MOMENTY I SIŁY BRZEGOWE

PRĘT OBUSTRONNIE UTWIERDZONY

EI =const

M

M

M

ij

ji

ij

M

V

V

L

ji

ij

V ji

ij

Vji

M = − FLξ

ξL

F

M =

ξ 2

FL

ji

(1−ξ)

ij

( − )2

1 ξ

V = F

V = − ξ 2

F

ji

(3− ξ

2 )

ij

(1 + 2ξ )( − ξ )2

1

M = − FL / 8

F

ij

M =

/

FL 8

L/2

L/2

ji

V = F / 2

V = F

− /2

ij

ji

M = − FLξ

M = FLξ

ji

(1−ξ )

ij

(1−ξ )

F

F

ξL

ξL

V = F

V = − F

ij

ji

M = − FL −

M = FL −

ji

( n 1/ n) ij

( n 1/ n)/12

F

F

F

/12

L/n

L/n

L/n

L/n

V = F

V = − F

ji

( n − )

ij

( n − )1/ 2

1 / 2

M = − FL +

M =

+

ji

(

FL n

5

.

0 / n)/12

ij

( n 0.5/ n)/12

L F

F

F

F L

L/n

L/n

L/n

2n

2n

V = Fn / 2

ij

V = − Fn / 2

ji

M =

ξ

FL

F

F

M =

ξ

FL

ji

(1 2

−ξ )

ij

(1 2

−ξ )/4

/ 4

γ L

ξL

γ L

V = − ξ

F

V = − ξ

F

ji

(3 2

−ξ )/2

ij

(3 2

−ξ )/2

M = M

M = Mξ

ji

(2 − ξ

3 )

ij

(1−ξ )(3ξ − )1

ξL

M

V = −6 Mξ − ξ

V = − Mξ −ξ

ji

6

(1 )

ij

(1 )/ L

/ L

M = M / 4

=

ij

M

M

M / 4

ji

L/2

L/2

V = −1.5 M L

= −

ij

/

V

1.5 M L

ji

/

M = −

+

M =

+

ji

(2 q 3

1

2

q ) 2

L /60

ij

(3 q 2

1

2

q ) 2

L /60

q1

q2

V =

+

V = −

+

ji

(3 q 7

1

q 2 ) L / 20

ij

(7 q 3

1

q 2 ) L / 20

2

M = qL

−

/12

2

=

ij

q

M

qL /12

ji

V = /

qL 2

ij

V = − qL / 2

ji

2

M = qL

−

/20

q

2

=

ij

M

qL /30

ji

V = 7 qL / 20

V = −3 qL / 20

ij

ji

2 2

M = − qL ξ

2 3

M = qL ξ

ji

(4−3ξ)/12

ij

[6−ξ(8−3ξ)]/12

ξL

q

V =

ξ

qL

3

V = − ξ

qL

ji

(1−ξ / )2

ij

[1 2

−ξ (1−ξ / )

2 ]

M = 11 2

− qL /192

ij

L/2

M = 5 2

qL /192

ji

q

V = 13 qL / 32

= −

ij

V

3 qL / 32

ji

2

M = − qLξ

2

M = qLξ

ji

(3 2

−ξ )

ij

(3 2

−ξ )/24

γ L

ξL

γ L

/24

q

V = qLξ / 2

V = − qLξ / 2

ij

ji

http://www.iil.pwr.wroc.pl/zukowski 1

M

EI =const

M

ij

M

ji

ij

M

Vij

V

L

ji

V ji

ij

Vji

2 2

M = − qL ξ

2 3

M

= qL ξ

q

ξL

ji

(5 − 3ξ )/ 60

ij

[10 −ξ(10 − 3ξ )]/ 60

2

3

V = qLξ

ij

[1/2−ξ (5−2ξ)/20]

V = − qLξ

ji

(5 − 2ξ )/ 20

M = −23 2

qL / 960

=

ij

M

7 2

qL / 960

q

L/2

ji

V = 9 qL / 40

= −

ij

V

qL / 40

ji

2 2

M = − qLξ

2 3

M = qL ξ

ji

(5 − 4ξ )

ij

[10−ξ(15−6ξ)]/30

q

ξL

/ 20

2

3

V = qLξ

ij

[1/2−ξ (15−8ξ)/20]

V = − ξ

qL

ji

(15−8ξ)/20

2

M = qL

−

/30

M =3 2

qL /160

ij

L/2

q

ji

V = 29 qL /160

ij

V = −11 qL /160

ji

M = 5 2

− qL /96

=

ij

L/2

q

M

5 2

qL /96

ji

V = qL / 4

V = − qL / 4

ij

ji

2

M = qL

−

/32

2

M = qL /32

ij

q

L/2

q

ji

V = qL / 4

V = − qL / 4

ij

ji

2 2

M = − qLξ

2 2

M = qL ξ

ji

(4−3ξ)

ij

(4−3ξ)/12

ξL

ξ

/12

q

L

q

V = qLξ / 2

ij

V = − qLξ / 2

ji

2 2

M = − qL ξ

2 2

M = qL ξ

ji

(2−ξ)/12

ij

(2−ξ)/12

q

ξL

ξL

q

V = qLξ / 2

V = − qLξ

ij

/ 2

ji

2

M = − qL

2

M = qL

ji

[1 2

−ξ (2−ξ)]/12

ij

[1 2

−ξ (2−ξ)]/12

q

ξL

ξL

V = qL

V = − qL

ji

(1−ξ )

ij

(1−ξ )/ 2

/ 2

ϕ

M = 4 EIϕ / L

i

M = 2 EIϕ / L

ij

i

ji

i

2

V = 6

− EIϕ / L

2

V = 6

− EIϕ / L

ij

i

ϕ

ji

i

i

M = 2 EIϕ / L

ϕ

=

ϕ

ij

j

M

4 EI

/ L

j

ji

j

2

V = 6

− EIϕ / L

2

= −

ϕ

ij

j

ϕ

V

6 EI

/ L

j

ji

j

M = −6 EIψ L

= −

ψ

ij

/

M

6 EI

L

ji

/

ψ =∆/L

∆

2

2

V = 12 EIψ / L

V = 12 EIψ / L

ij

ji

M = − EIα ∆ − ∆

M

= EIα ∆ − ∆

ji

T ( t

t

d

g )

ij

T ( t

t

d

g )/ h

∆t

h

/ h

g

= 0

∆t

V =

ij

V

0

d

ji

M = 0

M = EIα ∆ − ∆

ji

T ( t

t

d

g )

ij

/ h

h ∆tg

V = − EIα ∆ − ∆

V = − EIα ∆ − ∆

ji

T ( t

t

d

g ) /( Lh) ij

T ( t

t

d

g )/( Lh)

∆td

2

http://www.iil.pwr.wroc.pl/zukowski

M

EI =const

M

ij

M

ji

ij

M

Vij

V

L

ji

V ji

ij

Vji

= 2 ⋅ 3

( ⋅ξ − )

2 ⋅ EI

M

⋅ ϕ

∆

= 2 ⋅ (3 ⋅ξ − )

1 ⋅ EI

M

⋅ ∆ϕ

ij

L

ξL

ji

L

=

EI

EI

V

6 ⋅ 1

( − 2 ⋅ξ ) ⋅

⋅ ∆ϕ

∆ϕ

V = 6 ⋅ 1

( − 2 ⋅ξ ) ⋅

⋅ ϕ

∆

ij

2

L

ji

2

L

EI

M = 6 ⋅

⋅ h

∆

EI

ij

M = 6 ⋅

⋅ ∆ h

L 2

ξL

ij

L 2

∆h

EI

EI

V = −12 ⋅

⋅ ∆ h

V = −12 ⋅

⋅ h

∆

ij

3

ji

L

L 3

http://www.iil.pwr.wroc.pl/zukowski 3