zadanie z prędkością ciężaru
$$V = 2,6\frac{m}{s}$$
$$V = w*r = > w_{2} = \frac{V}{r} = \frac{2,6}{0,5} = 5,2\frac{\text{rad}}{s}$$
$$z = \frac{w_{1}}{w_{2}},\ w_{1} = z*w_{2} = 5,2*20 = 104\frac{\text{rad}}{s}$$
Tb = G * r = 1000 * 0, 5 = 500Nm
$$T_{s} = \frac{T_{B}}{z*r} = 27,8\ Nm$$
Y = Ix * Lx = 2 * 0, 071 = 1, 42
$$w = \frac{U - I*R_{z}}{Y},\ wY = I - R_{z}$$
$$U_{s} = w_{s}Y + I_{s}R = wY + \frac{T}{Y}*R = 157,47$$
T = I * Y
$$I = \frac{T}{Y}$$
zadanie z ciężarem
PN = TN * wN
$$w_{N} = 152,9\frac{\text{rad}}{s}$$
$$T_{N} = \frac{P_{N}}{w_{N}} = \frac{12000}{152,9} = 78,5\ Nm$$
$$z = \frac{w_{1}}{w_{2}},\ \ z*w_{2} = w_{1},\ \ w_{2} = \frac{w_{1}}{z} = \frac{152,9}{15} = 10,193\frac{\text{rad}}{s}$$
$$n = \frac{P_{2}}{P_{1}},\ P_{2} = P_{1}*n = 0,9*12000 = 10800W$$
$$P_{2} = T_{2}*w_{2},\ \ T_{2} = \frac{P_{2}}{w_{2}} = \frac{10820}{10,192} = 1059,65\ Nm$$
1059, 65 − 1000 = 59, 65 Nm
zadanie ze zmniejszeniem I 80% i U z 440V na 300V
schemat postepowania : ∖n1) TN , YN
2) TS
3) IA
4) V
5) n
$$1\mathbf{)\ }T_{N} = \frac{T_{c}}{z*n} = \frac{P}{w} = \frac{55000}{120} = 458,33\ Nm$$
$$Y_{N} = \frac{T_{N}}{I} = \frac{458,33}{130} = 3,53$$
Y′N = 4 * 0, 75 = 3
2) G = m * g = 1500 * 10 = 15000 N
$$T_{c} = G*\frac{D}{2} = \frac{15000*0,3}{z*n} = \frac{4500}{15*0,95} = 315,79\ Nm$$
$$w = \frac{U^{'} - I'R}{Y'} \rightarrow w_{B} \rightarrow V$$
$$w = \frac{300 - 104*0,083}{3} = 97,12\frac{\text{rad}}{s}$$
$z = \frac{w_{1}}{w_{2}} \rightarrow w_{2}z = w_{1},\ w_{2} = \frac{w_{1}}{z} = \frac{97,12}{15} = 6,475\frac{\text{rad}}{s}$,
$$4)\ V = 1,95\frac{m}{s}$$
$$5)\ n = \frac{P_{m}}{P_{e}} = \frac{T*w_{s}}{U^{'}*{I'}_{u}} = 0,97$$
zadanie obliczyć predkosc obrotowa silnika obcowzbudnego(z rysunkiem)
$$w^{'} = 150,5\frac{\text{rad}}{s},\ \ U_{N} = U_{r} = 500V$$
Y = It * Lt
$$w = \frac{U_{N} - I_{N}(R_{N} + R_{d})}{Y}$$
T = IN * Y
$$I_{N} = \frac{T}{Y} = 213$$
$$R_{N} + R_{d} = \frac{w*Y - V_{N}}{I_{N}}$$
$$R_{d} = - \left( \frac{150,5*2,6 - 5000}{213} \right) - 0,04 = 0,47oma$$
silnik obcowzbudny wzory i zadanie jeśli U=500V a U'=400V
$w = \frac{U - IR_{z}}{Y_{N}} = \frac{U_{t}}{C*Y} - \frac{R_{z}}{{(C*Y)}^{2}}*T_{e}\ \ \ ,\ \ I = \frac{T'}{Y_{n}}\ \ \ ,\ $ Me = ce * Y * wm
$$w = \frac{U - IR_{z}}{Y_{N}},\ \ \ \ \ Y_{n} = \frac{U - IR_{z}}{w} = \frac{500 - 440*0,04}{180} = 2,68\left\lbrack \frac{\text{Vs}}{\text{rad}} \right\rbrack$$
$$w_{N} = 1720\frac{\text{obr}}{\min}*\frac{2\pi}{60} = 180\frac{\text{rad}}{s}$$
moment zanamionowy $T_{n} = \frac{P_{n}}{w_{n}} = \frac{200}{180} = 1111Nm$
PN = TN * wN
$$I^{'} = \frac{T_{n}*0,5}{Y_{N}} = \frac{1111*0,5}{2,68} = 207,28\ A$$
$$w^{'} = \frac{U^{'} - I'R_{z}}{Y_{n}} = \frac{400 - 207,28*0,04}{2,68} = 146,16\frac{\text{rad}}{s}$$
Jak sie zmieni moc zarówki
P = U * I
$R = \frac{U}{I}$
IR = U
$$I = \frac{U}{R}$$
$$P = U*\frac{U}{R}$$
$$P = \frac{U^{2}}{R}$$
$$R = \frac{U^{2}}{P}$$
$$\frac{{U^{2}}_{N}}{P_{n}} = \frac{U^{2}}{P}$$
PU2 = PnU2
$$P = \frac{P_{n}U^{2}}{{U^{2}}_{N}} = 95,20W$$
zadanie z prędkością ciężaru
$$V = 2,6\frac{m}{s}$$
$$V = w*r = > w_{2} = \frac{V}{r} = \frac{2,6}{0,5} = 5,2\frac{\text{rad}}{s}$$
$$z = \frac{w_{1}}{w_{2}},\ w_{1} = z*w_{2} = 5,2*20 = 104\frac{\text{rad}}{s}$$
Tb = G * r = 1000 * 0, 5 = 500Nm
$$T_{s} = \frac{T_{B}}{z*r} = 27,8\ Nm$$
Y = Ix * Lx = 2 * 0, 071 = 1, 42
$$w = \frac{U - I*R_{z}}{Y},\ wY = I - R_{z}$$
$$U_{s} = w_{s}Y + I_{s}R = wY + \frac{T}{Y}*R = 157,47$$
T = I * Y
$$I = \frac{T}{Y}$$
zadanie z ciężarem
PN = TN * wN
$$w_{N} = 152,9\frac{\text{rad}}{s}$$
$$T_{N} = \frac{P_{N}}{w_{N}} = \frac{12000}{152,9} = 78,5\ Nm$$
$$z = \frac{w_{1}}{w_{2}},\ \ z*w_{2} = w_{1},\ \ w_{2} = \frac{w_{1}}{z} = \frac{152,9}{15} = 10,193\frac{\text{rad}}{s}$$
$$n = \frac{P_{2}}{P_{1}},\ P_{2} = P_{1}*n = 0,9*12000 = 10800W$$
$$P_{2} = T_{2}*w_{2},\ \ T_{2} = \frac{P_{2}}{w_{2}} = \frac{10820}{10,192} = 1059,65\ Nm$$
1059, 65 − 1000 = 59, 65 Nm
zadanie ze zmniejszeniem I 80% i U z 440V na 300V
schemat postepowania : ∖n1) TN , YN
2) TS
3) IA
4) V
5) n
$$1\mathbf{)\ }T_{N} = \frac{T_{c}}{z*n} = \frac{P}{w} = \frac{55000}{120} = 458,33\ Nm$$
$$Y_{N} = \frac{T_{N}}{I} = \frac{458,33}{130} = 3,53$$
Y′N = 4 * 0, 75 = 3
2) G = m * g = 1500 * 10 = 15000 N
$$T_{c} = G*\frac{D}{2} = \frac{15000*0,3}{z*n} = \frac{4500}{15*0,95} = 315,79\ Nm$$
$$w = \frac{U^{'} - I'R}{Y'} \rightarrow w_{B} \rightarrow V$$
$$w = \frac{300 - 104*0,083}{3} = 97,12\frac{\text{rad}}{s}$$
$z = \frac{w_{1}}{w_{2}} \rightarrow w_{2}z = w_{1},\ w_{2} = \frac{w_{1}}{z} = \frac{97,12}{15} = 6,475\frac{\text{rad}}{s}$,
$$4)\ V = 1,95\frac{m}{s}$$
$$5)\ n = \frac{P_{m}}{P_{e}} = \frac{T*w_{s}}{U^{'}*{I'}_{u}} = 0,97$$
zadanie obliczyć predkosc obrotowa silnika obcowzbudnego(z rysunkiem)
$$w^{'} = 150,5\frac{\text{rad}}{s},\ \ U_{N} = U_{r} = 500V$$
Y = It * Lt
$$w = \frac{U_{N} - I_{N}(R_{N} + R_{d})}{Y}$$
T = IN * Y
$$I_{N} = \frac{T}{Y} = 213$$
$$R_{N} + R_{d} = \frac{w*Y - V_{N}}{I_{N}}$$
$$R_{d} = - \left( \frac{150,5*2,6 - 5000}{213} \right) - 0,04 = 0,47oma$$
silnik obcowzbudny wzory i zadanie jeśli U=500V a U'=400V
$w = \frac{U - IR_{z}}{Y_{N}} = \frac{U_{t}}{C*Y} - \frac{R_{z}}{{(C*Y)}^{2}}*T_{e}\ \ \ ,\ \ I = \frac{T'}{Y_{n}}\ \ \ ,\ $ Me = ce * Y * wm
$$w = \frac{U - IR_{z}}{Y_{N}},\ \ \ \ \ Y_{n} = \frac{U - IR_{z}}{w} = \frac{500 - 440*0,04}{180} = 2,68\left\lbrack \frac{\text{Vs}}{\text{rad}} \right\rbrack$$
$$w_{N} = 1720\frac{\text{obr}}{\min}*\frac{2\pi}{60} = 180\frac{\text{rad}}{s}$$
moment zanamionowy $T_{n} = \frac{P_{n}}{w_{n}} = \frac{200}{180} = 1111Nm$
PN = TN * wN
$$I^{'} = \frac{T_{n}*0,5}{Y_{N}} = \frac{1111*0,5}{2,68} = 207,28\ A$$
$$w^{'} = \frac{U^{'} - I'R_{z}}{Y_{n}} = \frac{400 - 207,28*0,04}{2,68} = 146,16\frac{\text{rad}}{s}$$
Jak sie zmieni moc zarówki
P = U * I
$R = \frac{U}{I}$
IR = U
$$I = \frac{U}{R}$$
$$P = U*\frac{U}{R}$$
$$P = \frac{U^{2}}{R}$$
$$R = \frac{U^{2}}{P}$$
$$\frac{{U^{2}}_{N}}{P_{n}} = \frac{U^{2}}{P}$$
PU2 = PnU2
$$P = \frac{P_{n}U^{2}}{{U^{2}}_{N}} = 95,20W$$
zadanie z prędkością ciężaru
$$V = 2,6\frac{m}{s}$$
$$V = w*r = > w_{2} = \frac{V}{r} = \frac{2,6}{0,5} = 5,2\frac{\text{rad}}{s}$$
$$z = \frac{w_{1}}{w_{2}},\ w_{1} = z*w_{2} = 5,2*20 = 104\frac{\text{rad}}{s}$$
Tb = G * r = 1000 * 0, 5 = 500Nm
$$T_{s} = \frac{T_{B}}{z*r} = 27,8\ Nm$$
Y = Ix * Lx = 2 * 0, 071 = 1, 42
$$w = \frac{U - I*R_{z}}{Y},\ wY = I - R_{z}$$
$$U_{s} = w_{s}Y + I_{s}R = wY + \frac{T}{Y}*R = 157,47$$
T = I * Y
$$I = \frac{T}{Y}$$
zadanie z ciężarem
PN = TN * wN
$$w_{N} = 152,9\frac{\text{rad}}{s}$$
$$T_{N} = \frac{P_{N}}{w_{N}} = \frac{12000}{152,9} = 78,5\ Nm$$
$$z = \frac{w_{1}}{w_{2}},\ \ z*w_{2} = w_{1},\ \ w_{2} = \frac{w_{1}}{z} = \frac{152,9}{15} = 10,193\frac{\text{rad}}{s}$$
$$n = \frac{P_{2}}{P_{1}},\ P_{2} = P_{1}*n = 0,9*12000 = 10800W$$
$$P_{2} = T_{2}*w_{2},\ \ T_{2} = \frac{P_{2}}{w_{2}} = \frac{10820}{10,192} = 1059,65\ Nm$$
1059, 65 − 1000 = 59, 65 Nm
zadanie ze zmniejszeniem I 80% i U z 440V na 300V
schemat postepowania : ∖n1) TN , YN
2) TS
3) IA
4) V
5) n
$$1\mathbf{)\ }T_{N} = \frac{T_{c}}{z*n} = \frac{P}{w} = \frac{55000}{120} = 458,33\ Nm$$
$$Y_{N} = \frac{T_{N}}{I} = \frac{458,33}{130} = 3,53$$
Y′N = 4 * 0, 75 = 3
2) G = m * g = 1500 * 10 = 15000 N
$$T_{c} = G*\frac{D}{2} = \frac{15000*0,3}{z*n} = \frac{4500}{15*0,95} = 315,79\ Nm$$
$$w = \frac{U^{'} - I'R}{Y'} \rightarrow w_{B} \rightarrow V$$
$$w = \frac{300 - 104*0,083}{3} = 97,12\frac{\text{rad}}{s}$$
$z = \frac{w_{1}}{w_{2}} \rightarrow w_{2}z = w_{1},\ w_{2} = \frac{w_{1}}{z} = \frac{97,12}{15} = 6,475\frac{\text{rad}}{s}$,
$$4)\ V = 1,95\frac{m}{s}$$
$$5)\ n = \frac{P_{m}}{P_{e}} = \frac{T*w_{s}}{U^{'}*{I'}_{u}} = 0,97$$
zadanie obliczyć predkosc obrotowa silnika obcowzbudnego(z rysunkiem)
$$w^{'} = 150,5\frac{\text{rad}}{s},\ \ U_{N} = U_{r} = 500V$$
Y = It * Lt
$$w = \frac{U_{N} - I_{N}(R_{N} + R_{d})}{Y}$$
T = IN * Y
$$I_{N} = \frac{T}{Y} = 213$$
$$R_{N} + R_{d} = \frac{w*Y - V_{N}}{I_{N}}$$
$$R_{d} = - \left( \frac{150,5*2,6 - 5000}{213} \right) - 0,04 = 0,47oma$$
silnik obcowzbudny wzory i zadanie jeśli U=500V a U'=400V
$w = \frac{U - IR_{z}}{Y_{N}} = \frac{U_{t}}{C*Y} - \frac{R_{z}}{{(C*Y)}^{2}}*T_{e}\ \ \ ,\ \ I = \frac{T'}{Y_{n}}\ \ \ ,\ $ Me = ce * Y * wm
$$w = \frac{U - IR_{z}}{Y_{N}},\ \ \ \ \ Y_{n} = \frac{U - IR_{z}}{w} = \frac{500 - 440*0,04}{180} = 2,68\left\lbrack \frac{\text{Vs}}{\text{rad}} \right\rbrack$$
$$w_{N} = 1720\frac{\text{obr}}{\min}*\frac{2\pi}{60} = 180\frac{\text{rad}}{s}$$
moment zanamionowy $T_{n} = \frac{P_{n}}{w_{n}} = \frac{200}{180} = 1111Nm$
PN = TN * wN
$$I^{'} = \frac{T_{n}*0,5}{Y_{N}} = \frac{1111*0,5}{2,68} = 207,28\ A$$
$$w^{'} = \frac{U^{'} - I'R_{z}}{Y_{n}} = \frac{400 - 207,28*0,04}{2,68} = 146,16\frac{\text{rad}}{s}$$
Jak sie zmieni moc zarówki
P = U * I
$R = \frac{U}{I}$
IR = U
$$I = \frac{U}{R}$$
$$P = U*\frac{U}{R}$$
$$P = \frac{U^{2}}{R}$$
$$R = \frac{U^{2}}{P}$$
$$\frac{{U^{2}}_{N}}{P_{n}} = \frac{U^{2}}{P}$$
PU2 = PnU2
$$P = \frac{P_{n}U^{2}}{{U^{2}}_{N}} = 95,20W$$