Course #: NAME 324

Assignment # B.3: Approximate Calculation of Ship Resistance Hotrop and Mennen’s Method

The total resistance of a ship can be

The wetted area of the hull can be

subdivided into:

approximated by:

S = L( T

2

+ B) C (0.453 + 0.4425 C

M

B

RT=RF(1+k1)+RAPP+RW+RB+RTR+RA

Where,

− 0.2862 C − 0.003467 B / T + 0.3696 C ) M

WP

+ 2.38 A / C

BT

B

RF

Frictional resistance according to

where ABT is the transverse sectional area of the ITTC 1957 friction formula

the bulb at the position where the still-water

= 0.5.ρV2SCF.

surface intersects the stem.

CF = 0.075/(Log10Re-2)2

Re Reynold’s

No.=

The appendage resistance can be

ρ VL /µ

determined from

1+k1

Form factor describing the viscous

R

resistance of the hull form in relation

APP=0.5ρV2SAPP(1+k2)eqCF

Where S

to R

APP the wetted area of the

F

appendages,

1+k

R

2 the appendage

APP

Appendage resistance

resistance factor

RW

Wave-making and wave-breaking

resistance

Approximate 1+k

R

2 values

B

Additional pressure resistance due

to bulbous bow near the water

Rudder behind skeg 1.5~2.0

surface

Rudder behind stern 1.3~1.5

R

Twin-screw balance rudders 2.8

TR

Additional pressure resistance of

immersed transom stern

Shaft brackets 3.0

R

Skeg

1.5~2.0

A

Model-ship correlation resistance

Strut bossings 3.0

The form factor of the hull can be predicted Hull bossings 2.0

by:

Shafts 2.0~4.0

Stabilizer fins 2.8

Dome 2.7

1 + k = c

0

{ .93 + c ( B / L )0.92497

1

13

12

R

Bilge keels 1.4

(0.95 − C )−0.521448 1

( − C + 0.0225 lcb)0.6906}

P

P

The equivalent 1+k2 value for a combination In this formula, CP is the prismatic coefficient of appendages is determined from:

based on the waterline length, L and lcb is

∑ 1(+

the longitudinal centre of buoyancy forward k ) S

(1+k

2

APP

of 0.5 L as a percentage of L. Here, L

2)eq =

R is a

∑ S

parameter reflecting the length of the run APP

The wave resistance is determined from:

according to:

d

−

R

= c c c ∇ρ g

m F + m

λ F

W

1 2

5

{

exp

cos(

2

1

n

2

n

}

L

)

R/L=1-CP+0.06CPlcb(4CP-1)

with

C12=(T/L)0.2228446 if T/L > 0.05

.

3 78613

.

1 07961

− 37565

.

1

c =

c

T B

−

=48.20(T/L-0.02)2.078+0.479948 if 2223105

( / )

90

(

i )

1

7

E

0.02<T/L<0.05

33333

.

0

c =

229577

.

0

( B / L)

if B/L<0.11

=0.479948 if T/L<0.02

7

= B/L if 0.11<B/L<0.25

= 0.5-0.0625 L/B if B/L>0.25

Where T is the average moulded draught.

c = exp(− 89

.

1

c

2

3

C13=1+0.003Cstern

c5 = 1-0.48AT/(BTCM)

Cstern will be -10, 0 and +10 if the afterbody

form is of V-shaped, Normal and U shaped λ = 1.446CP-0.03 L/B if L/B < 12

sections respectively.

= 1.446CP-0.36 if L/B>12

Course Teacher: Dr. Md. Mashud Karim, Associate Professor, Dept. of NAME, BUET

1 / 3

m =

0140407

.

0

L / T − 75254

.

1

∇ / L

C =

(

006

.

0

L +

)

100 − 16

.

0

− 00205

.

0

1

A

−

79323

.

4

B / L − c

4

16

+ 003

.

0

L /

5

.

7 C c ( 04

.

0

− c )

B

2

4

c4= TF/L when TF/L ≤ 0.04

2

3

c

= 07981

.

8

C −

8673

.

13

C +

984388

.

6

C

c

16

P

P

P

4= 0.04 when TF/L>0.04

if C

P<0.8

= 1.73014-0.7067C

Problem: The characteristics of a ship is as P if CP > 0.8

follows:

2

m = c C exp(

1

.

0

2

−

− F )

2

15

P

n

c15 = -1.69385 for L3/▼<512

L.O.W L=205.00 m

= 0 for L3/▼>1727

L.B.P. LPP = 200.00 m

=-1.69385+(L/▼1/3-8.0)/2.36

Breadth moulded B = 32.00 m if 512<L3/▼<1727

Draught moulded on F.P, TF=10.00 m d=-0.9

Draught moulded on A. P. TA=10.00 m i = 1 + 89 exp{−( L / B) .080856 1

( − C ) .030484

Displacement volume moulded, ▼=37500 m3

E

WP

Longitudinal centre of buoyancy 2.02% aft of 1

( − C − 0.0225 lcb)0.6367 ( L / B)0 34574

.

P

R

1/2 LPP

100

(

∇ / 3

L ) .016302}

Transverse bulb area ABT = 20.0 m2

Centre of bulb area above keel line h c = 0.56 1 5.

A

/{ BT (0.31 A

+ T − h )}

B = 4.0 m

3

BT

BT

F

B

Midship section coefficient CM = 0.98

Waterplane area coefficient CWP = 0.75

where hB is the position of the centre of the Transom area AT = 16.0 m2

transverse area ABT above the keel line and Wetted area appendages SAPP = 50.0 m2

TF is the forward draught of the ship.

Stern shape parameter, Cstern = 10.0

Propeller diameter, D = 8.0 m

R =

11

.

0

exp(−3

2

P − ) 3

5

.

1

F A

g

ρ 1

/(

2

+ F )

Number of propeller blades Z = 4

B

B

ni

BT

ni

Clearance of propeller with keel line 0.20 m P = 0.56 A

/( T − 1.5 h )

Ship speed V=25.0 knos B

BT

F

B

Density, ρ = 1025.87

2

F = V / g( T − h −

25

.

0

A

) +

15

.

0

V

Kinematic Viscosity, υ = 1.18831e-006

ni

F

B

BT

2

R

= 5

.

0

V

ρ A c

TR

T

6

Find RF , RAPP,RW, RB, RTR, RA, Rtotal.

c =

1

(

2

.

0

− 2

.

0 F ) if F

6

nT

nT<5

= 0 if F

Reference: J. Holtrop and G.G. J. Mennen, nT≥5

1982: An Approximate Power Prediction F

= V / 2 gA /( B + BC ) nT

T

WP

Method, International Shipbuilding Progress, Vol. 29, No. 335.

R

1

=

V 2

ρ SC

A

A

2

Course Teacher: Dr. Md. Mashud Karim, Associate Professor, Dept. of NAME, BUET