background image

31.

(a) The angular positions θ of the bright interference fringes are given by sin θ , where is the

slit separation, λ is the wavelength, and is an integer. The first diffraction minimum occurs at
the angle θ

1

given by sin θ

1

λ, where is the slit width. The diffraction peakextends from

−θ

1

to +θ

1

, so we should count the number of values of for which

−θ

1

< θ < +θ

1

, or, equivalently,

the number of values of for which

− sin θ

1

sin θ < + sin θ

1

. This means

1/a < m/d < 1/a or

−d/a < m < +d/a. Now d/a = (0.150 × 10

3

m)/(30.0

× 10

6

m) = 5.00, so the values of are

=

4, 3, 2, 1, 0, +1, +2, +3, and +4. There are nine fringes.

(b) The intensity at the screen is given by

I

m



cos

2

β

 sin α

α



2

where α = (πa/λ) sin θβ = (πd/λ) sin θ, and I

m

is the intensity at the center of the pattern.

For the third bright interference fringe, sin θ = 3λ, so β = 3π rad and cos

2

β = 1. Similarly,

α = 3πa/d = 3π/5.00 = 0.600π rad and



sin α

α



2

=



sin 0.600π

0.600π



2

= 0.255 .

The intensity ratio is I/I

m

= 0.255.


Document Outline