background image

 

 

New MOEMS-Switch Device with Electrostatic Actuator 

E. Thielicke, E. Obermeier 

Technical University of Berlin, Microsensor and Microactuator Technology Center (MAT),  

TIB 3.1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; www-mat.ee.tu-berlin.de 

 
Abstract 
This paper presents a new concept for a 1-by-N-
switch, which can be used in tree-structured 
optical networks. 
Although the switch works with any large 
displacement actuator, a new curved electrode 
electrostatic actuator for linear motion of up to 
180 µm has been designed. No tilting mechanism 
is needed, and the mirror surface is smooth and 
easily coated with highly reflecting materials. 
A 1-by-4-switch has been fabricated using 
classical low cost micromechanical technologies 
like surface and bulk micromachining. 

 

Introduction 
The signal paths of optical MEMS-switches can be 
actuated in three ways [1]:  
1) by tilting mirrors or mirror arrays, whereby the 
tilting angles are controlled precisely to minimize 
signal loss 
2) by microlens-devices, whose fabrication is 
technologically demanding 
3) and by on/off- or crossbar-switches, which use 
shutters or mirrors that are mounted perpendicular 
to the wafer surface and block or give way to the 
beam. However, they are difficult to assemble 
and/or may have rough mirror surfaces resulting 
from their fabrication process. 
 
Design 
The switch consists of two passive and one active 
silicon chip bonded to a glass spacer. The fibers 
are placed under a fixed angle (e.g. 45° in the 
corners of a KOH etched groove in <100>-Si) over 
a row of aperture-holes, which are equally spaced.  
The signal-path is chosen by a combined opening 
and closing of the holes and beam reflection in 
two levels.  
 

passive silicon components

bonded glass spacer

micromachined chip

fiber in

shutter-mirror

fiber out 1

out 2

out 3

out 4

 

Fig 1: Schematical drawing of the switch (cross section). 
The switched signal-path is marked by a dashed line. 

Fig. 1 shows one possible signal path and the 
corresponding binary states of the three shutter-
mirrors.  
The shutter-mirrors can be moved by any kind of 
long stroke linear or rotational actuator [2, 3, 4], 
but a new fast switching curved electrode linear-
actuator was designed, which uses the moving-
wedge principle of actuation [5, 6]. 
The middle rod, to which the shutter-mirror is 
mounted, is suspended by four 2 - 3 µm wide U-
shaped tethers. Each of the four tethers together 
with their stator electrodes are built up similarily, 
forming a unit, which is marked in the photograph 
of the actuator, shown in Fig. 2. 
 

 

 

Fig 2: Electrostatic actuator with four similar units. Each 
unit consists of a clamped U-shaped tether electrode, 
which is attached to the middle rod (red), and its right 
(blue), middle (yellow) and left (green) curved stator 
electrode. The total size amounts to 1x1 mm². 
The clamping and four stoppers, which prevent short 
circuits, are shown in the close-up on the right. 

 
The tethers form the moving electrodes, which are 
attracted electrostatically by the curved stator 
electrodes. The electrostatic force is 
approximately proportional to the square of the 
reciprocal distance of the electrodes, so that 
attraction only occurs in the part of the electrodes, 
where they come close to each other.  
If voltages between 100 and 200 V are applied 
(depending on design) the moving electrode 
beams are pulled towards the stator electrodes 
like a closing zipper and push the middle rod 
towards the left or right in linear motion parallel to 
the wafer surface. 
To perform a total displacement of up to 180 µm, 
the electrostatic force at each point of bending has 

background image

 

 

to be always just big enough to maintain further 
moving. This can be achieved by rising the voltage 
or choosing a suitable design for the stator 
electrodes; i.e., the curvatures of the stator 
electrodes define the deflection-voltage behaviour 
of the actuator. 
Additionally, the curvature of the stator electrodes 
depends on the number and size of the stoppers 
that prevent short circuits. It must be calculated 
using a coupled electro-mechanical FEM-
simulation, which can be seen in Fig. 3 and 4. 

 

Fig 3: FEM-simulation of the electric potential from 
which the electrostatic forces are calculated (cross 
section of the tether and ground electrode [0 V] on the 
left side and the stator electrode [100 V] on the right). 

 

 

Fig 4: Part of the FEM-simulation of the tether deflection 
a) in the starting phase; b) when in contact with the 
stoppers (force arrows in arbitrary units). 

125 

100 75 50 25  0  25 50 75 100 125 

-75 

-50 

-25 

25 

50 

75 

 

Fig 5: This diagram shows the deflection-voltage of the 
middle rod for the binary 130 µm type actuator. 

 
Depending on the electrode design, the actuator 
allows a variety of deflection-voltage curves, but in 
this application, an electrode setup for binary 

deflection behaviour with two states (open & 
close) was used, as shown in Fig. 5. 

 

Fabrication 
The actuator has been realized using standard 
surface micromachining technology with two 
polysilicon layers (one ground and one active 
layer) and one LTO sacrificial layer. The aperture 
hole is then opened from the backside using wet 
chemical etching with KOH. 
The chips are anodically bonded to a patterned 
glass-Si wafer-stack, which defines the distance of 
1190 µm between the two reflecting levels. 
The surface quality of the shutter-mirror and the 
lower Si-chip is very good due to the polished 
surfaces of which they are made, resp. on which 
they are deposited. Additionally, they may be 
coated with gold for better reflection. 

 

Results 
A 1-by-4-switch has been realized. The 
micromachined chip with the aperture holes and 
shutter-mirrors is shown in Fig. 6. 
The functionality has been demonstrated by 
switching a laser beam into each of the four 
outgoing paths. 

 

Fig 6: Top view of a fabricated switch. The aperture 
holes can bee seen in the lower part of the photograph. 
(The 4th hole is not shown). Total size is 4x1.2 mm². 

 
References 

[1] S. J. Walker, D. J. Nagel: ”Optics & MEMS: An 
Overview of Current Technology”, MOEMS ’97, Nara, 
Japan, 1997 
[2] E. Thielicke, E. Obermeier: “Microactuators and their 
Technologies”, J. Mechatronics 10, 2000, 431-455 
[3] Th. Kraus, M. Baltzer, E. Obermeier: „A Micro 
Shutter for Applications in Optical and Thermal 
Detectors“, Transducers ‘97, Chicago, USA, 1997 
[4] G. Perregaux, P.Weiss, B. Kloeck, H. Vuilliomenet, 
J.-P. Thiébaud: “High-Speed Micro-Electromechanical 
Light Modulation Arrays”, Transducers ’97 
[5] J. Schimkat, L. Kiesewetter, H.-J. Gevatter, F. Arndt, 
A. Steckenborn, H. Schlaak: „Moving Wedge Actuator: 
An Electrostatic Actuator for Use in a Microrelay”, 
MST ’94, Potsdam, Germany, 1994 
[6] R. Legtenberg, F. Berenschot, M. Elwenspoek, J. 
Fluitman: „Electrostatic Curved Electrode Actuators”, 
IEEE MEMS, Amsterdam, The Netherlands, 1995 

U [Volt] 

right, then middle 
stator electrodes 

middle, then left
stator electrodes

deflection [µm]