WYZNACZENIE SIŁY SPRĘŻAJĄCEJ METODĄ GRAFICZNĄ.

DŹWIIGAR 1.

Y

x

A = ,

0 70 ⋅ 5

,

1 9 + ,

0 21⋅ 1

,

2 4 = 5

,

1 62 m 2

b ≤

h

3

,

0

m 1

dź

b

= 54 cm

m 1

b

= 90 cm

m 2

b

= 70 cm

dź

h

= 180 cm

dź

b

≤

h

3

,

0

= 3

,

0 ⋅180 = 54 cm = 5

,

0 4 m

m 1

dź

K = 2 ,

5 6 MPa

0

K ' = − 1

,

2 0 MPa

0

K = 23 1

, MPa

1

K ' = 0 MPa

1

K = 23 1

, MPa

2

K ' = 0 MPa

2

- geometria przekroju





,

0 70 ⋅ 5

,

1 9 ⋅ ( 5

,

0 4 + 3

,

0 5)

1

,

2 4

+ ,

0 21⋅ 1

,

2 4 ⋅ 



 2 

xsc =

= 9

,

0 42

,

1 25

 5

,

1 9 



,

0 21 

,

0 70 ⋅ 5

,

1 9 ⋅ 

 + ,

0 21⋅ 1

,

2 4 ⋅  5

,

1 9 +



 2 



2 

ysc =

= ,

1 054

,

1 25

,

0 7 ⋅ 5

,

1 93

5

,

1 9

1

,

2 4 ⋅ ,

0 213

2

,

0 21

I =

+ ( ,

0 7 ⋅ 5

,

1 9) ⋅ ,

1

( 054 −

) +

+ ( 1

,

2 4 ⋅ ,

0 2 )

1 ⋅ ( ,

0 746 −

)2 = 5

,

0 15 m 4

x

12

2

12

2

I

5

,

0 15

W

x

=

=

= ,

0 4886 m 3

V

,

1 054

I

5

,

0 15

W

x

' =

=

= ,

0 6903 m 3

V '

,

0 746

W '

,

0 6903

r =

=

= ,

0 442 m

A

5

,

1 62

W

,

0 4886

r' =

=

= 3

,

0 13 m

A

5

,

1 62

e = V − 1

,

0 5 = ,

1 054 − 1

,

0 5 = 9

,

0 04 m

- wyznaczenie Y0, Y1, Y2, Y0’, Y1’, Y2’

1

1

−5

Y =

=

= 1

,

3 3 ⋅10

0

 M



 585 ,

5 63



q

3

η ⋅

+ K

8

,

0 5 ⋅ 

+ 2 ,

5 6 ⋅10 



0 



 W



 ,

0 4886



1

1

−5

Y =

=

= ,

2 62 ⋅10

1

M q + ∆ q

7363 1

, 3

3

+ K

+ 231

, ⋅10

1

W

,

0 4886

−1

−1

−5

Y =

=

= 181

, 2 ⋅10

2

M q + ∆ q + M k + M

1213 ,

6 28

w

3

− K

− 231

, ⋅10

2

W '

,

0 6903

−1

−1

'

−5

Yo =

=

= −111,2 ⋅10

 M



 585 ,

5 63



q

'

3

η ⋅

+ K

8

,

0 5 ⋅ 

+ 1

,

2 ⋅10 



0 



 W '



 ,

0 6903



−1

−1

'

−5

Y =

=

= − 3

,

9 8 ⋅10

1

M q + ∆ q

7363 1

, 3

'

+ K

− 0

1

W '

,

0 6903

1

1

'

−5

Y =

=

= ,

4 03 ⋅10

2

M

q + ∆ q + M k + M

1213 ,

6 28

w

'

+ K

+ 0

2

W

,

0 4886

Na podstawie otrzymanych wartości, sporządzono wykres i wyznaczono punkt ζ: ς = 1 ,

4 40 ⋅10 5

− m 2 / kN

A

5

,

1 62

N =

=

= 10847,22 kN

ς 1 ,

4 40 ⋅10−5

Sprawdzenie czy naprężenia dopuszczalne nie zostały przekroczone:

- stan „0”

włókna górne

N

N ⋅ e

η

M q

'

3

2

− η

+

≥ K = − 1,

2 ⋅10 kN / m 0

A

W '

W '

10847,22

10847,22 ⋅ 9,

0 04

8

,

0 5

8

,

0 5

585 ,

5 63

3

'

3

2

−

+

= − ,

0 0594 ⋅10 > K = − 1

,

2 ⋅10 kN / m 0

5

,

1 62

,

0 6903

,

0 6903

włókna dolne

N

N ⋅ e

η

M q

3

2

+ η

−

≤ K = 2 ,

5 6 ⋅10 kN / m 0

A

W

W

10847,22

10847,22 ⋅ 9,

0 04

8

,

0 5

8

,

0 5

585 ,

5 63

3

3

2

+

−

=1 ,

9 796 ⋅10 < K = 2 , 5 6 ⋅10 kN / m 0

5

,

1 62

,

0 4886

,

0 4886

- stan „1”

włókna górne

N

N ⋅ e

M q+ q

∆

'

2

−

+

≥ K = 0 kN / m 1

A

W '

W '

10847,22

10847,22 ⋅ 9

,

0 04

7363 1

, 3

3

'

2

−

+

= ,

3 4 ⋅10 > K = 0 kN / m 1

5

,

1 62

,

0 6903

,

0 6903

włókna dolne

N

N ⋅ e

M q+ q

∆

3

2

+

−

≤ K = 231,⋅10 kN / m 1

A

W

W

10847,22

10847,22 ⋅ 9

,

0 04

7363 1

, 3

3

3

2

+

−

= 11 9

, 43 ⋅10 < K = 23 1

, ⋅10 kN / m 1

5

,

1 62

,

0 4886

,

0 4886

- stan „2”

włókna górne

N

N ⋅ e

M +∆ + M + M

q

q

k

w

3

2

−

+

≤ K = 231

, ⋅10 kN / m 2

A

W '

W '

1084 ,

7 22

10847,22 ⋅ 9

,

0 04

1213 ,

6 28

3

3

2

−

+

= 10 3

, 2 ⋅10 < K = 23 1

, ⋅10 kN / m 2

5

,

1 62

,

0 6903

,

0 6903

włókna dolne

N

N ⋅ e

M +∆ + M + M

q

q

k

w

'

2

+

−

≤ K = 0 kN / m 2

A

W

W

10847,22

10847,22 ⋅ 9

,

0 04

1213 ,

6 28

3

'

2

+

−

= 1

,

2 74 ⋅10 > K = 0 kN / m 2

5

,

1 62

,

0 4886

,

0 4886

Wyznaczenie uogólnionych promieni:

  K

η

0 ⋅ A ⋅





3



2 ,

5 6 ⋅10 ⋅ 5

,

1 62 ⋅ 8

,

0 5

 r' 

⋅

− 

1 = 3

,

0 13 ⋅ 

− 

1 = ,

0 668 m

 

N





10847,22



r

min

uo =



'







K

η

0 ⋅ A ⋅



3



− 1,

2 ⋅10 ⋅ 5

,

1 62 ⋅





8

,

0 5

r ⋅ 1 −

= ,

0 442 ⋅





1 −

 =



5

,

0 56 m





N





1084 ,

7 22



  K 1 ⋅ A





3



23 1

, ⋅10 ⋅ 5

,

1 62

 r' 

⋅

−1 = 3

,

0 13 ⋅ 

− 

1 = ,

0 728 m

  N





10847,22



r

min

u 1 =



'







K 1 ⋅ A



0 ⋅ 5

,

1 62 





r ⋅ 1 −

= ,

0 442 ⋅ 1 −

 =







,

0 442 m





N





10847,22 

  K 2 ⋅ A





3



23 1

, ⋅10 ⋅ 5

,

1 62

 r' 

⋅

− 

1 = 3

,

0 13 ⋅ 

−1 = ,0728 m

 

N





10847,22



r

min

u 2 =



'







K 2 ⋅ A



0 ⋅ 5

,

1 62 





r ⋅ 1 −

= ,

0 442 ⋅ 1 −

 =







,

0 442 m





N





10847,22 

 

'



K ⋅ A ⋅η



3





0



− 1,

2 ⋅10 ⋅ 5

,

1 62 ⋅



8

,

0 5

r ⋅' 1 −

= 3

,

0 13 ⋅





1 −

 = 3

,

0 93 m



'



N





10847,22



r

min

uo =

  K

η

0 ⋅ A ⋅





3



23 1

, ⋅10 ⋅ 5

,

1 62 ⋅ 8

,

0 5

 r ⋅ 

−1 = ,

0 442 ⋅ 

− 

1 = 9

,

0 43 m





N





10847,22







'



K ⋅ A



3





1



0 ⋅10 ⋅



5

,

1 62

r ⋅' 1 −

= 3

,

0 13 ⋅





1 −

 = 3

,

0 13 m





N





10847,22



r

min

u 1 =

  K 1 ⋅ A 



3



23 1

, ⋅10 ⋅ 5

,

1 62

 r ⋅ 

− 

1 = ,

0 442 ⋅ 

−1 = ,1028 m





N





10847,22







'



K ⋅ A



3





2



0 ⋅10 ⋅



5

,

1 62

r ⋅' 1 −

= 3

,

0 13 ⋅





1 −

 = 3

,

0 13 m





N





10847,22



r

min

u 2 =

  K 2 ⋅ A 



3



23 1

, ⋅10 ⋅ 5

,

1 62

 r ⋅ 

− 

1 = ,

0 442 ⋅ 

− 

1 = ,

1 028 m





N





10847,22



Rzędne obwiedni granicznej: Lp.

0

1

2

3

4

5

M

− r '

0

+

1

uo

N

-0,556

-0,391

-0,262

-0,171

-0,116

-0,097

η

'

M

2

− r

1

+

-0,442

-0,198

-0,008

0,128

0,210

0,237

u 1

N

'

M

3

− r

2

+

-0,442

-0,047

0,272

0,499

0,634

0,677

u 2

N

M

r

0

+

uo

4

N

0,393

0,558

0,687

0,778

0,833

0,852

η

M

5

r

1

+

0,313

0,557

0,747

0,883

0,965

0,992

u 1

N

M

6

r

2

+

0,313

0,708

1,027

1,254

1,389

1,432

u 2

N

DŹWIIGAR 2.

Y

x

A = ,

0 21⋅ 5

,

2 0 + ,

0 70 ⋅ 5

,

1 9 = ,

1 638 m 2

b

= 90 cm

m 2

b

= 70 cm

dź

h

= 180 cm

dź

K = 2 ,

5 6 MPa

0

K ' = − 1

,

2 0 MPa

0

K = 23 1

, MPa

1

K ' = 0 MPa

1

K = 23 M

1

,

Pa

2

K ' = 0 MPa

2

- geometria przekroju

,

0 7 ⋅ 5

,

1 9 ⋅ ( 9

,

0 0 + 3

,

0 5)

5

,

2 0

+ ,

0 21⋅ 5

,

2 0 ⋅ 2

xsc =

= ,

1 25

,

1 638

 5

,

1 92 



,

0 21

,

0 7 ⋅ 5

,

1 9 ⋅ 

 + ,

0 21⋅ 5

,

2 0 ⋅  5

,

1 9 +



 2 



2 

ysc =

= ,1083

,

1 638

,

0 7 ⋅ 5

,

1 93

5

,

1 9

5

,

2 ⋅ ,

0 213

2

,

0 21

I =

+ ( ,

0 7 ⋅ 5

,

1 9) ⋅ ,

1

( 083 −

) +

+ ( 5

,

2 ⋅ ,

0 2 )

1 ⋅ ( ,

0 717 −

)2 = 5

,

0 25 m 4

x

12

2

12

2

I

5

,

0 25

W

x

=

=

= ,

0 4848 m 3

V

,

1 083

I

5

,

0 25

W

x

' =

=

= ,

0 7322 m 3

V '

,

0 717

W '

,

0 7322

r =

=

= ,

0 447 m

A

,

1 638

W

,

0 4848

r' =

=

= ,

0 296 m

A

,

1 638

e = V − 1

,

0 5 = ,

1 083 − 1

,

0 5 = 9

,

0 33 m

- wyznaczenie Y0, Y1, Y2, Y0’, Y1’, Y2’

1

1

−5

Y =

=

= 1,

3 2 ⋅10

0

 M



 5847,75



q

3

η ⋅

+ K

8

,

0 5 ⋅ 

+ 2 ,

5 6 ⋅10 



0 



 W



 ,

0 4848



1

1

−5

Y =

=

= ,

2 62 ⋅10

1

M q + ∆ q

733 ,

1 62

3

+ K

+ 231,⋅10

1

W

,

0 4848

−1

−1

−5

Y =

=

= 1 ,

2 64 ⋅10

2

M q + ∆ q + M k + M

1112 ,

2 42

w

3

− K

− 231,⋅10

2

W '

,

0 7322

−1

−1

'

−5

Yo =

=

= 1

− ,

1 66 ⋅10

 M



 5847,75



q

'

3

η ⋅

+ K

8

,

0 5 ⋅ 

+ 1

,

2 ⋅10 



0 



 W '



 ,

0 7322



−1

1

'

−5

Y =

=

= − 9

,

9 9 ⋅10

1

M q + ∆ q

733 ,

1 62

'

+ K

− 0

1

W '

,

0 7322

1

1

'

−5

Y =

=

= 3

,

4 6 ⋅10

2

M

q + ∆ q + M k + M

1112 ,

2 42

w

'

+ K

+ 0

2

W

,

0 4848

Na podstawie otrzymanych wartości, sporządzono wykres i wyznaczono punkt ζ: ς = 16 8

, 3 ⋅10 5

− m 2 / kN

A

,

1 638

N =

=

= 973 ,

2 62 kN

ς 16 8

, 3 ⋅10−5

Sprawdzenie czy naprężenia dopuszczalne nie zostały przekroczone:

- stan „0”

włókna górne

N

N ⋅ e

η

M q

'

3

2

− η

+

≥ K = − 1

,

2 0 ⋅10 kN / m 0

A

W '

W '

973 ,

2 62

973 ,

2 62 ⋅ 9,

0 33

8

,

0 5

8

,

0 5

5847,75

'

3

2

−

+

= 38 ,

6 61 > K = − 1

,

2 0 ⋅10 kN / m 0

,

1 638

,

0 7322

,

0 7322

włókna dolne

N

N ⋅ e

η

M q

3

2

+ η

−

≤ K = 2 ,

5 6 ⋅10 kN / m 0

A

W

W

973 ,

2 62

973 ,

2 62 ⋅ 9,

0 33

8

,

0 5

8

,

0 5

5847,75

3

3

2

+

−

= 16 9

, 6 ⋅10 < K = 2 , 5 6 ⋅10 kN / m 0

,

1 638

,

0 4848

,

0 4848

- stan „1”

włókna górne

N

N ⋅ e

M q+ q

∆

'

2

−

+

≥ K = 0 kN / m 1

A

W '

W '

973 ,

2 62

973 ,

2 62 ⋅ 9

,

0 33

733 ,

1 62

3

'

2

−

+

= 5

,

3 5 ⋅10 > K = 0 kN / m 1

,

1 638

,

0 7322

,

0 7322

włókna dolne

N

N ⋅ e

M q+ q

∆

3

2

+

−

≤ K = 231

, ⋅10 kN / m 1

A

W

W

973 ,

2 62

973 ,

2 62 ⋅ 9

,

0 33

733 ,

1 62

3

3

2

+

−

= 5

,

9 5 ⋅10 < K = 23 1

, ⋅10 kN / m 1

,

1 638

,

0 4848

,

0 4848

- stan „2”

włókna górne

N

N ⋅ e

M +∆ + M + M

q

q

k

w

3

2

−

+

≤ K = 231

, ⋅10 kN / m 2

A

W '

W '

973 ,

2 62

973 ,

2 62 ⋅ 9

,

0 33

1112 ,

2 42

3

3

2

−

+

= ,

8 73 ⋅10 < K = 23 1

, ⋅10 kN / m 2

,

1 638

,

0 7322

,

0 73221

włókna dolne

N

N ⋅ e

M +∆ + M + M

q

q

k

w

'

2

+

−

≤ K = 0 kN / m 2

A

W

W

973 ,

2 62

973 ,

2 62 ⋅ 9

,

0 33

1112 ,

2 42

3

'

2

+

−

= ,173⋅10 > K = 0 kN / m 2

,

1 638

,

0 4848

,

0 4848

Wyznaczenie uogólnionych promieni:



 K

η

0 ⋅ A ⋅





3



2 ,

5 6 ⋅10 ⋅ ,

1 638 ⋅ 8

,

0 5

 r' 

⋅

−1 = ,

0 296 ⋅ 

−1 = ,0788 m





N





973 ,

2 62



r

min

uo =



'

 



K

η

0 ⋅ A ⋅



3



− 1

,

2 0 ⋅10 ⋅ ,

1 638 ⋅ 8

,

0 5

r ⋅ 1 −

= ,

0 447 ⋅





1 −

 =



5

,

0 81 m

 

N





973 ,

2 62



  K 1 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r' 

⋅

−1 = ,

0 296 ⋅ 

−1 = 8,

0 55 m

  N





973 ,

2 62



r

min

u 1 =



'







K 1 ⋅ A



0 ⋅ ,

1 638 

r ⋅ 1−

 = ,

0 447 ⋅ 1 −

 =



,

0 447 m





N





973 ,

2 623 

  K 2 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r' 

⋅

−1 = ,

0 296 ⋅ 

−1 = 8,

0 55 m

 

N





973 ,

2 62



r

min

u 2 =



'







K 2 ⋅ A



0 ⋅ ,

1 638 

r ⋅ 1−

 = ,

0 447 ⋅ 1 −

 =



,

0 447 m





N





973 ,

2 62 

 

'



K ⋅ A ⋅η



3





0



− 1

,

2 0 ⋅10 ⋅ ,

1 638 ⋅



8

,

0 5

r ⋅' 1 −

= ,

0 296 ⋅





1 −

 = 3

,

0 85 m



'



N





973 ,

2 62



r

min

uo =

  K

η

0 ⋅ A ⋅





3



2 ,

5 6 ⋅10 ⋅ ,

1 638 ⋅ 8

,

0 5

 r ⋅ 

−1 = ,

0 447 ⋅ 

−1 = 1,

1 90 m





N





973 ,

2 62







'



K ⋅ A



3





1



0 ⋅10 ⋅



,

1 638

r ⋅' 1 −

= ,

0 296 ⋅





1 −

 = ,

0 296 m





N





973 ,

2 62



r

min

u 1 =

  K 1 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r ⋅ 

−1 = ,

0 447 ⋅ 

−1 = ,1291 m

  N





973 ,

2 62







'



K ⋅ A



3



0

2

⋅10 ⋅







,

1 638

r ⋅' 1 −

= ,

0 296 ⋅





1 −

 = ,

0 296 m





N





973 ,

2 62



r

min

u 2 =

  K 2 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r ⋅ 

−1 = ,

0 447 ⋅ 

−1 = ,1291 m

 

N





973 ,

2 62



Rzędne obwiedni granicznej: Lp.

0

1

2

3

4

5

M

− r '

0

+

1

uo

N

-0,385

-0,201

-0,058

0,044

0,105

0,126

η

'

M

2

− r

1

+

-0,296

-0,025

0,186

0,337

0,427

0,457

u 1

N

'

M

3

− r

2

+

-0,296

0,109

0,434

0,665

0,803

0,847

u 2

N

M

r

0

+

uo

4

N

0,581

0,765

0,908

1,010

1,071

1,092

η

M

5

r

1

+

0,447

0,718

0,929

1,080

1,170

1,200

u 1

N

M

6

r

2

+

0,447

0,852

1,177

1,408

1,546

1,590

u 2

N

DŹWIIGAR 3.

Y

x

A = ,

0 21⋅ 5

,

2 0 + ,

0 70 ⋅ 5

,

1 9 = ,

1 638 m 2

b

= 90 cm

m 2

b

= 70 cm

dź

h

= 180 cm

dź

K = 2 ,

5 6 MPa

0

K ' = − 1

,

2 0 MPa

0

K = 23 1

, MPa

1

K ' = 0 MPa

1

K = 23 M

1

,

Pa

2

K ' = 0 MPa

2

- geometria przekroju

,

0 7 ⋅ 5

,

1 9 ⋅ ( 9

,

0 0 + 3

,

0 5)

5

,

2 0

+ ,

0 21⋅ 5

,

2 0 ⋅ 2

xsc =

= ,

1 25

,

1 638

 5

,

1 92 



,

0 21

,

0 7 ⋅ 5

,

1 9 ⋅ 

 + ,

0 21⋅ 5

,

2 0 ⋅  5

,

1 9 +



 2 



2 

ysc =

= ,1083

,

1 638

,

0 7 ⋅ 5

,

1 93

5

,

1 9

5

,

2 ⋅ ,

0 213

2

,

0 21

I =

+ ( ,

0 7 ⋅ 5

,

1 9) ⋅ ,

1

( 083 −

) +

+ ( 5

,

2 ⋅ ,

0 2 )

1 ⋅ ( ,

0 717 −

)2 = 5

,

0 25 m 4

x

12

2

12

2

I

5

,

0 25

W

x

=

=

= ,

0 4848 m 3

V

,

1 083

I

5

,

0 25

W

x

' =

=

= ,

0 7322 m 3

V '

,

0 717

W '

,

0 7322

r =

=

= ,

0 447 m

A

,

1 638

W

,

0 4848

r' =

=

= ,

0 296 m

A

,

1 638

e = V − 1

,

0 5 = ,

1 083 − 1

,

0 5 = 9

,

0 33 m

- wyznaczenie Y0, Y1, Y2, Y0’, Y1’, Y2’

1

1

−5

Y =

=

= 1

,

3 2 ⋅10

0

 M



 585 ,

5 63



q

3

η ⋅

+ K

8

,

0 5 ⋅ 

+ 2 ,

5 6 ⋅10 



0 



 W



 ,

0 4848



1

1

−5

Y =

=

= ,

2 61⋅10

1

M q + ∆ q

7363 1

, 3

3

+ K

+ 231

, ⋅10

1

W

,

0 4848

−1

−1

−5

Y =

=

= 1 ,102 ⋅10

2

M q + ∆ q + M k + M

10272 8

, 3

w

3

− K

− 231

, ⋅10

2

W '

,

0 7322

−1

−1

'

−5

Yo =

=

= −1 ,

1 65 ⋅10

 M



 585 ,

5 635



q

'

3

η ⋅

+ K

8

,

0 5 ⋅ 

+ 1

,

2 ⋅10 



0 



 W '





,

0 7322



−1

1

'

−5

Y =

=

= − 9

,

9 4 ⋅10

1

M q + ∆ q

7363 1

, 3

'

+ K

− 0

1

W '

,

0 7322

1

1

'

−5

Y =

=

= ,

4 72 ⋅10

2

M

q + ∆ q + M k + M

10272 8

, 3

w

'

+ K

+ 0

2

W

,

0 4848

Na podstawie otrzymanych wartości, sporządzono wykres i wyznaczono punkt ζ: ς = 17 5

, 0 ⋅10 5

− m 2 / kN

A

,

1 638

N =

=

= 936 ,

0 00 kN

ς 17 5

, 0 ⋅10−5

Sprawdzenie czy naprężenia dopuszczalne nie zostały przekroczone:

- stan „0”

włókna górne

N

N ⋅ e

η

M q

'

3

2

− η

+

≥ K = − 1,

2 0 ⋅10 kN / m 0

A

W '

W '

9360

9360 ⋅ 9,

0 33

8

,

0 5

8

,

0 5

585 ,

5 63

'

3

2

−

+

= 688 3

, 5 > K = − 1

,

2 0 ⋅10 kN / m 0

,

1 638

,

0 7322

,

0 7322

włókna dolne

N

N ⋅ e

η

M q

3

2

+ η

−

≤ K = 2 ,

5 6 ⋅10 kN / m 0

A

W

W

9360

9360 ⋅ 9,

0 33

8

,

0 5

8

,

0 5

585 ,

5 63

3

3

2

+

−

= 15 8

, 4 ⋅10 < K = 2 , 5 6 ⋅10 kN / m 0

,

1 638

,

0 4848

,

0 4848

- stan „1”

włókna górne

N

N ⋅ e

M q+∆ q

'

2

−

+

≥ K = 0 kN / m 1

A

W '

W '

9360

9360 ⋅ 9

,

0 33

7363 1

, 3

3

'

2

−

+

= 8

,

3 4 ⋅10 > K = 0 kN / m 1

,

1 638

,

0 7322

,

0 7322

włókna dolne

N

N ⋅ e

M q+ q

∆

3

2

+

−

≤ K = 231

, ⋅10 kN / m 1

A

W

W

9360

9360 ⋅ 9

,

0 33

7363 1

, 3

3

3

2

+

−

= 5

,

8 4 ⋅10 < K = 23 1

, ⋅10 kN / m 1

,

1 638

,

0 4848

,

0 4848

- stan „2”

włókna górne

N

N ⋅ e

M +∆ + M + M

q

q

k

w

3

2

−

+

≤ K = 231

, ⋅10 kN / m 2

A

W '

W '

97360

9360 ⋅ 9

,

0 33

10272 8

, 3

3

3

2

−

+

= 7 8

, 2 ⋅10 < K = 23 1

, ⋅10 kN / m 2

,

1 638

,

0 7322

,

0 73221

włókna dolne

N

N ⋅ e

M +∆ + M + M

q

q

k

w

'

2

+

−

≤ K = 0 kN / m 2

A

W

W

9360

9360 ⋅ 9

,

0 33

10272 8

, 3

3

'

2

+

−

= 5

,

2 4 ⋅10 > K = 0 kN / m 2

,

1 638

,

0 4848

,

0 4848

Wyznaczenie uogólnionych promieni:



 K

η

0 ⋅ A ⋅





3



2 ,

5 6 ⋅10 ⋅ ,

1 638 ⋅ 8

,

0 5

 r' 

⋅

−1 = ,

0 296 ⋅ 

−1 = 8,

0 31 m





N





9360



r

min

uo =



'

 



K

η

0 ⋅ A ⋅



3



− 1

,

2 0 ⋅10 ⋅ ,

1 638 ⋅ 8

,

0 5

r ⋅ 1 −

= ,

0 447 ⋅





1 −

 =



5

,

0 87 m

 

N





9360



  K 1 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r' 

⋅

−1 = ,

0 296 ⋅ 

−1 = 9,

0 00 m

  N





9360



r

min

u 1 =



'







K 1 ⋅ A



0 ⋅ ,

1 638 

r ⋅ 1−

 = ,

0 447 ⋅ 1 −

 =



,

0 447 m





N





9360 

  K 2 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r' 

⋅

−1 = ,

0 296 ⋅ 

−1 = 9,

0 00 m

 

N





9360



r

min

u 2 =



'







K 2 ⋅ A



0 ⋅ ,

1 638 

r ⋅ 1−

 = ,

0 447 ⋅ 1 −

 =



,

0 447 m





N





9360 

 

'



K ⋅ A ⋅η



3





0



− 1

,

2 0 ⋅10 ⋅ ,

1 638 ⋅



8

,

0 5

r ⋅' 1 −

= ,

0 296 ⋅





1 −

 = 3

,

0 88 m



'



N





9360



r

min

uo =

  K

η

0 ⋅ A ⋅





3



2 ,

5 6 ⋅10 ⋅ ,

1 638 ⋅ 8

,

0 5

 r ⋅ 

−1 = ,

0 447 ⋅ 

−1 = 5,

1 56 m





N





9360







'



K ⋅ A



3





1



0 ⋅10 ⋅



,

1 638

r ⋅' 1 −

= ,

0 296 ⋅





1 −

 = ,

0 296 m





N





9360



r

min

u 1 =

  K 1 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r ⋅ 

−1 = ,

0 447 ⋅ 

−1 = 3,

1 60 m

  N





9360







'



K ⋅ A



3



0

2

⋅10 ⋅







,

1 638

r ⋅' 1 −

= ,

0 296 ⋅





1 −

 = ,

0 296 m





N





9360



r

min

u 2 =

  K 2 ⋅ A 



3



23 1

, ⋅10 ⋅ ,

1 638

 r ⋅ 

−1 = ,

0 447 ⋅ 

−1 = 3,

1 60 m

 

N





9360



Rzędne obwiedni granicznej: Lp.

0

1

2

3

4

5

M

− r '

0

+

1

uo

N

-0,388

-0,197

-0,048

0,059

0,122

0,144

η

'

M

2

− r

1

+

-0,296

-0,013

0,207

0,365

0,459

0,491

u 1

N

'

M

3

− r

2

+

-0,296

0,095

0,405

0,627

0,759

0,802

u 2

N

M

r

0

+

uo

4

N

0,587

0,778

0,927

1,034

1,097

1,119

η

M

5

r

1

+

0,447

0,730

0,950

1,108

1,202

1,234

u 1

N

M

6

r

2

+

0,447

0,838

1,148

1,370

1,502

1,545

u 2

N