zadania elektryczne

zadanie z prędkością ciężaru


$$V = 2,6\frac{m}{s}$$


$$V = w*r = > w_{2} = \frac{V}{r} = \frac{2,6}{0,5} = 5,2\frac{\text{rad}}{s}$$


$$z = \frac{w_{1}}{w_{2}},\ w_{1} = z*w_{2} = 5,2*20 = 104\frac{\text{rad}}{s}$$


Tb = G * r = 1000 * 0, 5 = 500Nm


$$T_{s} = \frac{T_{B}}{z*r} = 27,8\ Nm$$


Y = Ix * Lx = 2 * 0, 071 = 1, 42


$$w = \frac{U - I*R_{z}}{Y},\ wY = I - R_{z}$$


$$U_{s} = w_{s}Y + I_{s}R = wY + \frac{T}{Y}*R = 157,47$$


T = I * Y


$$I = \frac{T}{Y}$$

zadanie z ciężarem


PN = TN * wN


$$w_{N} = 152,9\frac{\text{rad}}{s}$$


$$T_{N} = \frac{P_{N}}{w_{N}} = \frac{12000}{152,9} = 78,5\ Nm$$


$$z = \frac{w_{1}}{w_{2}},\ \ z*w_{2} = w_{1},\ \ w_{2} = \frac{w_{1}}{z} = \frac{152,9}{15} = 10,193\frac{\text{rad}}{s}$$


$$n = \frac{P_{2}}{P_{1}},\ P_{2} = P_{1}*n = 0,9*12000 = 10800W$$


$$P_{2} = T_{2}*w_{2},\ \ T_{2} = \frac{P_{2}}{w_{2}} = \frac{10820}{10,192} = 1059,65\ Nm$$


1059, 65 − 1000 = 59, 65 Nm

zadanie ze zmniejszeniem I 80% i U z 440V na 300V


schemat postepowania : ∖n1) TN    ,    YN


2) TS


3) IA


4) V


5) n


$$1\mathbf{)\ }T_{N} = \frac{T_{c}}{z*n} = \frac{P}{w} = \frac{55000}{120} = 458,33\ Nm$$


$$Y_{N} = \frac{T_{N}}{I} = \frac{458,33}{130} = 3,53$$


YN = 4 * 0, 75 = 3


2) G = m * g = 1500 * 10 = 15000 N


$$T_{c} = G*\frac{D}{2} = \frac{15000*0,3}{z*n} = \frac{4500}{15*0,95} = 315,79\ Nm$$


$$w = \frac{U^{'} - I'R}{Y'} \rightarrow w_{B} \rightarrow V$$


$$w = \frac{300 - 104*0,083}{3} = 97,12\frac{\text{rad}}{s}$$

$z = \frac{w_{1}}{w_{2}} \rightarrow w_{2}z = w_{1},\ w_{2} = \frac{w_{1}}{z} = \frac{97,12}{15} = 6,475\frac{\text{rad}}{s}$,


$$4)\ V = 1,95\frac{m}{s}$$


$$5)\ n = \frac{P_{m}}{P_{e}} = \frac{T*w_{s}}{U^{'}*{I'}_{u}} = 0,97$$

zadanie obliczyć predkosc obrotowa silnika obcowzbudnego(z rysunkiem)


$$w^{'} = 150,5\frac{\text{rad}}{s},\ \ U_{N} = U_{r} = 500V$$


Y = It * Lt


$$w = \frac{U_{N} - I_{N}(R_{N} + R_{d})}{Y}$$


T = IN * Y


$$I_{N} = \frac{T}{Y} = 213$$


$$R_{N} + R_{d} = \frac{w*Y - V_{N}}{I_{N}}$$


$$R_{d} = - \left( \frac{150,5*2,6 - 5000}{213} \right) - 0,04 = 0,47oma$$

silnik obcowzbudny wzory i zadanie jeśli U=500V a U'=400V

$w = \frac{U - IR_{z}}{Y_{N}} = \frac{U_{t}}{C*Y} - \frac{R_{z}}{{(C*Y)}^{2}}*T_{e}\ \ \ ,\ \ I = \frac{T'}{Y_{n}}\ \ \ ,\ $ Me = ce * Y * wm


$$w = \frac{U - IR_{z}}{Y_{N}},\ \ \ \ \ Y_{n} = \frac{U - IR_{z}}{w} = \frac{500 - 440*0,04}{180} = 2,68\left\lbrack \frac{\text{Vs}}{\text{rad}} \right\rbrack$$


$$w_{N} = 1720\frac{\text{obr}}{\min}*\frac{2\pi}{60} = 180\frac{\text{rad}}{s}$$

moment zanamionowy $T_{n} = \frac{P_{n}}{w_{n}} = \frac{200}{180} = 1111Nm$


PN = TN * wN


$$I^{'} = \frac{T_{n}*0,5}{Y_{N}} = \frac{1111*0,5}{2,68} = 207,28\ A$$


$$w^{'} = \frac{U^{'} - I'R_{z}}{Y_{n}} = \frac{400 - 207,28*0,04}{2,68} = 146,16\frac{\text{rad}}{s}$$

Jak sie zmieni moc zarówki


P = U * I

$R = \frac{U}{I}$


IR = U


$$I = \frac{U}{R}$$


$$P = U*\frac{U}{R}$$


$$P = \frac{U^{2}}{R}$$


$$R = \frac{U^{2}}{P}$$


$$\frac{{U^{2}}_{N}}{P_{n}} = \frac{U^{2}}{P}$$


PU2 = PnU2


$$P = \frac{P_{n}U^{2}}{{U^{2}}_{N}} = 95,20W$$

zadanie z prędkością ciężaru


$$V = 2,6\frac{m}{s}$$


$$V = w*r = > w_{2} = \frac{V}{r} = \frac{2,6}{0,5} = 5,2\frac{\text{rad}}{s}$$


$$z = \frac{w_{1}}{w_{2}},\ w_{1} = z*w_{2} = 5,2*20 = 104\frac{\text{rad}}{s}$$


Tb = G * r = 1000 * 0, 5 = 500Nm


$$T_{s} = \frac{T_{B}}{z*r} = 27,8\ Nm$$


Y = Ix * Lx = 2 * 0, 071 = 1, 42


$$w = \frac{U - I*R_{z}}{Y},\ wY = I - R_{z}$$


$$U_{s} = w_{s}Y + I_{s}R = wY + \frac{T}{Y}*R = 157,47$$


T = I * Y


$$I = \frac{T}{Y}$$

zadanie z ciężarem


PN = TN * wN


$$w_{N} = 152,9\frac{\text{rad}}{s}$$


$$T_{N} = \frac{P_{N}}{w_{N}} = \frac{12000}{152,9} = 78,5\ Nm$$


$$z = \frac{w_{1}}{w_{2}},\ \ z*w_{2} = w_{1},\ \ w_{2} = \frac{w_{1}}{z} = \frac{152,9}{15} = 10,193\frac{\text{rad}}{s}$$


$$n = \frac{P_{2}}{P_{1}},\ P_{2} = P_{1}*n = 0,9*12000 = 10800W$$


$$P_{2} = T_{2}*w_{2},\ \ T_{2} = \frac{P_{2}}{w_{2}} = \frac{10820}{10,192} = 1059,65\ Nm$$


1059, 65 − 1000 = 59, 65 Nm

zadanie ze zmniejszeniem I 80% i U z 440V na 300V


schemat postepowania : ∖n1) TN    ,    YN


2) TS


3) IA


4) V


5) n


$$1\mathbf{)\ }T_{N} = \frac{T_{c}}{z*n} = \frac{P}{w} = \frac{55000}{120} = 458,33\ Nm$$


$$Y_{N} = \frac{T_{N}}{I} = \frac{458,33}{130} = 3,53$$


YN = 4 * 0, 75 = 3


2) G = m * g = 1500 * 10 = 15000 N


$$T_{c} = G*\frac{D}{2} = \frac{15000*0,3}{z*n} = \frac{4500}{15*0,95} = 315,79\ Nm$$


$$w = \frac{U^{'} - I'R}{Y'} \rightarrow w_{B} \rightarrow V$$


$$w = \frac{300 - 104*0,083}{3} = 97,12\frac{\text{rad}}{s}$$

$z = \frac{w_{1}}{w_{2}} \rightarrow w_{2}z = w_{1},\ w_{2} = \frac{w_{1}}{z} = \frac{97,12}{15} = 6,475\frac{\text{rad}}{s}$,


$$4)\ V = 1,95\frac{m}{s}$$


$$5)\ n = \frac{P_{m}}{P_{e}} = \frac{T*w_{s}}{U^{'}*{I'}_{u}} = 0,97$$

zadanie obliczyć predkosc obrotowa silnika obcowzbudnego(z rysunkiem)


$$w^{'} = 150,5\frac{\text{rad}}{s},\ \ U_{N} = U_{r} = 500V$$


Y = It * Lt


$$w = \frac{U_{N} - I_{N}(R_{N} + R_{d})}{Y}$$


T = IN * Y


$$I_{N} = \frac{T}{Y} = 213$$


$$R_{N} + R_{d} = \frac{w*Y - V_{N}}{I_{N}}$$


$$R_{d} = - \left( \frac{150,5*2,6 - 5000}{213} \right) - 0,04 = 0,47oma$$

silnik obcowzbudny wzory i zadanie jeśli U=500V a U'=400V

$w = \frac{U - IR_{z}}{Y_{N}} = \frac{U_{t}}{C*Y} - \frac{R_{z}}{{(C*Y)}^{2}}*T_{e}\ \ \ ,\ \ I = \frac{T'}{Y_{n}}\ \ \ ,\ $ Me = ce * Y * wm


$$w = \frac{U - IR_{z}}{Y_{N}},\ \ \ \ \ Y_{n} = \frac{U - IR_{z}}{w} = \frac{500 - 440*0,04}{180} = 2,68\left\lbrack \frac{\text{Vs}}{\text{rad}} \right\rbrack$$


$$w_{N} = 1720\frac{\text{obr}}{\min}*\frac{2\pi}{60} = 180\frac{\text{rad}}{s}$$

moment zanamionowy $T_{n} = \frac{P_{n}}{w_{n}} = \frac{200}{180} = 1111Nm$


PN = TN * wN


$$I^{'} = \frac{T_{n}*0,5}{Y_{N}} = \frac{1111*0,5}{2,68} = 207,28\ A$$


$$w^{'} = \frac{U^{'} - I'R_{z}}{Y_{n}} = \frac{400 - 207,28*0,04}{2,68} = 146,16\frac{\text{rad}}{s}$$

Jak sie zmieni moc zarówki


P = U * I

$R = \frac{U}{I}$


IR = U


$$I = \frac{U}{R}$$


$$P = U*\frac{U}{R}$$


$$P = \frac{U^{2}}{R}$$


$$R = \frac{U^{2}}{P}$$


$$\frac{{U^{2}}_{N}}{P_{n}} = \frac{U^{2}}{P}$$


PU2 = PnU2


$$P = \frac{P_{n}U^{2}}{{U^{2}}_{N}} = 95,20W$$

zadanie z prędkością ciężaru


$$V = 2,6\frac{m}{s}$$


$$V = w*r = > w_{2} = \frac{V}{r} = \frac{2,6}{0,5} = 5,2\frac{\text{rad}}{s}$$


$$z = \frac{w_{1}}{w_{2}},\ w_{1} = z*w_{2} = 5,2*20 = 104\frac{\text{rad}}{s}$$


Tb = G * r = 1000 * 0, 5 = 500Nm


$$T_{s} = \frac{T_{B}}{z*r} = 27,8\ Nm$$


Y = Ix * Lx = 2 * 0, 071 = 1, 42


$$w = \frac{U - I*R_{z}}{Y},\ wY = I - R_{z}$$


$$U_{s} = w_{s}Y + I_{s}R = wY + \frac{T}{Y}*R = 157,47$$


T = I * Y


$$I = \frac{T}{Y}$$

zadanie z ciężarem


PN = TN * wN


$$w_{N} = 152,9\frac{\text{rad}}{s}$$


$$T_{N} = \frac{P_{N}}{w_{N}} = \frac{12000}{152,9} = 78,5\ Nm$$


$$z = \frac{w_{1}}{w_{2}},\ \ z*w_{2} = w_{1},\ \ w_{2} = \frac{w_{1}}{z} = \frac{152,9}{15} = 10,193\frac{\text{rad}}{s}$$


$$n = \frac{P_{2}}{P_{1}},\ P_{2} = P_{1}*n = 0,9*12000 = 10800W$$


$$P_{2} = T_{2}*w_{2},\ \ T_{2} = \frac{P_{2}}{w_{2}} = \frac{10820}{10,192} = 1059,65\ Nm$$


1059, 65 − 1000 = 59, 65 Nm

zadanie ze zmniejszeniem I 80% i U z 440V na 300V


schemat postepowania : ∖n1) TN    ,    YN


2) TS


3) IA


4) V


5) n


$$1\mathbf{)\ }T_{N} = \frac{T_{c}}{z*n} = \frac{P}{w} = \frac{55000}{120} = 458,33\ Nm$$


$$Y_{N} = \frac{T_{N}}{I} = \frac{458,33}{130} = 3,53$$


YN = 4 * 0, 75 = 3


2) G = m * g = 1500 * 10 = 15000 N


$$T_{c} = G*\frac{D}{2} = \frac{15000*0,3}{z*n} = \frac{4500}{15*0,95} = 315,79\ Nm$$


$$w = \frac{U^{'} - I'R}{Y'} \rightarrow w_{B} \rightarrow V$$


$$w = \frac{300 - 104*0,083}{3} = 97,12\frac{\text{rad}}{s}$$

$z = \frac{w_{1}}{w_{2}} \rightarrow w_{2}z = w_{1},\ w_{2} = \frac{w_{1}}{z} = \frac{97,12}{15} = 6,475\frac{\text{rad}}{s}$,


$$4)\ V = 1,95\frac{m}{s}$$


$$5)\ n = \frac{P_{m}}{P_{e}} = \frac{T*w_{s}}{U^{'}*{I'}_{u}} = 0,97$$

zadanie obliczyć predkosc obrotowa silnika obcowzbudnego(z rysunkiem)


$$w^{'} = 150,5\frac{\text{rad}}{s},\ \ U_{N} = U_{r} = 500V$$


Y = It * Lt


$$w = \frac{U_{N} - I_{N}(R_{N} + R_{d})}{Y}$$


T = IN * Y


$$I_{N} = \frac{T}{Y} = 213$$


$$R_{N} + R_{d} = \frac{w*Y - V_{N}}{I_{N}}$$


$$R_{d} = - \left( \frac{150,5*2,6 - 5000}{213} \right) - 0,04 = 0,47oma$$

silnik obcowzbudny wzory i zadanie jeśli U=500V a U'=400V

$w = \frac{U - IR_{z}}{Y_{N}} = \frac{U_{t}}{C*Y} - \frac{R_{z}}{{(C*Y)}^{2}}*T_{e}\ \ \ ,\ \ I = \frac{T'}{Y_{n}}\ \ \ ,\ $ Me = ce * Y * wm


$$w = \frac{U - IR_{z}}{Y_{N}},\ \ \ \ \ Y_{n} = \frac{U - IR_{z}}{w} = \frac{500 - 440*0,04}{180} = 2,68\left\lbrack \frac{\text{Vs}}{\text{rad}} \right\rbrack$$


$$w_{N} = 1720\frac{\text{obr}}{\min}*\frac{2\pi}{60} = 180\frac{\text{rad}}{s}$$

moment zanamionowy $T_{n} = \frac{P_{n}}{w_{n}} = \frac{200}{180} = 1111Nm$


PN = TN * wN


$$I^{'} = \frac{T_{n}*0,5}{Y_{N}} = \frac{1111*0,5}{2,68} = 207,28\ A$$


$$w^{'} = \frac{U^{'} - I'R_{z}}{Y_{n}} = \frac{400 - 207,28*0,04}{2,68} = 146,16\frac{\text{rad}}{s}$$

Jak sie zmieni moc zarówki


P = U * I

$R = \frac{U}{I}$


IR = U


$$I = \frac{U}{R}$$


$$P = U*\frac{U}{R}$$


$$P = \frac{U^{2}}{R}$$


$$R = \frac{U^{2}}{P}$$


$$\frac{{U^{2}}_{N}}{P_{n}} = \frac{U^{2}}{P}$$


PU2 = PnU2


$$P = \frac{P_{n}U^{2}}{{U^{2}}_{N}} = 95,20W$$


Wyszukiwarka

Podobne podstrony:
moo-zadania, Elektrotechnika, Metody obliczeniowe optymalizacji, ćwiczenia
Zadanie 3(1), Elektrotechnika, Rok 3, Napęd elektryczny, Napęd elektryczny wykład
zadania elektr, AGH, fizyka
efektywnosc zespolu zadaniowego, elektronika i telekomunikacja
zadania elektroniki
zadania elektroliza
zadania elektr
Zadanie 1(1), Elektrotechnika, Rok 3, Napęd elektryczny, Napęd elektryczny wykład
Zadania elektronika Wzmacniacz rozwiazanie
Zadania-elektromagnetyzm
Zadania elektronika Wzmacniacz selektywny
3 35 zadania elektryczno, elektroniczna
Zadanie(1), Elektronika i telekomunikacja-studia, rok II, semIII, Tbwcz, tbwcz ćwiczenia, ćwiczenia,
metrologia Zadania z elektrotechniki
WSM Zadania z elektroniki# 01 2011
zadania elektro
teoria zadania 1, Elektrotechnika AGH, Semestr III zimowy 2013-2014, Inżynieria Materiałowa w Elektr
Zadania z elektromagnetyzmu
Zadanie 2(1), Elektrotechnika, Rok 3, Napęd elektryczny, Napęd elektryczny wykład

więcej podobnych podstron