pkm ii 2kol

$M_{\text{nom}} = \frac{N}{\omega}$ $\text{\ \ \ \ \ \ \ \ \ }\frac{\text{\ M}_{s} - M_{2}}{I_{2}}t_{r} = \omega_{1}$

$M_{s} = \frac{2\text{μP}R_{sr}n}{3\sin\alpha}$ $\text{\ M}_{s} = M_{2} + \frac{I_{2}}{I_{1} + I_{2}}(M_{1} - M_{2})$

Ms = PR0Z Lt = mTc

Lt = 0.5Msωtr $Q = 2M_{s}\left( \frac{\mu_{1}}{d_{w}} \pm \frac{\tan\left( \alpha \pm \rho \right)}{D_{0}} \right)$

ρ = arctg μ2 Ms − Mso = PsRn

P = mrω2  $k_{s} = \frac{P_{s}}{l}$

l = tgφ R $\text{\ \ \ \ \ \ \ \ \ q}_{s} = \frac{4\xi - 1}{4\xi - 4} + \frac{0,615}{\xi}$

$\tau_{\max} = \frac{8\ P\ \xi q_{s}}{\pi d^{2}}$ $\text{\ \ \ \ \ \ k} = \frac{\text{Gd}}{8\xi^{3}n}$

$k = \frac{P_{\max}}{f_{\max}}$

$M_{\text{nom}} = \frac{N}{\omega}$ $\text{\ \ \ \ \ \ \ \ \ }\frac{\text{\ M}_{s} - M_{2}}{I_{2}}t_{r} = \omega_{1}$

$M_{s} = \frac{2\text{μP}R_{sr}n}{3\sin\alpha}$ $\text{\ M}_{s} = M_{2} + \frac{I_{2}}{I_{1} + I_{2}}(M_{1} - M_{2})$

Ms = PR0Z Lt = mTc

Lt = 0.5Msωtr $Q = 2M_{s}\left( \frac{\mu_{1}}{d_{w}} \pm \frac{\tan\left( \alpha \pm \rho \right)}{D_{0}} \right)$

ρ = arctg μ2 Ms − Mso = PsRn

P = mrω2  $k_{s} = \frac{P_{s}}{l}$

l = tgφ R $\text{\ \ \ \ \ \ \ \ \ q}_{s} = \frac{4\xi - 1}{4\xi - 4} + \frac{0,615}{\xi}$

$\tau_{\max} = \frac{8\ P\ \xi q_{s}}{\pi d^{2}}$ $\text{\ \ \ \ \ \ k} = \frac{\text{Gd}}{8\xi^{3}n}$

$k = \frac{P_{\max}}{f_{\max}}$


Wyszukiwarka