3U]\NáDG:\FLJDQLHGHVNLREFL*RQHMNORFNLHP

.ORFHN R FL *DU]H G OH*\ QD QLHZD*NLHM GHVFH 'R NORFND SU]\PRFRZDQ\ MHVW SU W 'UXJL

NRQLHF SU WD SRáF]RQ\ MHVW ] SRGSRU QLHSU]HVXZQ 3RPL G]\ GHVN D NORFNLHP L GHVN D

SRGáR*HP PR*H Z\VWSLü WDUFLH :VSyáF]\QQLN WDUFLD QD RE\GZX SRZLHU]FKQLDFK VW\NX

wynosi µ ó :\]QDF] PLQLPDOQ VLá 3 SU]\áR*RQ GR GHVNL NWyUD SR]ZROL QD MHM

Z\FLJQL FLHVSRGNORFND

α=450

*

3=?

µ=1/4

5R]ZL]DQLH

3U]HGVWDZLP\VLá\G]LDáDMFHQDNORFHNLGHVN

6

α=450

y

x

*

1

7

7

1

3=?

7

1

7

1

=DSLV]P\UyZQDQLDSU]HGVWDZLDMFHU]XW\QDRVLH[L\VLáG]LDáDMF\FKQDNORFHN

∑

1

1

F

0

, ∑ F

0

,

y =

⇒ N 1 = G −

S

x =

⇒ T 1 =

S

2

2

VWG N = G − T .

( 1)

1

1

:FKZLOLSRF]WNXUXFKXWDUFLHMHVWZSHáQLUR]ZLQL WHVWDG T =

N

µ . ( 2)

1

1

=UyZQDLRWU]\PXMHP\ T = µ( G − T ) , 1

1

µ

ZL F T =

G .

( 3)

1

µ +1

3U]HMG(P\GRUyZQDUyZQRZDJLGHVNL

5]XWXMFVLá\QDR\RWU]\PDP\ ∑ Fy = 0 ⇒ N

N

1 =

2

3RQLHZD*GODWDUFLDZSHáQLUR]ZLQL WHJR T =

N

µ i T = N

µ ZL F T = T .

( 4)

1

1

2

2

1

2

=DSLV]P\RVWDWHF]QLHU]XWVLáQDR[

F

∑ = 0 ⇒ T

.

( 5)

1 + T 2 = P

x

2µ

=UyZQDLRWU]\PDP\ P =

G

µ +

3RZVWDZLHQLXZDUWRFLµ=¼. mamy 1

2

ostatecznie P =

G v

5

2