METODA SIŁ – RAMA SYMETRYCZNA 1/8

10 kN/m

G

H

B

C

D E F

28 kNm

1 1

5

A

J

3 4 4 3 m SSN = 4

ObciąŜenie symetryczne S

RSP – S (SSN = 2) i UPMS

10

10

5

5

5

14

14

14

10

5

14

X

1

X2

ObciąŜenie antysymetryczne AS

RSP – AS (SSN = 2) i UPMS

5

5

14

5

14

14

5

14

X1

X2

OPRACOWANIE S. Ł., KOREKTA P. K.

METODA SIŁ – RAMA SYMETRYCZNA 2/8

Schemat symetryczny

Stan P

57,5

36,5

10

5·32/8 = 5,625

5

14

21

5

H

D = 28,2

14

MP [kNm]

28,2

A

5·6+10 = 40

ΣMA = 5·6·3 + 10·1·6,5 – 14 – 5HD = 0

HD = ( 90 + 65 – 14 ) / 5 = 28,2 kN

Stan X1 = 1

Stan X2 = 1

3

0

0

0

0

0,2

3

X1 = 1

M [-]

1

M [m]

2

0

1

0,2

X

1

2 = 1

0

3 +

3 -

1

1

1

1

26 4

, 93

δ11 =

+

=

(

3·3·3· +

3·3· 34 ) =

EI

EI

3

3

EI

3 +

3 -

3

34

1 -

1

1

1

9

,

1 44

δ22 =

=

(

1·1· 34 ) =

EI

EI

3

EI

1 -

34

3 -

1

1

1

9

,

2 15

δ12 = δ12 =

=

(

3·1· 34 ) =

EI

EI

6

EI

1 -

34

OPRACOWANIE S. Ł., KOREKTA P. K.

METODA SIŁ – RAMA SYMETRYCZNA 3/8

14 5·32/8= - 36,5 - 21

1

45/8

∆1P =

+

=

EI + 3 - 3

3

34

1

1

1

1

48

1

8

,

8 25

=

(

3·3·36,5 -

3·3·14 +

3·3

+

21·3· 34 ) =

EI

3

6

3

5

3

EI

21 -

1

1

1

20 4

, 08

∆2P =

=

(

21·1· 34 ) =

EI

EI

6

EI

1 -

34

1 26 4

, 93

9

,

2 15 X 

1

1  −

8

,

8 25 





 =





EI  9

,

2 15

9

,

1 44 X2 

EI − 20 4

, 08

X1 = 0,985 kN

X2 = -11,978 kNm

57,5

57,5

13,903

33,545

33,545

13,903

14

5 5

14

23,955

23,955

S

M

[kNm]

ost

11,978

11,978

5

14

ΣMC = 0 3QBC – 14 – 1,5·3·5 + 33,545 = 0 QBC = 0,985 kN

33,545

ΣY = 0 QBC – QCB – 3·5 = 0 QCB = -14,015 kN

QBC

QCB

5

57, 5

ΣMD = 0 3QCD – 57,5 – 1,5·3·5 + 5 = 0 QCD = 25 kN

5

ΣY = 0 QCD – QDC – 3·5 = 0 QDC = 10 kN

QCD

QDC

10

5

ΣME = 0 QDE – 0,5·10 – 5 = 0 QDE = 10 kN

ΣY = 0 QDE – QED – 10 = 0 QED = 0 kN

QDE

QED

23,955

QCA

ΣMC = 0 34 QAC + 11,978 + 23,955 = 0 QAC = -6,162 kN

Ση = 0 QAC – QCA = 0 QCA = -6,162 kN

QAC

11,978

η

OPRACOWANIE S. Ł., KOREKTA P. K.

METODA SIŁ – RAMA SYMETRYCZNA 4/8

10

5

ΣMF = 0 QEF – 0,5·10 + 5 = 0 QEF = 0 kN

ΣY = 0 Q

Q

EF – QFE – 10 = 0 QFE = -10 kN

EF

QFE

5

5

57,5

ΣMG = 0 3QFG – 5 – 1,5·3·5 + 57,5 = 0 QFG = -10 kN

ΣY = 0 QFG – QGF – 3·5 = 0 QGF = -25 kN

QFG

QGF

5

33,545

14

ΣMH = 0 3QGH – 1,5·3·5 – 33,545 + 14 = 0 QGH = 14,015 kN

ΣY = 0 QGH – QHG – 3·5 = 0 QHG = -0,985 kN

QGH

QHG

23,955

QGJ

ΣMJ = 0 34 QGJ – 23,955 – 11,978 = 0 QGJ = 6,162 kN

Σξ = 0 QJG – QGJ = 0 QJG = 6,162 kN

QJG

11,978

ξ

25

0,985

10

14,015

0,985

14,015

10

6,162

S

6,162

Q

[kN]

25

ost

Schemat antysymetryczny

Stan P

5

22,5

14

0

14

14

8,5

A

104

0

MP [kNm]

MA = 104

5·6 = 30

ΣMA = -MA + 14 + 3·6·5 = 0

MA = 104 kNm

OPRACOWANIE S. Ł., KOREKTA P. K.

METODA SIŁ – RAMA SYMETRYCZNA 5/8

Stan X1 = 1

Stan X2 = 1

3

0

0

3

4

X1 = 1

X2 = 1

M [m]

1

M [m]

2

0

0

0

7

7

1

1

3 +

3 -

1

1

1

1

26 4

, 93

δ11 =

+

=

(

3·3·3· +

3·3· 34 ) =

EI

EI

3

3

EI

3 +

3 -

34

3

4

4 +

7 +

1

δ22 =

+

=

4

EI

4 +

7 +

4

34

1

1

1

1

1

202 0

, 93

=

(

4·4·4 +

7·7 34 +

4·4 34 + 2

7·4 34 ) =

EI

3

3

3

6

EI

3 -

1

1

1

1

4

− 3 7

, 32

δ12 = δ12 =

=

( -

3·4 34 -

3·7 34 ) =

EI

4

EI

3

6

EI

7 +

34

- 8,5 104

+

- 21

1

14 5·32/8=45/8

∆1P =

+

=

EI

+ 3

- 3

3

34

1

1

1

1

48

1

1

397 2

, 18

=

(

14·3·3 -

8,5·3·3 +

3·3

+

104·3· 34 +

14·3 34 ) =

EI

6

3

3

5

6

3

EI

45/8

104

22,5 -

- 14

1

∆

2P =

+

=

EI

4 + 1

7 + 4

3

34

1

1

1 48

1 48

1

1

1

1

1

2

− 096 4

, 65

=

[3(

4·22,5+

4+

1–

1·22,5)+ 34 (-

104·7–

14·4–

14·7–

4·104)]=

EI

3

3 5

3 5

6

3

3

6

6

EI

OPRACOWANIE S. Ł., KOREKTA P. K.

METODA SIŁ – RAMA SYMETRYCZNA 6/8

1  26 4

, 93

− 43 7

, 32 X 

1

1 − 397 2

, 18





 =





EI − 43 7

, 32

202 0

, 93 X2 

EI  2096 4

, 65 

X1 = 3,315 kN

X2 = 11,091 kN

23,392

15,099

21,864

11,091

1,445

20,419

14

15,099

1,445

14

11,091

20,419

21,864

26,363

23,392

AS

M

[kNm]

26,363

ost

5

14

ΣMC = 0 3QBC + 14 – 1,5·3·5 – 1,445 = 0 QBC = 3,315 kN

1,4 45

ΣY = 0 QBC – QCB – 3·5 = 0 QCB = -11,685 kN

QBC

QCB

5

21,864

ΣM

D = 0 3QCD+21,864–1,5·3·5–11,091=0 QCD = 3,909 kN

11 ,091

ΣY = 0 QCD – QDC – 3·5 = 0 QDC = -11,091 kN

Q

CD

QDC

11,091

ΣME = 0 QDE + 11,091 = 0 QDE = -11,091 kN

ΣY = 0 QDE – QED = 0 QED = -11,091 kN

QDE

QED

20,419

ΣM

20,419

C = 0

Q

Q

GJ

CA

34 QAC – 26,363 – 20,419 = 0

QAC = 8,023 kN

Ση = 0 QAC – QCA = 0

QCA = 8,023 kN

QAC

QJG

26,363

26,363

η

ξ

ΣMJ = 0 34 QGJ – 20,419 – 26,363 = 0 QGJ = 8,023 kN

Σξ = 0 -QGJ + QJG = 0 QJG = 8,023 kN

11,091

ΣMF = 0 QEF + 11,091 = 0 QEF = -11,091 kN

QEF

QFE

ΣY = 0 QEF – QFE = 0 QFE = -11,091 kN

5

11,091

21,864

ΣMG = 0 3QFG–11,091+1,5·3·5+21,864=0 QFG = -11,091 kN

QFG

QGF

ΣY = 0 QFG – QGF + 3·5 = 0 QGF = 3,909 kN

5

1,445

14

ΣMH = 0 3QGH – 1,445 + 1,5·3·5 + 14 = 0 QGH = -11,685 kN

QGH

QHG

ΣY = 0 QGH – QHG + 3·5 = 0 QHG = 3,315 kN

OPRACOWANIE S. Ł., KOREKTA P. K.

METODA SIŁ – RAMA SYMETRYCZNA 7/8

3,315

3,909

3,909

3,315

8,023

8,023

AS

Q

[kN]

ost

11,685

11,091

11,685

79,364

Most [kNm]

M(x

2

1) = -10x1 /2 + 0,985x1 + 3,315x1

dM/dx1 = -10x1 + 4,3 => x10 = 0,43 m

35,636

34,99

M(x1=0,43) = 0,925 kNm

32,1

28

0,925

16,091

44,374

M(x

2

2) = -10x2 /2 + 11,091x2

3,536

dM/dx2 = -10x2 + 11,091 => x20 = 1,11 m

M(x2=1,11) = 6,151 kNm

x1

6,151

x2

14,385

28,909

38,341

0,985

2,330

14,185

Qost [kN]

11,091

1,861

25,7

21,091

0

0

30,596

N

ost [kN]

35,825

62,568

5

3

NA-C = -(40 – 0,985 + 30 – 3,315 – 11,091)

– (28,2 + 0,2·11,978)

= -62,568 kN

34

34

5

3

NG-H = -(40 – 0,985 – 30 + 3,315 + 11,091)

– (28,2 + 0,2·11,978)

= -35,825 kN

34

34

NC-G = -(28,2 + 0,2·11,978) = -30,596 kN

OPRACOWANIE S. Ł., KOREKTA P. K.

METODA SIŁ – RAMA SYMETRYCZNA 8/8

Sprawdzenie

Węzeł C

35,636

ΣM = -32,1 + 35,636 – 3,536 = 0 kNm

32,1

30,596

25,7

28,909

3

5

ΣY = -25,7 – 28,909 + 1,861

+ 62,568

= 10-4 ≈ 0 kN

34

34

1,861

5

3

ΣX = -30,596 – 1,861

+ 62,568

= 0,001 ≈ 0 kN

3,536

34

34

62,568

21,091

Węzeł G

34,99

30,596

ΣM = -79,364 + 34,99 + 44,374 = -0,001 ≈ 0 kNm 79,364

2,33

3

5

ΣY = -21,091 – 2,33 – 14,186

+ 35,825

= 5·10-5 ≈ 0 kN

34

34

14,186

5

3

44,374

ΣX = 30,596 – 14,186

– 35,825

= -2·10-4 ≈ 0 kN

35,825

34

34

3

0

0

0

P = 1

0

0

1

0

0

32,1

1

4,385 -

+

3,536

1 10·32/8=90/8

vB =

+

-

3

=

EI + 3

34

3

1

1

1 90

1

1

0

,

0 07

=

( -

3·32,1·3 +

3·3 +

14,385·3 34 +

3,536·3 34 ) =

≈ 0 m

EI

3

3 8

6

3

EI

OPRACOWANIE S. Ł., KOREKTA P. K.