochodzi do ostatecznego przetłumaczenia informacji genetycznej zawartej pierwotnie w kodzie genetycznym DNA na konkretną strukturę białka, zależną od uszeregowania aminokwasów w łańcuchu polipeptydowym.

Translacja jest drugim (po transkrypcji) procesem w biosyntezie białka. Powstawanie łańcucha polipeptydowego sterowane jest przez sekwencję mRNA. Translacja odbywa się w cytoplazmie lub na błonach szorstkiej siateczki wewnątrzplazmatycznej. Proces ten jest katalizowany przez rybosom obejmujący podjednostkami przesuwającą się nić mRNA. Rybosomy składają się z dwóch podjednostek, większej i mniejszej, które są zbudowane z białek i rRNA, a funkcję katalityczną pełnią enzymy (rybozymy) zawarte w dużej podjednostce rybosomu. Translacja na jednej cząsteczce mRNA może być prowadzona przez wiele rybosomów równocześnie. Taki kompleks mRNA związanego z wieloma rybosomami nazywa się polisomem lub polirybosomem.

Translacja składa się z czterech faz:

W aktywacji właściwy aminokwas jest dołączany do właściwego tRNA za pomocą wiązania estrowego, powstałego przez reakcję grupy karboksylowej aminokwasu i grupy OH przy końcu 3' tRNA. Taki zespół określa się mianem aminoacylo-tRNA. Inicjacja translacji ma miejsce, kiedy mała podjednostka rybosomu przyłącza się do końca 5' mRNA. Do małej podjednostki przyłącza się duża podjednostka rybosomu. Na podjednostce 50s uaktywniają się dwa miejsca: P - miejsce peptydowe i A - miejsce akceptorowe. Pierwszy aminoacylo-tRNA ustawia się w miejscu P. Elongacja ma miejsce, kiedy następny aminoacylo-tRNA przyłącza się do rybosomu w miejscu A. Następnie proces translacji zachodzi na zasadzie komplementarności kodonu mRNA z antykodonem na tRNA. Rybosom i tRNA są tak ukształtowane, aby dwa aminokwasy, przyłączone do tRNA zajmujące w rybosomie miejsca A i P znajdowały się blisko siebie. Dzięki temu zachodzi reakcja między resztą aminową i karboksylową - dwa aminokwasy łączą się. Ten proces - tworzenie wiązań peptydowych jest katalizowany przez peptydylotransferazę - rybozym (rRNA) wchodzący w skład rybosomu. Po syntezie, tRNA szybko zwalnia miejsce P i wraca do cytoplazmy, z kolei aminoacylo-tRNA ulega przesunięciu z miejsca A na miejsce P. Proces ten nazywamy translokacją. Jednocześnie przesuwa się także mRNA. Wielkość tego przesunięcia wynosi zawsze trzy nukleotydy. Na miejsce A nasuwa się nowy tRNA zawierający antykodon odpowiadający kolejnemu kodonowi na mRNA. Proces elongacji powtarza się aż do napotkania przez podjednostkę mniejszą rybosomu w miejscu A kodonu stop (UAA, UAG lub UGA). Tych trójek kodonowych, w normalnych warunkach, nie koduje żaden tRNA. W tym momencie następuje terminacja translacji. Łańcuch polipeptydowy zostaje uwolniony do cytoplazmy, tRNA zostaje oddzielone od mRNA, a rybosom rozpada się na podjednostki, które mogą zostać ponownie wykorzystane do inicjacji translacji kolejnego mRNA.

Translacja u Prokariota

U organizmów prokariotycznych inicjacja translacji wymaga małej i dużej podjednostki rybosomu, czynników inicjacji translacji, GTP jako źródła energii, oraz inicjatorowego aminoacylo-tRNA (ze związanym aminokwasem formylometioniną). Mała podjednostka rybosomu wiąże się z czynnikiem inicjacji translacji IF3. 16S rRNA z małej podjednostki rybosomu 30S rozpoznaje i wiąże komplementarną sekwencję Shine-Dalgarno w mRNA. Czynnik inicjacji translacji IF2 wiąże się z fMet-tRNA i pomaga mu związać się z małą podjednostką rybosomu. W rybosomie są trzy miejsca, w których może znajdować się tRNA: miejsce A, przez które wchodzi aminoacylo-tRNA (z wyjątkiem pierwszego aminoacylo-tRNA - fMet-tRNA, które wchodzi przez miejsce P), miejsce P, gdzie tworzy się peptydylo-tRNA, oraz miejsce E, przez które tRNA opuszcza rybosom po oddaniu aminokwasu. Aminoacylo-tRNA (fMet-tRNA) znajdujące się w miejscu P rybosomu rozpoznaje kodon inicjujący AUG. Inicjacja kończy się przyłączeniem dużej podjednostki rybosomu i uwolnieniem czynników inicjacji translacji.

Po wejściu fMet-tRNA do miejsca P miejsce A otwiera się i umożliwia związanie się kolejnego aminoacylo-tRNA. W tym wiązaniu bierze udział czynnik elongacji translacji EF-Tu. W ten sposób rozpoczyna się elongacja. Rosnący polipeptyd odłącza się od tRNA w miejscu P, a między ostatnim aminokwasem a aminokwasem przyłączonym do tRNA w miejscu A tworzy się wiązanie peptydowe. Reakcja ta jest katalizowana przez rybozym peptydylotransferazę - 23S rRNA w podjednostce 50S rybosomu. Rybosom przesuwa się o trzy nukleotydy na nici mRNA, z którą są związane tRNA. Dzięki temu polipeptyd przesuwa się z miejsca A do miejsca P, a nienaładowane tRNA trafia do miejsca E. Powstające białko wysuwa się z rybosomu przez otwór w dużej podjednostce. Elongacja trwa, dopóki rybosom nie natrafi na jeden z kodonów STOP w mRNA.

Kiedy kodon STOP znajdzie się w miejscu A rybosomu, następuje terminacja translacji. Kodony STOP nie są rozpoznawane przez żadne tRNA, tylko przez czynniki uwalniające, które są odpowiedzialne za hydrolizę wiązania estrowego peptydylo—tRNA i uwolnienie nowo powstałego białka z rybosomu. U Prokaryota za proces terminacji translacji odpowiedzialne są dwa czynniki — RF1 i RF2. Czynnik RF1 rozpoznaje kodony UAA i UAG, a RF2 rozpoznaje kodony UAA i UGA[1].

Po terminacji mRNA i tRNA są uwalniane z rybosomu, a on sam dysocjuje na podjednostki, które mogą zostać ponownie wykorzystane do inicjacji translacji kolejnego mRNA.

Translacja u Eukariota

U organizmów eukariotycznych inicjacja translacji może przebiegać na dwa sposoby.

U Eukaryota występuje tylko jeden czynnik terminacyjny eRF1.

0x01 graphic

1



Wyszukiwarka

Podobne podstrony:
DNA, Medycyna, Biologia medyczna, 1) Genetyka 1 i komórka
Bloki enzymatyczne, Medycyna, Biologia medyczna, 3) Genetyka 2 i ekologia
Zanieczyszczenia powietrza, Medycyna, Biologia medyczna, 3) Genetyka 2 i ekologia
Ekologia, Medycyna, Biologia medyczna, 3) Genetyka 2 i ekologia
Kariotyp, Medycyna, Biologia medyczna, 3) Genetyka 2 i ekologia
choroby genetyczne tabelka, I rok, I rok, gieldy, pen, medycyna, 1 semestr, Biologia medyczna, Genet
Genetyka, Medycyna, Biologia medyczna, Wykłady
Toxoplazma gondii-sciagi, Medycyna, Biologia medyczna, Giełdy, Ściągi, Nowy folder
Parazyty - tabela, Medycyna, Biologia medyczna, 2) Parazytologia
Parazytologia 1, Medycyna, Biologia medyczna, 2) Parazytologia
egz biol, Medycyna, Biologia medyczna, Giełdy
Egzamin 2011, Medycyna, Biologia medyczna, Giełdy
Kolokwium 3 - 2012, Medycyna, Biologia medyczna, Giełdy

więcej podobnych podstron