background image

The Glass Transition

•  On cooling, some polymer melts don't crystallize
rather they form a glass;

Vitrify

 Tg

 Force

 Temperature

 Soft -- above Tg

 Hard -- below Tg

 F

background image

 α

 g

 Specific Vol.

 Tg

Temperature

 α

l

 α

g

2

 Total

 Volume

 Occupied

 Volume

•  Coefficient of expansion of the polymer liquid (melt)

is approximately twice that of the glass.

background image

Free Volume

•  Total system volume =

Volume occupied by
chains; physically or
effectively

+

Unoccupied volume;
space between chains
(free volume)

background image

 Volume

 Temperature

 Fast

 Slow

background image

•  Tg is rate dependent; higher heating/cooling rates

or higher frequencies test rates give higher values
for Tg.

•  Both cooling and heating rates should be specified

when measuring and reporting Tg.

•  After fast cooling a polymer below Tg, the sample

will try and find the most thermodynamically stable
state through reorganization.

•  Possible 'Aging' and embrittlement of polymer held

at up to 50° below Tg.

background image

Practical determination of Tg

•  DSC or DTA; use large samples and as high a
heating rate as possible to amplify poor signals.

T or 

H

Temperature

•  Several thermal 'definitions' of Tg including;

Onset + (Extrapolated);

Mid line intersection;

Return + (Extrapolated);

Inflection point; 

Derivative.

background image

•  With semicrystalline polymers having moderate to

high crystallinity Tg may be poorly resolved.

•  Other STATIC methods used to measure Tg:-

Refractive index (OM); Gas Diffusion/Solubility;
Thermal conductivity;

Chain mobility (NMR);

Specific volume (Dilatometer).

background image

•  Tg as measured by thermal methods often show
'peaks' near the transition.

 Fast

 Slow

 

T or 

H

 Temperature

 Specific Vol.

 Temperature

•  Exotherm near Tg explained as the 'melting out' of

holes or of frozen in 'free volume".

background image

•  Experimentally observed Tg is a function of several

variables including :-

Molecular weight

Plasticizer content

Test Rate/Frequency 

Sample size

Copolymers/Blends

Cross-linking

Crystallinity

Tacticity

background image

Influence of Crystallinity and Orientation

•  Ratio of energy dissipated by viscous component

vs. energy stored by the elastic component;
Tan 

δ

 (Loss Tangent) is maximum near Tg.

a)

Drawn (x3.5)

b)

Drawn (x5.4)

c)

Crystalline

d)

Amorphous

Tan

δ

   or

Loss Tangent

     Temperature (°C)

a

b

c

d

•  Crystallinity

,

Tg ;

restrain amorphous chains.

•  Cold drawing , Tg ;
tension in amorphous
chains.

background image

Influence of Molecular Weight

•  Experimentally, Tg is a fn. of molecular weight.

•  Major changes in Tg at low molecular weights and

small changes at high molecular weights.

More free volume at the
ends of a chain, so more
chain ends per volume
means lower Tg.

background image

•  Fox-Flory equation:-

Tg = Tg

 -K/Mn  (K 

 25x103)

Tg

Mn -1

Mn

Tg

Tg

Tg

25x10 3

background image

•  Situation regarding molecular weight dependence is

experimentally more complicated, some systems
show 2 or 3 straight line regions.

•  Transition from entangled coils to isolated coils to

rod like systems.  Rods pack more efficiently than
coils so free volume associated with chain end is
lower for rods.

10

3

10

4

Isolated
   coils

Rod-like

molecules

Tg

Mn-1

Tangled

    coils

•  Different K's for different molecular weights;

K from one region can't predict Tg in another.

background image

Note

  Some RING compounds follow Fox-Flory!!!

   Hydroxyl terminated PPO has no mol.wt.

dependence of Tg;  K=0.!!  CH3 terminated K>0.

  Tg(upper) - restrained amorphous; folds.

Tg(lower) - free amorphous; cilia, loose loops.

background image

Influence of Branching and Cross-links

•  Intuitively, adding cross-links increases Tg; restrain

chains more than in uncrosslinked state.

•  However, consider joining two chains together

whose molecular weights are M1 and M2.

Type of Join

# of

Ends

End to end

"T" junction

Middles as

"X" joint

2

3

4

background image

•  All joined chains have the same molecular weight.

•  For the SAME molecular weight Tg is depressed

more for branched polymers vs. linear molecules.

background image

•  If chains are crosslinked anticipate increase in Tg.

Decrease free volume.  Inhibit chain motion.
Increase average size of moving units.

Tg = Tg

 -K/M + Kx.(# crosslinks/gm)

Predicted

Observed

Tg

% Cross-Links

•  Network is a copolymer.  If cross-link agent is ‘like’

the polymer the equation above works.  If the
chemistry of the cross-link is different could see a
maximum in Tg vs. # of cross-links.

•  At very high cross-link densities Tg rises faster than

predicted.

background image

Influence of Copolymerization, Blending and

Plasticization

•  Equations developed for these systems depend on

the assumption that free volume is additive.

•  General form of the equation for diluents

(plasticizers) is given by :-

 

     

α

p.Vp.Tgp + 

α

d.(1 - Vp).Tgd

        Tgs =  –––––––––––––––––––––––

α

p.Vp + 

α

d.(1 - Vp)

Where 

Vp 

= Volume fraction of polymer.

α

= Coefficient of expansion of 

free polymer volume.

Tgp

= Tg of the polymer.

background image

•  How do we find 

α

d and Tgp for a low molecular

weight liquid.

Remember;   

α

 2.

α

g;     so, 

α

(free volume) 

 

α

l;

assume 

α

p or 

α

d  to be 

10-3 for many liquids.

•  Make up one or two mixtures and measure Tgs;

then derive Tgd using the above equation.

background image

•  For copolymers and blends simplify the previous

equation with some assumptions:-

Tg(copolymer or miscible blend) =

 

     

α

p1.Vp1.Tgp1 + 

α

p2.(1 - Vp1).Tgp2

–––––––––––––––––––––––––––

α

p1.Vp1 + 

α

p2.(1 - Vp1)

Now, 

α

p1 

 

α

p2 

and Vp1 + Vp2 =1

and many polymer have 

 the same density so

Vp1 

 Xp1    - Mole fraction or weight fraction.

so,

 

Tg(cop/blend) 

 X1.Tg1 + X2.Tg2

alternatively,  1/Tg(cop) 

 (W1/Tg1) + (W2/Tg2)

background image

Tg1

Tg2

Composition

background image

•  The above equations hold for immiscible blends and

random copolymers.

•  Block copolymers and Immiscible blends phase

separate and show individual Tg's for each phase.

 Tg1

 Tg2

 Composition

 Blocks and

 Immiscible blends

 Random

 copolymers

•  For crystallizable copolymers Tg depends on the

composition of the amorphous phase.  This could
be different from overall copolymer composition;
polymer chains rich in the most crystallizable
component will preferentially crystallize.

background image

2

-CH   -CH   -

2

2

-CH -CH   

-

|

CH 

3

|

2

-CH

C-

|

-

 CH   

3

CO

2

CH 

3

|

2

-CH

C-

-

|

CH 

3

2

-CH -CH   

-

|

CH 

3

+ CH 

3

+ CH 

3

Influence of Structural Parameters

•  Explanations based on the concept of free volume.

background image

CH 

3

|

2

-CH

C-

|

-

 CH   

3

CO

2

2

CH

CH 

3

|

2

-CH

C-

|

-

 CH   

3

CO

2

(

)

3

-

• Flexible side groups introduce more free volume.

•  More 'linear' Trans chain can pack better reduces

free volume and raises Tg.

-CH    

2

 CH    -

2

C=C

 CH    -

2

-CH    

2

C=C

Trans

Cis 

        Tg 

 -120                                         Tg 

 -48                   

72

background image

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

•  Tg (iso) PS 

 Tg (atactic) PS;

but, for most polymers Tg (iso) < Tg (atactic)

Rotation is 'easier' in Isotactic materials, favors
changes in conformation chain mobility.
Energy minima are deeper in less crowded
syndiotactic form.

background image

Chain-chain interactions and backbone flexibility

CH 

3

|

CH 

3

|

|

CH 

3

|

CH 

3

CH 

3

|

CH 

3

|

- C - CH    - C - CH    -

2

2

|

CH 

3

|

CH 

3

Cl

|

Cl

|

- C - CH    - C - CH    -

2

2

|

Cl

|

Cl

•  Increase in backbone flexibility lowers T

g.

•  Increase in chain-chain interactions increases Tg.

background image

Summary

•  Intermolecular interactions pull chains together -

decrease free volume -and raise Tg.

•  Chain side substituents

Stiff and bulky groups -inhibit rotation -raise Tg.
Flexible side groups -hold chains apart

    -increase free volume -lower Tg.

•  Chain backbone substituents

Flexibilize the chain; -thio, ether, Si-O; -lower Tg.
Bulky groups stiffen chain; rings; -raise Tg.

•  Easier to rationalize Tg; much more difficult to

predict; some attempts at group contribution
methods.

background image

 Compatible blends

 or

 Random copolymers

Tm

 Incompatible blends

 or

 Block copolymers

 Homo

 polymers

 Tg

 0.5

 0.7

 PE, PVDC

 PS, PP

background image

 Temp

 Tg

 % comonomer
 or plasticizer

 Tm

background image

 Number of times

 Tg reported

 140                        220                         300

 2

 6

 10

Temperature °K