tu jeszcze dodatkowe zadania
Obliczyć kowariancję cov(X,Y) pomiedzy cechami X i Y, jeżeli:
X 3,5 4 3,8 4,6 3,9 3 3,5 3,9 4,5
4,1
Y 4,2 3,9 3,8 4,5 4,2 3,4 3,8 3,9
4,6 4
Odpowiedź: 0,126
Poprawnie
Ocena dla tego zadania: 1/1.
Obliczyć kowariancję cov(X,Y) pomiedzy cechami X i Y, jeżeli:
X 1,5 3 2 3,5 1,5 4,5 2,5 4 4,5 3
Y 4,5 7 7,5 6,5 6,5 7,5 5,5 4,5 5,5 5
Odpowiedź: 0,05
Współczynnik korelacji Pearsona przymuje wartości z przedziału [-1;1] prawda
------ Wiadomość oryginalna ------ 
Temat:  | 
te zadania miałem w quiz 4 z statystyki opisowej ale nie wmiem czy dają takie samo dla wszystkich  | 
Data:  | 
Tue, 17 May 2011 19:58:53 +0200  | 
Nadawca:  | 
kamil kowalski <kamil.kowal@gmail.com>  | 
Adresat:  | 
karola.trzebinska <karola.trzebinska@gmail.com>  | 
arkusz 3 zadanie 1 - pytali o śrenią dla x i dla y ; odchylenie S(x), S(y), kowarjancaj cov(x,y); wskaźnik Persona r(x,y) jedna wartość; i śiłe tego wskaźnika = słaba dodatnia
arkusz 4 zadanie 2 tam trzeba było tylko policzyć wskaźnik Pearsona r(x,y) i podać wartość liczbową jak najdokładniej
Question1
Punkty: 1
Obliczyć kowariancję cov(X,Y) pomiedzy cechami X i Y, jeżeli:
X  | 
1  | 
5  | 
10  | 
8  | 
9  | 
1  | 
2  | 
4  | 
5  | 
6  | 
Y  | 
120  | 
115  | 
132  | 
123  | 
128  | 
102  | 
106  | 
109  | 
112  | 
110  | 
Odpowiedź:=22,03
Poprawnie
Ocena dla tego zadania: 1/1.
Question2
Punkty: 1
Wiadomo, ze plony z czarnej porzeczki ( Y ) zależą w pewnej mierze od wieku plantacji ( X ). Pozyskane informacje o plonach i wieku plantacji porzeczek pochodzą z 7 losowo wybranych gospodarstw i sa przedstawione w tabeli:
nr plantacji  | 
1  | 
2  | 
3  | 
4  | 
5  | 
6  | 
7  | 
(X) wiek w latach  | 
1  | 
3  | 
2  | 
3  | 
4  | 
3  | 
5  | 
(Y) plony w q/ha  | 
85  | 
105  | 
100  | 
110  | 
125  | 
115  | 
130  | 
Zbadać stopień skorelowania plonów czarnej porzeczki z wiekiem plantacji. Zinterpretować wynik.
średnia X =3  | 
  | 
  | 
średnia Y=110  | 
  | 
  | 
ochylenie standardowe X=1,195  | 
  | 
  | 
odchylenie standardowe Y = 14,142  | 
  | 
  | 
kowariancja (X,Y) =16,429  | 
  | 
  | 
współczynnik korelacji Pearsona = 0,972  | 
  | 
  | 
Interpretacja współczynnika korelacji = bardzo silna korelacja dodatnia  | 
  | 
  | 
Poprawnie
Ocena dla tego zadania: 1/1.
Statystyka Opisowa Studia Zaoczne  | 
JESTEŚ TUTAJ 
 
  | 
  | 
 QUIZ 4 PRZEJRZYJ PRÓBĘ 3. Początek formularza 
 Dół formularza Rozpoczęto czwartek, 19 maja 2011, 18:09 
 Skończono czwartek, 19 maja 2011, 18:28 
 Wykorzystany czas 19 min. 7 sek. 
 Punkty 2/2 
 Ocena 3 (100%) z 3 możliwych 
 Question1 Punkty: 1 Obliczyć kowariancję cov(X,Y) pomiedzy cechami X i Y, jeżeli: X 3,5 4 3,8 4,6 3,9 3 3,5 3,9 4,5 4,1 
 Y 4,2 3,9 3,8 4,5 4,2 3,4 3,8 3,9 4,6 4 
 Odpowiedź: 
 Poprawnie Ocena dla tego zadania: 1/1. Question2 Punkty: 1 celem porównania letnich warunkow agroklimatycznych w Małopolsce i na Pomorzu, dokonano pomiaru sumy temperatur dnia w dwóch pierwszych tygodniach lipca w ciagu sześciu lat (1996-2001). Zaobserwowane wyniki odnotowano w tabeli: lata t=1,2, ..., 6 1996 1997 1998 1999 2000 2001 
 suma temperatur w Małopolsce (X) 283 267 220 256 292 248 
 suma temperatur na Pomorzu (Y) 210 288 225 243 208 260 
 Czy istnieje korelacja miedzy lipcowymi temperaturami dnia w Małopolsce i na Pomorzu w świetle zgromadzonych informacji meteorologicznych? średnia X 
                                                      
 
 średnia Y 
                                                      
 
 ochylenie standardowe X 
                                                      
 
 odchylenie standardowe Y 
                                                      
 
 kowariancja (X,Y) 
                                                      
 
 współczynnik korelacji Pearsona 
                                                      
 
 Interpretacja współczynnika korelacji 
                                                      
 
 Poprawnie Ocena dla tego zadania: 1/1. Początek formularza 
 Dół formularza 
  | 
|
  | 
|