background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

1

 
 
 
 

A BIFURCATION MODEL OF NON-STATIONARY MARKETS 

 
 
 
 
 
 

David Nawrocki* 

Villanova University 

College of Commerce and Finance 

800 Lancaster Avenue 

Villanova, PA 19085 USA 

610-519-4323 

David.Nawrocki@villanova.edu 

 
 

Tonis Vaga 

401 Linden Lane 

Brielle, NJ 08730 

732-528-8239 

tonisvaga@yahoo.com 

 
 
 
 
 
 
 
 

* Authors are listed alphabetically.  The first author is the contact person responsible for 
correspondence concerning this paper. 

 
 
 
 
 
 
 
 
 
 
 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

2

A BIFURCATION MODEL OF NON-STATIONARY MARKETS 

 
 

ABSTRACT 

 

We propose a non-stationary model of market disequilibrium that features bifurcation of 
a linear, mean regressive, equilibrium state into trend persistent coherent market states.  
Empirical data covering the period between 1930 and 2005 suggests that the Dow Jones 
Industrial Average has exhibited trend persistence approximately 81% of the time.  Mean 
regressive markets appear to follow highly volatile periods.  A bifurcation dynamic is 
also evident in returns conditioned on both prior day price and volume.  Returns 
following rising prior day volume exhibit trend persistent behavior.  This finding is 
consistent with prior research indicating a positive relationship between trading volume 
and serial correlations for daily returns. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

3

A BIFURCATION MODEL OF NON-STATIONARY MARKETS 

 

 
INTRODUCTION 
 
     
Recent studies cast doubt on the common practice of modeling stock returns or 

expected returns as a constant linear function of risk.  Fama and French (1989) find that 

the risk premium embedded in expected returns moves inversely with business 

conditions.  Whitelaw (1994) reports that both expected returns and conditional volatility 

move in response to the business cycle.  Nawrocki (1995, 1996) and Chauvet (1998a, 

1998b) propose and find a dynamic relationship between stock market fluctuations and 

business cycles.  Perez-Quiros and Timmermann (2000) find asymmetries in the 

conditional mean and volatility of excess stock returns around business cycle turning 

points.  Chauvet and Potter (2000, 2001) suggest a nonlinear risk measure that allows for 

the risk-return relationship to not be constant over Markov states (bull or bear) or over 

time.  Perez-Quiros and Timmermann (2001) also find support for a Markov switching 

model with time-varying means and variances.  DeStefano (2004) tests a four-state model 

of the business cycle that provides additional proof that stock returns vary inversely with 

economic conditions.  Finally, Guidolin and Timmermann (2005) discover that a four-

state model is necessary to capture the joint distribution of US stock and bond returns. 

In summary, empirical work suggests a nonlinear financial market dynamic at work, 

requiring evolutionary, financial state transition models.   

     The application of evolutionary theory to economic processes is strongly defended by 

Boulding (1981a, 1981b) and Nawrocki (1984, 1995).  The use of entropy theory and 

bifurcation theory is extensive in the finance and economics literature, [Murphy (1965), 

Georgescu-Roegen (1971), Cozzolino and Zahner (1973), and Majthay (1980)].  Among 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

4

early research in this area, Nawrocki (1984) explores non-stationary mean jump 

processes and non-stationary variability processes in the financial markets while Vaga 

(1990) proposes a state transition model for the financial markets based on Weidlich 

(1971), Callen and Shapero (1974) and Haken (1975). 

  

     

More recently, many questions are being raised regarding the assumptions underlying 

the Efficient Market Hypothesis (EMH) in Shiller (2000) and Schliefer (2000).  

Alternating trending and mean reverting investor sentiment models are proposed in 

Barberis, Shleifer and Vishny (1998).  Hong and Stein (1999) suggest positive 

correlations in returns are due to the slow dissemination of information.  Wyart and 

Bouchaud (2003) propose that feedback dynamics among a subset of market agents are 

sufficient to create trends in anticipation of correlations.  Finally Dopfer (2005) offers 

unifying principles to the evolutionary approach to economics, and includes contributions 

by Haken and Prigogine. 

     The purpose of this paper, after a brief survey of the work in financial market 

disequilibrium, is to review evolutionary market state transition models and provide 

additional empirical evidence in support of disequilibrium theories of the financial 

markets.  The structure of the paper is as follows. First, models of financial market 

disequilibrium and entropy are described from the economic perspective. Next, Haken’s 

general evolutionary model of state transitions is used to describe bifurcations in 

undisseminated market information and conditional return states.  Finally, empirical 

evidence in support of the non-stationary market disequilibrium theories is presented. 

 

FINANCIAL MARKET DISEQUILIBRIUM 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

5

     The traditional tatonnement model of market equilibrium assumes a stationary 

information process and an infinite speed of information dissemination in the 

marketplace. The market prices that result from this process adjust immediately to new 

information. Since new information is an independent process, the usual random walk 

model is developed in Fama (1970). 

     The assumption that markets have an infinite speed of information dissemination, 

however, has been questioned by a number of researchers. A developing body of 

literature offers disequilibrium models of market processes. Beja and Hakansson (1977) 

argue that a swift movement to a pareto-optimum price in the classical tatonnement 

process is unlikely in actual security prices because of institutional rigidities such as taxes 

and transaction costs. It is more likely that markets will trade at disequilibrium prices in a 

search for equilibrium but will not converge to equilibrium. Grossman and Stiglitz (1976) 

suggest that prices never fully adjust because of a noisy information system, the costs of 

acquiring and evaluating information, and the continuing need to adjust to new 

information shocks to the economy. Black (1976) argues that disequilibrium prices result 

from lags in the information process. 

          Morse (1980) argues further that the speed of information dissemination, while 

finite, is not constant, and varies with the amount of new information.  With the arrival of 

new information, the greater the disparity between the equilibrium price and the actual 

price, the more investors want to trade, and increasing trading volume increases the 

market’s speed of information dissemination. Because of the aforementioned restrictions 

affecting the speed of information dissemination, greater dependence in security returns 

also occurs during this period. Morse’s results indicate a positive relationship between 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

6

trading volume and serial correlations for daily data for a mixture of NYSE, AMEX and 

OTC stocks.  

A BIFURCATION MODEL OF MARKET DISEQUILIBRIUM 

     A simple bifurcation model of equilibrium states in a wide variety of systems from 

various disciplines outside of finance is provided by Haken (1975) using the concept of 

the damped anharmonic oscillator.  Weidlich (1971) uses a similar approach to describe 

states of polarized opinion in social systems. Following Haken (1975), we model the 

market return, R, as: 

lim

t

→0 

(1/t)[R(t) – R(0)] =  k [R(0)] + f [I(t), t]  

 

 

 

(1) 

 where k[R(0)] = - ∑

i

 a

i

 R(0)

i

 represents undisseminated information following a known 

return, R(0) while f[I(t), t] represents random new information arrival.  Setting a

0

 and a

2

 

equal to zero, we focus on the parameters a

1

 and a

3

 which control the bifurcation between 

a single equilibrium state to bi-stable states and the speed of the market’s information 

dissemination process.  Given our simplifying assumptions, Equation 1 can be expressed 

as 

 

∂R(t)/∂t = – a

1

 R – a

3

 R

3

 

f[I(t), 

t] 

     (2) 

With the nonlinear feedback term, – a

3

 R

3

, Equation 2 is an extension of the Langevin 

equation of Brownian motion.  Therefore, this quantitative model of market dynamics 

corresponds to the linear random walk as a special case and also allows examination of 

the bifurcated equilibrium states that result from the nonlinear term.   The Langevin 

equation also underlies the phase transition model in Vaga (1990) and Wyart and 

Bouchaud (2003). 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

7

     Putting random forces f[I(t), t] = 0 for the moment, the time dependent solution to 

Equation 4 has the form 

R(t) = ± (a

1

)

1/2

[exp(2 a

1

t) – a

3

]

-1/2  

for a

3

 > 0 and a

1

 > 0 

 

 

(3) 

and 

R(t) = ± (|a

1

|)

1/2

[a

3

 - exp(-2| a

1

|t)]

-1/2  

for a

3

 > 0 and a

1

 < 0   

 

(4) 

The parameter “a

1

” can be viewed as the inverse “relaxation time” or the rate at which 

the system evolves toward equilibrium as t approaches infinity.  In Equation (3), there is 

a single equilibrium state at R = 0, since we have arbitrarily set a

0

 = 0.   

     In Equation (3) (when a

3

 > 0 and a

1

 > 0) the slope of k(R) is everywhere negative.  

This implies that information dissemination causes returns to regress toward the long 

term mean as new information arrives at random and creates temporary disequilibrium 

states.  As a

1

 decreases, the slope decreases, and the speed of information dissemination 

decreases and the market reacts more slowly to new information arrival.  An unstable 

transition occurs when a

1

 = 0, a bifurcation point, where the market’s long term average 

return is no longer a stable equilibrium point.    

     In equation (4) (when a

3

 > 0 and a

1

 < 0) a bifurcation results in two new equilibrium 

states.  Therefore, the sign of the parameter “a

1

” controls the bifurcation from a single 

equilibrium state (when a

3

 > 0 and a

1

 > 0) into two states (when a

3

 > 0 and a

1

 < 0).  One 

new stable state is at R(bull) = + |(a

1

/a

3

)|

1/2 

while the other stable state is at R(bear) = - 

|(a

1

/a

3

)|

1/2

.  In general, the market’s new stable states may be far from the original 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

8

equilibrium state.  These states can be observed empirically by examining the conditional 

return data in historical market time series. 

EMPIRICAL EVIDENCE  

     In order to assess the validity of bifurcation model for the capital markets we examine 

the correlation of daily market returns, R(t), with prior day returns, R(0).  If there is a 

single stable equilibrium state around the market’s long term average return (linear 

random walk), the residual undisseminated information should tend to cause returns to 

regress toward the long term mean.  The daily mean return is 0.026% (6.7% annualized) 

for the Dow Jones Industrial Average over the period from 1930 to 2005.  If the market 

behaves more as a bistable disequilibrium system, then the residual undisseminated 

information would cause returns to drift toward either the stable bull or bear states, far 

from the long term average. 

     Trend persistent states are clearly evident in historical conditional return data for both 

the stock and bond markets.  Moderate price returns tend to persist in direction, though 

periods of mean regressive behavior are also evident.  Historical time series analysis of 

both major stock market averages and the bond market provides statistically significant 

evidence of bistable financial market disequilibrium.   

Dow Jones Industrial Average 

   The conditional returns for the DJIA from 1930 to 2005 are summarized in Table 1 for 

0.5% increments between -3.75% and +3.75%.  Data beyond this range are considered to 

be outliers.  The table summarizes the mean return, standard deviation of return, relative 

frequency of return and the results of a t-test which compares the conditional return 

sample to the total sample to rule out the null hypothesis.  For simplicity of notation, 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

9

prior day returns, R, within an interval, e.g. 0.25% < R < 0.75%, are listed in the table as 

0.5% the center of the interval.  Likewise Tables 2 through Table 7 summarize relevant 

data for other cases of interest. 

The data shows statistically significant trend persistent behavior on average for the 

DJIA over the sample period in the regions of moderate positive and negative returns.  

The slope of the conditional return map in the area where there is the greatest amount of 

data and where the null hypothesis can be clearly rejected, corresponds to the bifurcated, 

bistable market states. 

Figure 1 illustrates actual conditional returns and volatility for the DJIA dating back to 

the period following the Crash of 1929.  The data covers more than seven decades of 

daily price changes.  It clearly demonstrates that the conditional returns (average return 

following prior day return of a given size) exhibit the trend reinforcing behavior for 

moderate daily returns within the -2.0% to +3.5% region. This data suggests that on 

average, over the long run, the market can be viewed as being in bifurcated, trend 

persistent states.  This nonlinear random walk or jump process, characterized by a 

persistent drift toward bistable disequilibrium states (rather than the simple mean 

regression) is evidenced by the positive slope of the conditional return map in the region 

near the market’s long term average return. 

     The conditional return findings presented in Figure 1 include all data from January 

1930 to January 2005 regardless of underlying economic fundamentals or liquidity issues 

that affect the markets from time to time.  A polynomial fit [k(R) = -159.8 R

3

 + 2.225 R

2

 

+ 0.1134 R - 0.0002] to the data shows an r-square of 89%.  This fit suggests that the 

maximum trend persistence for moderate positive returns occurs approximately after 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

10

prior returns of 2% with an average daily return on the subsequent day of slightly more 

than 0.15% and the drift is toward a stable disequilibrium bull state at over +3% where 

the conditional return drops to zero.  Trend persistence for moderate negative returns is 

greatest after prior day returns of about –1.5% and average around –0.1%.  The 

disequilibrium bear state is at about –2% where the trend persistence vanishes. 

Bifurcation Parameter 

     While the empirical evidence suggests that the bi-stable disequilibrium is the main 

dynamic for the capital markets’ long-term average behavior, a closer examination 

reveals that at times the market is either in a single, linear equilibrium state or at the 

critical bifurcation point.  This situation occurred most noticeably in the era of the Great 

Depression after the Crash of 1929.  It has also occurred in the aftermath of the 2000 

High Tech Crash. 

     In order to examine the market’s state transitions, we determine the slope of the 

conditional return map for moderate returns around the neighborhood of zero.  If the 

market is in a single equilibrium state, the slope near zero should be negative (a

> 0) 

while if bi-stable states exist, the slope near zero should be positive (a

1

 < 0).  To 

determine a bifurcation parameter, we use a 200 day sum of the conditional returns in the 

region of moderate positive prior day returns [0.025 < R(0) < 2.25%] and subtract the 200 

day sum of moderate negative prior day returns [-0.025 > R(0) > -2.25%].  If the slope of 

the conditional return map near zero is positive, as expected in bi-stable, trend persistent 

markets, then the sum of returns after moderate positive returns should also be positive.  

Moderate negative returns should be followed on average by further negative trend 

persistence.  Therefore a positive bifurcation parameter indicates a bi-stable market and a 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

11

negative bifurcation parameter indicates a single equilibrium state market.  By using the 

sum instead of the average conditional return, we also have a metric of an idealized, cost-

free, trading strategy that is long after positive prior day returns and short after negative 

prior day returns. 

     Figure 2 summarizes the bifurcation parameter for the Dow Jones Industrial Average 

since 1930.  The most significant periods of “single equilibrium state” occurred following 

the Crash of 1929 when the market suffered from poor liquidity and disinterest on the 

part of many who had been hurt as a result of the crash.  Even during the 1930s there was 

also a great deal of volatility in this indicator.  In contrast, for many decades after the 

1930s the market enjoyed strong bi-stable disequilibrium behavior.  While the bifurcation 

indicator fluctuated over these decades, the fluctuations were normally in positive 

territory. 

Dow Jones Industrial Average – Bistable Markets 

     Table 2 and Figure 3 present the conditional return map for the bi-stable market 

periods as determined by the bifurcation parameter in Figure 2.  The market was in the 

bi-stable state 81.2% of the time from 1930 to 2005 and in the single equilibrium state for 

only 18.8% of the time.  A better resolution of the bi-stable market is achieved by 

eliminating the single state and transition periods which are mean regressing rather than 

trend persistent. 

The conditional return findings presented in Figure 3 include all data during a 

positive bifurcation parameter from January 1930 to January 2005 regardless of 

underlying economic fundamentals.  A polynomial fit [k(R) = -156.2 R

3

 + 2.572 R

2

 + 

0.145 R - 0.0003] to the data shows an r-square of 86%.  This fit suggests that the peak in 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

12

trend persistence for moderate positive returns occurs approximately after prior returns of 

2.5% with an average daily return on the subsequent day of slightly more than 0.25% and 

the drift is toward a stable disequilibrium bull state at over +3.5% where the conditional 

return drops to zero.  Trend persistence for moderate negative returns is greatest after 

prior day returns of about –1.5% and average around –0.1%.  The disequilibrium bear 

state is at about –2.5% where the trend persistence vanishes. 

Dow Jones Industrial Average – Single Equilibrium and Transition Periods 

     Table 3 and Figure 4 present the conditional return map for the single equilibrium 

market periods.  Since there is less data for the single equilibrium periods, the data is 

more erratic and the null hypothesis can not be ruled out.  This may be due in part to the 

relatively long sample used to assess the bifurcation parameter.  By the time the single 

market state has been identified, often it has already transitioned to the bifurcation point 

or beyond to bi-stable behavior.   

The conditional return findings presented in Figure 4 include all data during a 

negative bifurcation parameter from January 1930 to January 2005 regardless of 

underlying economic fundamentals.  A linear fit [k(R) = -0.0905 R + 0.0005] to the data 

shows an r-square of 44%.  However a nonlinear fit [k(R) = -119.0R

3

 + 1.116R

2

 + 

0.0088R + 1E-05 has a better fit with an r-square of 56%.  Therefore the coefficient of 

the linear term is probably between +0.0905 and -0.0088 and we conclude that the 

periods when the bifurcation parameter is negative include both single state, linear state 

markets and periods at the critical bifurcation state. 

Business Cycle Stages 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

13

     The National Bureau of Economic Research (NBER) defines periods of recession and 

expansion in terms of peaks and troughs in economic activity. Periods of expansion begin 

at the trough date and end at the peak date.  Periods of recession begin at the peak date 

and end at the trough date. DeStefano (2004) uses the peak and trough dates to separate 

the business cycle into the four stages: Stage I, early expansion, begins at the trough date 

and continues through one half of the expansionary period. Stage II, late expansion, is 

defined as the second half of the expansionary period and concludes at the peak date. 

Recessions include Stages III and IV, which, are interpreted as early decline and late 

decline, respectively.  Since the NBER only defines peak and trough dates, the dates that 

separate Stages I and II and Stages III and IV occur in the chronological middle of the 

trough-to-peak and peak-to-trough time periods.

 

In order to assess how business cycle phases affect market equilibrium states, we 

examine the DJIA conditional returns and volatility during the four business cycle phases 

as defined by DeStefano (2004). Table 4 summarizes the best data fit for the periods 

defined by DeStefano as Stages I, II, III and IV as well as for combined Stage I and II 

(expansion) and combined Stage III and IV (recession).  Figure 5 illustrates the 

conditional return maps for each of the four business cycle stages.  The results show that 

the expansionary phases of the business cycle have well defined bistable market behavior 

with trend persistence after moderate returns and mean regressing dynamics after large 

returns in either direction.   

Volume Based Bifurcation 

     Table 5 and Figure 6 present the conditional return map for market periods following 

prior day volume increases of 25% or more.  The conditional return findings include all 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

14

data following rising volume from January 1930 to January 2005 regardless of underlying 

economic fundamentals.  A polynomial fit [k(R) = -151.4 R

3

 + 1.22 R

2

 + 0.156 R - 

0.00003] to the data shows an r-square of 78%.  This fit suggests that the peak in trend 

persistence for moderate positive returns occurs approximately after prior returns of 2.5% 

with an average daily return on the subsequent day of slightly more than 0.25% and the 

drift is toward a stable disequilibrium bull state at over +3.0% where the conditional 

return drops to zero.  Trend persistence for moderate negative returns is greatest after 

prior day returns of about –1.5% and average around –0.25%.  The disequilibrium bear 

state is at about –3.0% where the trend persistence vanishes. 

     Table 6 and Figure 7 present the conditional return map for periods following a 25% 

or greater decline in volume.  The conditional return findings are based on all data 

following a daily 25% volume decline from January 1930 to January 2005 regardless of 

underlying economic fundamentals.  The conditional return map in this case resembles 

the single equilibrium, mean regressive market periods.  A linear fit [k(R) = -0.329 R + 

0.0015] to the data shows an r-square of 53%. 

10 Year US Treasury Bonds 

     Interest  rates  also  show  significant nonlinear trend persistence and bi-stable or 

bifurcated states.  Table 7 and Figure 8 present the conditional return map and volatility 

of returns for the 10 Year US Treasury Bond from 1962 to 2003.  Interest rate change 

persistence follows the same pattern of increasing volatility with the magnitude of prior 

day rate changes.  A polynomial fit for conditional interest rate changes [-174.0 R

3

 + 

0.459 R

2

 + 0.148 R] shows an r-square of 0.77 while volatility of rate changes has a best 

fit [7.16 R

2

 +0.042 R + 0.0087] with an r-square of 0.70.  Moderate positive rate 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

15

increases on the prior day are followed on average by further rate increases and moderate 

interest rate declines are followed on average by further interest rate declines.  Rising rate 

persistence appears to extend out to +3% where it stabilizes at zero.  Declining rate 

persistence tends to achieve stability in the –3% region.  Therefore the bond market 

information dissemination process can also be characterized as a drift towards bistable 

disequilibrium. 

 

A bifurcation parameter can also be calculated for the US Treasury Bond and is 

shown in Figure 9.  For the period shown, the bifurcation parameter has been positive 

91% of the time, corresponding to a bistable equilibrium market.  However, the periods 

for which this bifurcation parameter is negative do not show a statistically significant 

deviation from the bistable pattern.  This suggests that by the time the bifurcation 

parameter has detected a single equilibrium state, the market has already bifurcated back 

to the normal bistable states.   

SUMMARY AND CONCLUSIONS 

     Empirical evidence suggests that most of the time both the stock and bond markets are 

trend persistent (rather than mean regressing) drifting toward either a bull state 

equilibrium rate of return or a bear state equilibrium.  The relative stability of Bull and 

Bear equilibrium states vary with the business cycle.   

     The non-stationary characteristic of market states has significant implications for 

traders.  Trading rules can be based on the trend persistent nature of conditional returns.   

However, since the market process is non-stationary, an adaptive strategy is necessary 

that can switch from trend persistent trading rules to mean regressing rules as the market 

undergoes state transitions.  Late stage periods of economic contraction appear to be least 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

16

efficient having the highest degree of trend persistence after moderate returns;  early 

stage periods of economic contraction have the greatest degree of trend persistence 

following large returns. 

     Volume has also been shown to be a useful indicator of trend persistent markets.  

Conditional returns following rising volume tend to exhibit above average trend 

persistence.  Therefore markets can be viewed as restructuring their information structure 

in response to the volume of information arriving at any point in time. 

     The post Crash of 1929 and Crash of 2000 periods suggest that the bi-stable 

disequilibrium markets can lead to extremes in valuation, resulting in instability and 

structural changes in the aftermath of a crash.   The empirical evidence suggests that 

while bi-stable markets may often be self-correcting, at times the trend persistence may 

result in valuation extremes.  In response, it appears that the market undergoes 

restructuring by switching to more stable, mean regressing rather then trend persistent 

behavior.   

REFERENCES 
 
Beja, A., and M. B. Goldman. (1980). “On the Dynamic Behavior of Prices in      
Disequilibrium.” Journal of Finance (May 1980): 235—47. 
 
Beja, A., and N. H. Hakansson. (1977). “Dynamic Market Processes and Rewards to Up-
to-Date Information.” Journal of Finance (May 1977): 291 —304. 
 
Black, S. V. (1976). “Rational Response to Shocks in a Dynamic Model of Capital Asset 
Prices.” American Economic Review (December 1976): 767—79. 
 
Boulding, K. E. (1981a). Ecodynamics: A New Theory of Societal Evolution. Beverly 
Hills: Sage Publications, 1981. 
 
Boulding, K.E. (1981b) Evolutionary Economics. Beverly Hills: Sage Publications. 1981. 
 
Callen, E., and Shapero, D. (1974), "A Theory of Social Imitation," Physics Today, July, 
1974. 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

17

 
Chauvet, Marcelle (1998a). "An Econometric Characterization of Business Cycle 
Dynamics with Factor Structure and Regime Switching," International Economic Review
1998, v39 (4, Nov), 969-996. 
 
Chauvet, Marcelle (1998b). "Stock Market Fluctuations and the Business Cycle," Journal 
of Economic and Social Measurement,
 1998, v25 (3/4), 235-257. 
 
Chauvet, Marcelle and Simon Potter (2000). "Coincident And Leading Indicators of the 
Stock Market," Journal of Empirical Finance, 2000, v7 (1, May), 87-111. 
 
Chauvet, Marcelle and Simon Potter (2001). “Nonlinear Risk,” Macroeconomic 
Dynamics
, Vol. 5, No. 4, (September 2001): 621-46. 
 
Clark, P. B. (1973). “A Subordinated Stochastic Process Model with Finite Variance for 
Security Prices.” Econometrica (January 1973): 135—55. 
 
Cohen, K. J.: U. A. Hawawini; S. F. Maier; R. A. Schwarz; and D. K. Whitcomb (1980). 
“Implications of Microstructure Theory for Empirical Research on Stock Price 
Behavior.” Journal of Finance, (May 1980): 249—57. 
 
Copeland, T. E. (1976) “A Model of Asset Trading Under the Assumption of Sequential 
Information Arrival.” Journal of Finance (September 1976): 1149—68. 
 
Cozzolino, J. M., and M.J. Zahner (1973). “The Maximum-Entropy Distribution of the 
Future Market Price of a Stock.” Operations Research (1973): 1200—11. 
 
DeStefano, M. (2004), “Stock Returns and the Business Cycle.” The Financial Review 
Vol.39, No.4, November 2004, 527-547. 
 
Dopfer, K., The Evolutionary Foundations of Economics, Cambridge University Press, 
(2005). 
 
Fama, Eugene F. (1970).  “Efficient Capital Markets: A Review of Theory and Empirical 
Work.” Journal of Finance (May 1970): 383 —417. 
 
Fama, Eugene F. and Kenneth R. French (1989). "Business Conditions and Expected 
Returns on Stocks and Bonds," Journal of Financial Economics, 1989, v25 (1), 23-50. 
  
Georgescu-Roegen, N. (1971), Entropy Law and Economic Processes. Boston: Harvard 
University Press, 1971. 
 
Grossman, S. and J. Stiglitz (1976). “Information and Competitive Price Systems.” 
American Economic Review (May 1976): 246—53. 
 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

18

Groth, J. (1979). “Security-Relative Information Market Efficiency: Some Empirical 
Evidence.” Journal of Financial and Quantitative Analysis (September l979): 573—93. 
 
Guidolin, Massimo and Allan Timmermann (2005). “An Econometric Model of 
Nonlinear Dynamics in the Joint Distribution of Stock and Bond Returns.”  Forthcoming 
in Journal of Applied Econometrics.
 2005.   
 
Haken, H. (1975). “Cooperative Phenomena in Systems Far From Thermal Equilibrium 
and in Nonphysical Systems.” Review of Modern Physics, Vol. 47, No. 1 (January 1975): 
68-119. 
 
Hong, H., and Stein, J., “A unified theory of underreaction, momentum trading and 
overreaction in asset markets”, Journal of Financial Economics, 41, 401 (1999) 
 
Majthay, A. (1980). “Bifurcations in Dynamical Systems.” Decision Sciences (April 
1980): 384—407. 
 
Morse, D. (1980), “Asymmetrical Information in Securities Markets and Trading 
Volume.” Journal of Financial and Quantitative Analysis (December 1980): 1129—48. 
 
Murphy, R. (1965). Adaptive Processes in Economic Systems. Academic Press1965. 
 
Nawrocki, David (1984). "Entropy, Bifurcation, And Dynamic Market Disequilibrium," 
Financial Review, 1984, v19 (2), 266-284. 
 
Nawrocki, David N. (1995). "Expectations, Technological Change, Information and the 
Theory of Financial Markets," International Review of Financial Analysis, 1995, v4 
(2/3), 85-105. 
 
Nawrocki, David N. (1996) "Market Dependence and Economic Events," Financial 
Review
, 1996, v31 (2, May), 287-312. 
 
Nicolis, G., and I. Prigogine (1977). Self-Organization in Nonequilibrium Systems. John 
Wiley and Sons, 1977. 
 
Oldfield, G.; R. Rogalski; and R. Jarrow (1977). “An Autoregressive Jump Process for 
Common Stock Returns.” Journal of Financial Economics (December 1977): 389—418. 
 
Perez-Quiros, Gabriel and Allan Timmermann. "Firm Size and Cyclical Variations in 
Stock Returns," Journal of Finance, 2000, v55 (3, Jun), 1229-1262. 
 
Perez-Quiros, Gabriel and Allan Timmermann. "Business Cycle Asymmetries In Stock 
Returns: Evidence from Higher Order Moments and Conditional Densities," Journal of 
Econometrics
, 2001, v103 (1-2, Jul), 259-306. 
 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

19

Philippatos, G., and N. Gressis (1975). “Conditions of Equivalence among EV, SSD and 
EH Portfolio Selection Criteria: The Case for Uniform Normal and Lognormal 
Distributions.” Management Science (February 1975): 617—25. 
 
Philippatos, G., and C. Wilson (1972), EntropyMarket Risk, and the Selection of 
Efficient Portfolios.” Applied Economics (September 1972): 209—20. 
 
Shiller, R. J., Irrational Exuberance, Princeton University Press (2000) 
 
Schliefer, A., Inefficient Markets, An Introduction to Behavioral Finance, Oxford 
University Press, (2000) 
 
Thom, R. (1972),  Structural Stability and Morphogenesis. Benjamin-Addison Wesley. 
1972. 
 
Vaga, Tonis. (1990). “The Coherent Market Hypothesis.” Financial Analysts Journal
Vol. 46 (6), 36-49. 
 
Weidlich, W. (1971), "The Statistical Description of Polarization Phenomena in 
Society," British Journal of Mathematical and Statistical Psychology, 24, 1971. 
 
Weidlich, W., and Haag, G. (1983), Concepts and Methods of a Quantitative Sociology
Springer-Verlag, New York, 1983. 
 
Whitelaw, Robert F. (1994). "Time Variations and Covariations in the Expectation and 
Volatility of Stock Market Returns," Journal of Finance, 1994, v49 (2), 515-541. 
 
Wyart, M., and Bouchaud, J. P., “Self-referential behavior, overreaction and conventions 
in financial markets”, arXiv:cond-mat/0303584 v2 23 June 2003. 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

20

 

Conditional 
Return 

0.05% -0.23% 0.53% 0.32% 0.09% -0.05% -0.19% -0.08% -0.04% 0.03%   

Standard 
Deviation 

4.13% 2.21% 2.46% 2.09% 1.67% 1.59% 1.54% 1.14% 0.97% 0.86%  

Relative 
Frequency 

0.47% 0.21% 0.26% 0.50% 0.86% 1.64% 3.74% 8.46% 17.83% 28.20%  

Prior Day 
Return 

R<-
4.25% 

-4.00% -3.50% -3.00% -2.50% -2.00% -1.50% -1.00% -0.50% 0.00%   

T-Test (p 
of Null) 

95.10% 46.31% 16.22% 17.69% 62.48% 37.36% 0.02% 0.02% 0.02% 99.40%  

 
Conditional 
Return 

0.09% 0.13% 0.10% 0.05% 0.24% 0.04% -0.01% 0.18%  -0.31% 0.30%  -0.08% 

Standard 
Deviation 

0.93% 1.02% 1.22% 1.52% 1.88% 1.52% 2.43% 1.82% 2.30% 2.79% 3.18% 

Relative 
Frequency 

20.30% 9.68% 3.92% 1.71% 0.91% 0.37% 0.33% 0.18% 0.12% 0.10% 0.21% 

Prior Day 
Return 

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00% R>5.25% 

T-Test (p 
of Null) 

0.01%  0.00%  11.82% 79.42% 13.99% 92.08% 90.69% 62.26% 50.68% 68.04% 84.09% 

 
 

Table 1.  Dow Jones Industrial Average Conditional Returns and Volatility 

(2-Jan-1930 to 13-Jan-05) 

 

Conditional 
Return 

-0.24% 0.13% 0.42% 0.24% 0.09% -0.15% -0.28% -0.11% -0.05% 0.02%   

Standard 
Deviation 

4.62% 1.75% 1.94% 1.76% 1.66% 1.47% 1.39% 1.10% 0.90% 0.81%  

Relative 
Frequency 

0.23% 0.11% 0.14% 0.29% 0.64% 1.16% 2.84% 6.71% 14.57% 23.27%  

Prior Day 
Return 

R<-
4.25% 

-4.00% -3.50% -3.00% -2.50% -2.00% -1.50% -1.00% -0.50% 0.00%   

T-Test (p 
of Null) 

70.52% 77.93% 30.38% 36.68% 66.59% 8.44% 0.00% 0.00% 0.01% 88.96%  

 
Conditional 
Return 

0.10% 0.15% 0.11% 0.26% 0.16% 0.31% 0.11% 0.50% 0.48% 0.53% 0.07% 

Standard 
Deviation 

0.82% 0.96% 1.03% 1.26% 1.23% 1.39% 1.77% 1.53% 1.41% 1.74% 3.69% 

Relative 
Frequency 

16.49% 7.86% 2.92% 1.18% 0.59% 0.26% 0.21% 0.11% 0.06% 0.05% 0.06% 

Prior Day 
Return 

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00% R>5.25% 

T-Test (p 
of Null) 

0.00% 0.00% 6.57% 0.69% 27.01% 16.80% 76.24% 16.94% 28.62% 38.66% 97.11% 

 

Table 2.  Bistable State DJIA Conditional Returns and Volatility  

(2-Jan-1930 to 13-Jan-05) 

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

21

 

Conditional 
Return 

0.34% -0.64% 0.66% 0.42% 0.09% 0.17% 0.08% 0.01% -0.01% 0.04%  

Standard 
Deviation 

3.62% 2.63% 3.03% 2.49% 1.71% 1.82% 1.91% 1.30% 1.26% 1.06%  

Relative 
Frequency 

0.24% 0.10% 0.12% 0.21% 0.22% 0.48% 0.90% 1.75% 3.26% 4.92%  

Prior Day 
Return 

R<-
4.25% 

-4.00% -3.50% -3.00% -2.50% -2.00% -1.50% -1.00% -0.50% 0.00%   

T-Test (p 
of Null) 

56.45% 28.41% 33.91% 32.13% 82.00% 46.04% 72.00% 80.91% 44.21% 77.53%  

 
Conditional 
Return 

0.05% 0.04% 0.07% -0.42% 0.40% -0.56% -0.21% -0.37% -1.25% 0.02%  -0.14% 

Standard 
Deviation 

1.27% 1.24% 1.66% 1.91% 2.72% 1.64% 3.27% 2.21% 2.85% 3.86% 3.01% 

Relative 
Frequency 

3.81% 1.81% 1.00% 0.53% 0.31% 0.11% 0.13% 0.06% 0.05% 0.04% 0.15% 

Prior Day 
Return 

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00% R>5.25% 

T-Test (p 
of Null) 

65.88% 87.95% 74.16% 2.28%  29.67% 11.53% 72.78% 54.49% 18.92% 99.69% 77.80% 

 

Table 3.  Linear State DJIA Conditional Returns and Volatility  

(2-Jan-1930 to 13-Jan-05) 

 
 

 

Stage I 

 = -111.1R

3

 + 1.91R

2

 + 0.132R + 0.0001 

Stage II 

 = -403.6R

3

 + 2.85R

2

 + 0.219R - 0.0004 

Stage III 

 = 18.79R

3

 + 6.57R

2

 + 0.136R - 0.0015 

Stage IV 

 = -607.2R

3

 - 2.77R

2

 + 0.393R + 0.0014 

Stages I&II 

 = -293.4R

3

 + 2.56R

2

 + 0.184R - 0.0002 

Stages III&IV 

 = 53.6R

3

 + 1.63R

2

 + 0.0889R - 9E-05 

 

 

All DJIA 

 = -159.8 R

3

 + 2.225 R

2

 + 0.1134 R - 0.0002 

Bistable 

 = -156.2 R

3

 + 2.572 R

2

 + 0.145 R - 0.0003 

Linear 

 = -0.0905 R + 0.0005 

Transition 

 = -119.0R

3

 + 1.116R

2

 + 0.0088R + 1E-05 

 

 k(R) = -a

3

R

3

 -a

2

R

2

 -a

1

R -a

0

 

 

Table 4.  DJIA Conditional Return Map Best Fits for DeStephano (2004) Business 

Cycle Stages (1948 - 2001) 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

22

 

Conditional 
Return 

0.32% -0.03% 0.40% -0.19% -0.16% -0.10% -0.22% -0.29% -0.05%  0.02% 

Standard 
Deviation 

4.51% 2.09% 2.67% 1.49% 1.82% 1.23% 1.21% 1.16% 0.99%  1.02% 

Relative 
Frequency 

0.25% 0.11% 0.12% 0.22% 0.35% 0.43% 0.68% 0.81% 0.97%  1.15% 

Prior Day 
Return 

R < -
4.25% 

-4.00% -3.50% -3.00% -2.50% -2.00% -1.50% -1.00% -0.50%  0.00% 

T-Test (p 
of Null) 

65.10% 89.92% 51.81% 35.14% 42.28% 35.69% 2.18%  0.09%  32.44%  96.71% 

 
Conditional 
Return 

0.10% 0.11% 0.24% 0.15% 0.52% -0.03% -0.39% 0.26%  -0.40%   

Standard 
Deviation 

0.97% 0.90% 1.02% 1.12% 2.28% 1.49% 1.53% 1.76% 2.33%   

Relative 
Frequency 

1.88% 1.91% 1.22% 0.60% 0.40% 0.15% 0.14% 0.12% 0.23%   

Prior Day 
Return 

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% R>4.25%  

T-Test (p 
of Null) 

17.47% 7.98%  0.16%  23.29% 6.23%  85.22% 17.02% 53.20% 22.89%   

 

Table 5.  Bistable State DJIA Conditional Returns and Volatility  

After >+25% Prior Day Volume Increase (2-Jan-1930 to 13-Jan-05) 

 

 

Conditional 
Return 

0.34% -0.64% 0.66% 0.42% 0.09% 0.17% 0.08% 0.01% -0.01% 0.04%  

Standard 
Deviation 

3.62% 2.63% 3.03% 2.49% 1.71% 1.82% 1.91% 1.30% 1.26% 1.06%  

Relative 
Frequency 

0.24% 0.10% 0.12% 0.21% 0.22% 0.48% 0.90% 1.75% 3.26% 4.92%  

Prior Day 
Return 

R<-
4.25% 

-4.00% -3.50% -3.00% -2.50% -2.00% -1.50% -1.00% -0.50% 0.00%   

T-Test (p 
of Null) 

56.45% 28.41% 33.91% 32.13% 82.00% 46.04% 72.00% 80.91% 44.21% 77.53%  

 
Conditional 
Return 

0.05% 0.04% 0.07% -0.42% 0.40% -0.56% -0.21% -0.37% -1.25% 0.02%  -0.14% 

Standard 
Deviation 

1.27% 1.24% 1.66% 1.91% 2.72% 1.64% 3.27% 2.21% 2.85% 3.86% 3.01% 

Relative 
Frequency 

3.81% 1.81% 1.00% 0.53% 0.31% 0.11% 0.13% 0.06% 0.05% 0.04% 0.15% 

Prior Day 
Return 

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00% R>5.25% 

T-Test (p 
of Null) 

65.88% 87.95% 74.16% 2.28%  29.67% 11.53% 72.78% 54.49% 18.92% 99.69% 77.80% 

 
 
 
 

Table 6.  Linear State DJIA Conditional Returns and Volatility  

After >=25% Prior Day Volume Decline (2-Jan-1930 to 13-Jan-05) 

 

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

23

Conditional 
Return 

-0.10% 0.09%  0.04%  0.03%  -0.19% -0.09% -0.12% -0.11% 0.01% 

Standard 
Deviation 

1.72% 1.49% 1.24% 1.10% 1.33% 1.08% 1.06% 0.91% 0.68% 

Relative 
Frequency 

0.16% 0.17% 0.25% 0.79% 1.43% 3.54% 7.77% 17.73% 36.28% 

Prior Day 
Return 

-4.00% -3.50% -3.00% -2.50% -2.00% -1.50% -1.00% -0.50% 0.00% 

T-Test (p 
of Null) 

81.17% 81.32% 89.91% 85.55% 7.31%  10.73% 0.13%  0.00%  91.04% 

 
Conditional 
Return 

0.09% 0.15% 0.14% 0.31% 0.02% 0.05% 0.26% 0.18%  

Standard 
Deviation 

0.77% 1.02% 1.04% 1.35% 1.19% 1.85% 1.85% 1.47%  

Relative 
Frequency 

17.89% 7.66% 3.20% 1.51% 0.80% 0.36% 0.18% 0.25%  

Prior Day 
Return 

0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00%  

T-Test (p 
of Null) 

0.00% 0.01% 1.83% 0.57% 89.65% 88.39% 55.94% 55.20%

   

 

 

 
Table 7.  10 Year US Treasury Conditional Returns and Volatility (1-Feb-1963 to 
29-Apr-04)   

 

 

 

 

 

 

 

 

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

24

 

Figure 1.  Historical Conditional Returns and Volatility for the Dow Jones 

Industrial Average

Historical Conditional Returns and Volatility

(Dow Jones Industrial Average:  1930 - 2005)

Volatility = 11.37R

2

 - 0.0294R + 0.0099

r

2

 = 0.898

k(R) = -159.8R

3

 + 2.224R

2

 + 0.1134R - 0.0002

r

2

 = 0.89

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

Prior Day Return R(0)

A

ver

ag

N

ext

 D

ay

 R

et

u

rn

 R

(t

) an

d

 

V

o

la

ti

lit

y

Dow Jones Industrials Conditional Returns
(1930 - 2005)
Volatility of Return

Poly. (Volatility of Return)

Poly. (Dow Jones Industrials Conditional
Returns (1930 - 2005))

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

25

 

Figure 2.  Dow Jones Industrial Average Bifurcation Parameter 

 

 

 

 

 

 

 

 

 

 

 
 
 

Bifurcation Parameter Dow Jones Industrial Average

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

Jan-30

Dec-39

Dec-49

Dec-59

Dec-69

Dec-79

Dec-89

Dec-99

Time

B

if

u

rcat

io

n

 P

ar

am

et

er

Bifurcation Parameter

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

26

 
 

 

Figure 3.  Bi-stable Market Conditional Returns and Volatility 

 

 

 

 

Single State Markets: Conditional Returns and Volatility

(Dow Jones Industrial Average:  1930 - 2005)

k(R) = -0.0905R + 0.0005

r

2

 = 0.44

Volatility = 14.00R

2

 + 0.0086R + 0.0123

r

2

 = 0.76

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

Prior Day Return R(0)

A

ve

ra

g

N

e

xt

 D

a

y R

et

u

rn

 R

(t

) an

d

 

V

o

la

tilit

y

Dow Jones Industrials Conditional Returns
(1930 - 2005)
Volatility of Return

Linear (Dow Jones Industrials Conditional
Returns (1930 - 2005))
Poly. (Volatility of Return)

Bistable Markets: Conditional Returns and Volatility

(Dow Jones Industrial Average:  1930 - 2005)

k(R) = -156.2R

3

 + 2.572R

2

 + 0.145R - 0.0003

r

2

 = 0.86

Volatility = 7.709R

2

 - 0.056R + 0.0094

r

2

 = 0.92

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

Prior Day Return R(0)

A

ver

ag

e N

ext

 D

ay R

et

u

rn

 R

(t

) a

n

d

 

V

o

la

tili

ty

Dow Jones Industrials Conditional Returns
(1930 - 2005)
Volatility of Return

Poly. (Dow Jones Industrials Conditional
Returns (1930 - 2005))
Poly. (Volatility of Return)

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

27

Figure 4.  Single Equilibrium Market Conditional Returns and Volatility 

 

 

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

28

 

Figure 5.  Business Cycle Stages I-IV DJIA Conditional Returns and Volatility 

 
 

DJIA Conditional Returns During Business Cycle Stages

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

Prior Day Return, R(0)

C

o

n

d

it

io

n

al R

et

u

rn

Stage I
Stage II
Stage III
Stage IV

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

29

Figure 6.  Conditional Returns Following Rising Volume Exhibit Bistable, Trend 

Persistent Behavior 

 

 

Figure 7.  Conditional Returns Following Declining Volume Exhibit Single State, 

Mean Regressive Behavior 

 

Dow Jones Industrial Average

(Returns After 25% Volume Increase)

k(R) = -151.38R

3

 + 1.2187R

2

 + 0.1558R - 3E-05

r

2

 = 0.78

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

Prior Day Return, R(0)

N

e

x

t Da

y

 Re

tu

rn

, R(

t)

Conditional Returns on Rising
Volume
Poly. (Conditional Returns on
Rising Volume)

 

Dow Jones Industrial Average

(Returns After 25% Volume Decline)

k(R) = -0.329R + 0.0015

r

2

 = 0.53

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

-4%

-2%

0%

2%

4%

Prior Day Return, R(0)

Next Da

Return, R(t)

Conditional Returns on Declining
Volume
Linear (Conditional Returns on
Declining Volume)

 

background image

A Bifurcation Model of Non-Stationary Markets  

December 2006 
 
 

30

 
 

 
 

 

Figure 8.  10 Year US Treasury Bond Market Conditional Returns and Volatility 

 

 
 
 

 

Figure 9.  10 Year US Treasury Bond Bifurcation Parameter 

 
 

10 Year Treasury Bifurcation Parameter

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ja

n

-63

Ja

n

-65

Ja

n

-67

Ja

n

-69

Ja

n

-71

Ja

n

-73

Ja

n

-75

Ja

n

-77

Ja

n

-79

Ja

n

-81

Ja

n

-83

Ja

n

-85

Ja

n

-87

Ja

n

-89

Ja

n

-91

Ja

n

-93

Ja

n

-95

Ja

n

-97

Ja

n

-99

Ja

n

-01

Ja

n

-03

 

10 Year US Treasury Bonds (1962 - 2003)

Volatility = 7.16R

2

 + 0.0422R + 0.0087

r

2

 = 0.70

k(R) = -174.0R

3

 + 0.459R

2

 + 0.1475R + 8E-05

r

2

 = 0.77

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

Prior Day Rate Change (R)

C

o

n

d

itio

n

a

l R

a

te

 C

h

a

n

g

e

 a

n

d

 V

o

la

tility

Conditional Returns
Volatility
Poly. (Volatility)
Poly. (Conditional Returns)