background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

29 

CHAPTER 3 

Electrostatic Actuation 

3.1 

The parallel plate capacitor 

In the preceding we have stressed the similarities between MEMS and IC fabrication.  

One of the main themes of the MEMS development, and also possibly the most important 

reason for its commercial success, is the adoption of IC fabrication technologies.  In spite 

of the fabrication similarities, however, there are important differences.  Maybe the most 

significant difference is that most MEMS include mechanical motion of either solids or 

liquids, or both.  (Many practitioners will insist that some kind of mechanical motion 

must be involved for a system to be classified as MEMS, but we will not be quite so rigid 

in our definitions).  The concept of an actuator, i.e. a transducer that can convert energy 

in some domain into mechanical energy, is therefore central to MEMS.   

In this chapter we will investigate MEMS actuators, starting with one of the most basic, 

but also most common MEMS devices: the parallel-plate electrostatic actuator.  In our 

first treatment of this important device we will use some simplifying assumptions about 

the electric field.  The results we obtain this way contain all the important physics of the 

correct solution.  Our treatment starts with the description shown in Fig. 3.1. 

+

V

E

 

Figure 3.1.  Parallel plate capacitor.  The lower plate is fixed, while the upper plate can 

move.   

As a first approximation, we will assume that the electrical field is uniform between the 

plates of the capacitor, and zero outside.  (This is of course not a completely correct 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

30 

solution.  This electrical field distribution has non-zero curl at the edges of the capacitor 

plates in violation of Maxwell’s equations.)  The uniform electric field between the plates 

is then pointing down towards the lower plate, and it has the magnitude: 

A

Q

E

ε

=

 

where A is the area of one capacitor plate, and Q is the magnitude of the charge on each 

plate.  With the signs shown in Fig. 3.1, the charge is negative on the lower plate and 

positive on the upper.  The voltage across the capacitor is simply the product of the E-

field and the gap:  

A

Q

g

g

E

V

ε

=

=

 

and the capacitance is the ratio of the charge and the voltage:  

g

A

V

Q

C

=

=

ε

 

If the capacitor plates are fixed, then the stored energy in the capacitor is given by 

( )

ε

A

g

Q

V

C

C

Q

dQ

C

Q

VdQ

Q

W

Q

Q

2

2

1

2

2

2

2

0

0

=

=

=

=

=

ò

ò

  

We can also find the stored energy by considering the force attracting the capacitor plates 

to each other.  The field creates an electrostatic force that tries to bring the plates 

together.  The magnitude of the force on each plate is:  

2

2

2

2

2

2

g

V

A

A

Q

QE

F

=

=

=

ε

ε

 

Note that when expressed in terms of the charge, Q, the force is independent of the gap 

between the plates!

  

The factor 2 might seem surprising.  You might ask: Isn’t the force the product of the 

field and the charge, and therefore simply given by F=EQ?  Remember that in the 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

31 

definition of the electric field (the classical definition of the electric field is that it is a 

vector field that when multiplied by the magnitude of a test charge, gives the force on 

that charge), we specify that the charge that is subject to the force of the electric field, is a 

test charge

 that does not itself influence the electric field.  One way to understand the 

factor of two is therefore to consider the force on a test charge placed where the upper 

capacitor plate is.  With the upper plate removed, the field in that location is reduced to 

half its value as illustrated in Fig. 3.2.  The force on a test charge in this location is then 

half of what we would expect from the simple argument given above.  An alternative 

(and possibly more educational!) way of explaining the factor of two in the expression for 

the force is to consider the product of a step function and a delta function as done in the 

book (see footnote on page 128). 

 

E

0

 

-Q 

Field with two plates 

E

0

/2

-Q

Field with one plate 

 

Figure 3.2.  In the capacitor, the field is non-zero only between the plates, so the all the 

charge on the lower plate is used to terminate this field.  When the upper 
plate is removed, the charge on the lower plate must terminate the uniform 
field on both sides of the plate, so the field is reduced by a factor of 2 at the 
location of the upper plate.    

The energy stored in the capacitor is equal to the energy needed to pull the two plates 

apart till their separation equals the final gap, g.  The stored energy can then be 

expressed: 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

32 

( )

ε

A

g

Q

g

F

Fdg

g

W

g

2

2

0

=

=

=

ò

 

This follows directly from the expression for the force.  The force is independent of the 

gap size g, so we find the work required to increase the gap from zero to g as the product 

of the constant force and the distance over which it is applied.  Note that this expression 

is identical to the one we found by considering electrical energy that must flow into the 

capacitor to increase the charge from zero to Q.   

3.2 

The Parallel Plate Electrostatic Actuator 

This preceding simple treatment of the parallel-plate capacitor emphasizes that fact it is 

both an electric and a mechanical device.  It is indeed a transducer in which electrical 

energy can be transformed into mechanical energy and vice versa.  Usually we don’t 

worry about the mechanical aspects of the capacitors we use in electronics, because the 

plates are both fixed so there is only insignificant mechanical energy storage.  (In 

principle, of course, any real capacitor will have its plates separated by a mechanical 

structure with a finite compliance, so there will indeed be some stored mechanical 

energy).   

In the practical implementation of the electrostatic actuator, however, both electrostatic 

and mechanical energy storage are important.  In fact, mechanical energy can be stored as 

potential energy, kinetic energy, or both.  In that case, we include a spring in the physical 

model, and we attribute a mass to the moving plate.  The physical model then looks as 

shown in Fig. 3.3.  

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

33 

+

E

m

 

Figure 3.3.  Physical model of a parallel plate capacitor with mechanical energy 

storage.  The lower plate is fixed, while the upper plate can move.  Energy 
can be stored in the spring (potential energy), or in the movements of the 
plate (kinetic energy).  

3.2.1 Charge 

control 

With the inclusion of the mechanical spring (we will not consider the mass and damping 

until we are ready to model the dynamics of the actuator), the electrostatic actuator is 

modeled as shown in Fig. 3.4.  The electrical source in this system is a current source, 

which allow us to control the charge on the parallel-plate capacitor by switching the 

source as indicated.   

 

+

-

i

in

 

Switch to control the 
charge on the capacitor 

V

g

E

z

 

Figure 

3.4. Electrostatic actuator model incorporating the two-port parallel-plate 

capacitor and a capacitor representing the mechanical spring.   

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

34 

The charge on the capacitor is the integration of the current.  Assuming that we start with 

an uncharged capacitor at 

t=0, we find: 

( )

ò

=

t

in

dt

t

i

Q

0

 

The charge determines the electrostatic force on the plates.  In principle, we can therefore 

control the force of the actuator by controlling the current as a function of time. 

In equilibrium, the electrostatic force must match the spring force.    

A

k

Q

z

z

k

A

Q

QE

F

ε

ε

2

2

2

2

2

=

Þ

=

=

=

 

We see that the displacement is a quadratic function of the stored charge, i.e. it is a 

monotonically increasing function that is stable throughout its range of validity

.   

The gap can be expressed as  

A

k

Q

g

z

g

g

ε

2

2

0

0

=

=

 

which leads to the following expression for the voltage  

÷

÷
ø

ö

ç

ç
è

æ

=

=

=

ε

ε

ε

kA

Q

g

A

Q

g

A

Q

g

E

V

2

2

0

 

The expression for the magnitude of the gap shows us that if we increase the charge to a 

sufficiently high value, the gap goes to zero.  That happens when the charge reaches the 

value:  

A

k

g

Q

ε

2

ˆ

0

=

 

Notice that the voltage goes to zero for this value of the charge.  These relationships are 

illustrated in Fig. 3.5. 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

35 

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

 

Figure 

3.5. Plot of normalized deflection (z/g

0

, green curve) and voltage 

(

k

g

A

g

V

2

1

0

0

ε

, red curve) vs. normalized charge (

A

k

g

Q

ε

2

0

) for a 

charge-controlled, electrostatic parallel-plate actuator. 

We see that the deflection is well behaved, increasing monotonically from zero to the full 

value of the gap, when the charge is increased from zero to the critical value.  The 

voltage reaches its maximum value 

ε

ε

A

k

g

A

k

g

g

V

27

8

3

2

3

2

3

0

0

0

max

=

=

 

when  

3

2

0

A

k

g

Q

ε

=

 

as can be verified by differentiation of the voltage expression.   

Design problem: The charge controlled parallel plate actuator has many 

desirable characteristics.  It is simple and the deflection can be controlled 

over the whole electrode gap.  The MEMS designer faces some practical 

difficulties in implementing this actuator, however.  What do you think are 

the biggest problems in creating practical actuators that work according to 

this principle?  Hint: Typical MEMS capacitors are on the order of femto-

Farads.  

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

36 

3.2.2 Voltage 

control 

The voltage controlled electrostatic actuator, shown in Fig. 3.6, is easier to implement, 

and therefore the design of choice in practice.  Unfortunately, the ease of implementation 

comes at a cost.  For many applications voltage control has less favorable characteristics 

than charge control. 

 

 

+

-

The voltage on the capacitor 
is controlled directly by the 
external voltage source 

V

g

E

z

V

in

 

 

Figure 3.6.  Model of electrostatic actuator with voltage control.   

In this case the charge on the capacitor is 

g

VA

C

V

Q

ε

=

=

 

The charge determines the force, as before, and the electrostatic force must be matched 

by the spring force.    

2

2

2

2

2

2

2

2

kg

A

V

z

z

k

g

A

V

A

Q

F

ε

ε

ε

=

Þ

=

=

=

 

We see that z is a function of the gap size.  This complicates the final expression  

(

)

2

0

2

0

0

2

z

g

k

A

V

g

z

g

g

=

=

ε

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

37 

To proceed, we solve this equation with respect to the voltage  

(

)

z

g

A

k

z

V

=

0

2

ε

 

This expression is plotted in Fig. 3.7.  

 

z/g

0

 

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

1

 

k

g

A

g

V

2

1

0

0

ε

 

Figure 3.7.  Graph showing normalized deflection, z/g

0

, as a function of normalized 

voltage in an electrostatic, parallel-plate actuator.  There are two 
equilibrium deflections for each value of the voltage.  The solutions 
corresponding to the upper branch of the graph are unstable. 

 

We see that there are two eqilibria for each voltage.  The upper branch of solutions is, 

however, unstable.  To see that, we write an expression for the net force 

(

)

g

g

k

g

A

V

F

net

+

=

0

2

2

2

ε

 

and differentiate with respect to g 

g

k

g

A

V

g

g

F

F

V

net

net

δ

ε

δ

δ

÷

÷
ø

ö

ç

ç
è

æ

=

=

3

2

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

38 

Stability requires 

3

2

0

g

A

V

k

F

net

ε

δ

>

Þ

<

 

The edge of the stable region is defined by 

0

0

2

2

0

3

2

3

2

2

2

g

g

g

g

kg

A

V

g

g

g

A

V

k

=

Þ

=

=

Þ

=

ε

ε

δ

 

This corresponds to the maximum voltage, as can be verified by differentiation of the 

expression for voltage vs. deflection. 

We therefore conclude that the upper branch of the solution shown in Fig. 3.7 is unstable.  

A real parallel-plate capacitor will therefore exhibit the snap-down characteristics shown 

in Fig. 3.8.  As the voltage is increased beyond it’s maximum stable value, the 

spontaneously plates snap together.  In practice the plates will often reach a mechanical 

stop before they touch (which will short-circuit the voltage and lead to all kinds of 

unpleasant effects).  In that case the capacitor has hysteresis as shown.  

As the voltage applied to the parallel-plate electrostatic actuator increases, so does the 

deflection until the transition point between the stable and unstable regions is reached.  

Increasing the voltage beyond this point leads to “snap-down”, or “pull-in”, i.e. the 

moving plate of the capacitor is accelerated until it becomes stabilized by another 

mechanical force.  Two cases are shown in Fig. 3.8.  In the first case (red dashed line), 

the moving plate isn’t stopped until it hits the lower plate.  In this case, no voltage is 

required to hold the plate in the “snap-down” position.   In the second case (green solid 

line), the plate is stopped once it reaches a point corresponding to 75% of the original 

gap.  Increasing the voltage further doesn’t change the position of the plate.  Reducing 

the voltage below the voltage of the unstable solution at 75% deflection, makes the plate 

relax down to the stable branch.  The result is a very open hysteresis curve. 

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

39 

 

0.1

 

0.2

0.3

0.4

0.2

 

0.4

 

0.6

 

0.8

 

1

 

Mechanical stop 
at z=g

0

 

Mechanical stop 
at z=0.75g

0

 

k

g

A

g

V

2

1

0

0

ε

 

Figure 3.8.  Illustration of normalized deflection, z/g

0

, as a function of normalized 

voltage in an electrostatic, parallel-plate actuator.   

The maximum voltage for stable operation (snap-down voltage or pull-in voltage) is 

given by:  

ε

ε

A

k

g

g

g

A

k

g

V

27

8

3

3

2

3

0

0

0

0

=

÷

ø

ö

ç

è

æ

=

 

The snap-down voltage is equal to the maximum voltage for charge control.  Using this 

expression to normalize the voltage, we find the following expression for the net force 

(

)

(

)

ζ

ζ

ε

ε

+

=

Þ

÷÷ø

ö

ççè

æ

+

÷÷ø

ö

ççè

æ

=

+

=

2

2

2

0

0

0

2

0

2

0

2

0

2

2

1

1

27

4

1

2

2

pi

net

net

V

V

k

g

F

g

g

k

g

g

g

g

A

V

g

g

k

g

A

V

F

 

where 

0

1

g

g

=

ζ

 

The two parts of the expression for the net force is plotted in Fig. 3.9. 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

40 

0.2

 

0.4

0.6

0.8

1

 

0.25

 

0.5

 

0.75

 

1

 

1.25

 

1.5

 

1.75

 

2

 

1-g/g

0

Force

1.5

1.0

.75

0.1 

.25

.5 

 

Figure 3.9.  Spring force (red) and electrostatic force (blue family of curves - the applied 

voltage normalized to the pull-in voltage is the parameter) acting on the 
plates of the parallel-plate capacitor.  We see that when the voltage is 
larger than the snap-in voltage, there are no equilibrium solutions.  When 
the voltage equals pull-in, there is one unstable solution, and when the 
voltage is less than pull-in, there are two solutions, one stable and one 
unstable. 

The implication of the snap-down phenomenon is that we only can stably operate the 

voltage-controlled, parallel-plate, electrostatic actuator over one third of its full range of 

motion.  The maximum force is the same as for the charge-controlled actuator, so the 

result is that the force*range product, which is an often-used figure-of-merit for 

microactuators, is reduced by a factor of three.  This is a substantial reduction, but the 

difficulties of implementing charge control for small capacitances, has made the voltage 

controlled actuator the more common design in practical and commercial applications.  

Consequently, MEMS designers have shown considerable ingenuity in coming up with 

actuators that extend the travel range of the simple parallel-plate actuator.  We will study 

some of these solutions in the following. 

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

41 

3.3 

Energy Storage in the Parallel Plate Electrostatic Actuator 

In the preceding chapter we found the force and deflection of the parallel-plate 

electrostatic actuator by considering the forces set up by the electrostatic field.  This 

straightforward approach works for this simple case, but for more complex actuators, 

energy methods are simpler to apply.  We will develop such methods and use them to 

verify our calculations for the force and deflection in the parallel-plate actuator in this 

chapter.  In the next chapter we will use these methods to investigate the characteristics 

of the electrostatic combdrive.  

We saw earlier that if the electrodes of the parallel-plate electrostatic actuator are fixed, 

then the stored energy in the capacitor is given by: 

( )

ε

A

g

Q

C

Q

dQ

C

Q

VdQ

Q

W

Q

Q

2

2

2

2

0

0

=

=

=

=

ò

ò

  

Alternatively, we can find the same expression by considering the force attracting the 

capacitor plates to each other.  The magnitude of the force on each plate is: 

( )

ε

A

g

Q

g

F

Fdg

g

W

g

2

2

0

=

=

=

ò

 

The stored energy in the energy parallel-plate electrostatic actuator can be supplied either 

as electrical energy or mechanical energy, and the stored energy, W(Q,g), is a function 

both of the stored charge, Q, and the electrode gap, g.  The differential of the stored 

energy can then be expressed:  

(

)

dQ

V

dg

F

g

Q

dW

+

=

,

 

Consequently, we can write the following expressions for the force and the voltage:  

( )

( )

g

Q

Q

g

Q

W

V

g

g

Q

W

F

=

=

,

,

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

42 

Using the formula we found for the stored energy, these expressions evaluate to:  

(

)

(

)

A

Qg

A

g

Q

Q

Q

g

Q

W

V

A

Q

A

g

Q

g

g

g

Q

W

F

Q

g

Q

Q

ε

ε

ε

ε

=

÷

÷
ø

ö

ç

ç
è

æ

=

=

=

÷

÷
ø

ö

ç

ç
è

æ

=

=

2

,

2

2

,

2

2

2

 

These expressions are valid for the charge controlled electrostatic parallel-plate actuator, 

and, as we would expect, we see that the results are the same as those we found by more 

direct methods earlier.   

For the voltage controlled parallel-plate actuator we cannot use the differential above, 

because in this device, the voltage, not the charge, is the independent variable.  In this 

case use the co-energy, which is a function of the voltage and the electrode gap.  It is 

defined as:  

( )

( )

g

Q

W

QV

g

V

W

,

,

*

=

 

This definition is illustrated in Fig. 3.10.  For a linear capacitor, the energy and the co-

energy are the same, but in general these two quantities can be different. 

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

43 

 

q

1

 

V

1

 

V=

Φ

(q) 

Energy

Co-energy

 

Figure 3.10. Energy and co-energy of a non-linear capacitor.  As the capacitor is 

charged, the capacitance is increased.  The voltage is therefore a nonlinear 
function of the charge, and the energy and co-energy are different.  

The differential of the co-energy is:  

( )

( )

( )
( )

dg

F

dV

Q

g

V

dW

dQ

V

dg

F

dQ

V

dV

Q

g

V

dW

g

Q

dW

dQ

V

dV

Q

g

V

dW

=

+

=

+

=

,

,

,

,

*

*

*

 

We can now write the following expressions for the force and the charge:  

( )

( )

g

V

V

g

V

W

Q

g

g

V

W

F

=

=

,

,

*

*

 

The equation for the charge will be rewritten in terms of the capacitance for future use:  

( )

2

2

,

2

2

*

V

g

C

CV

g

g

g

V

W

F

V

V

V

=

÷

÷
ø

ö

ç

ç
è

æ

=

=

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

44 

The co-energy can be found by integration of the charge for a fixed gap: 

( )

g

AV

CV

dV

CV

dV

Q

g

V

W

V

V

2

2

1

,

2

2

0

0

*

ε

=

=

=

=

ò

ò

 

We can now evaluate the expressions for the force and charge:  

CV

g

AV

g

AV

V

Q

A

Q

g

AV

g

AV

g

F

g

V

=

=

÷

÷
ø

ö

ç

ç
è

æ

=

=

=

÷

÷
ø

ö

ç

ç
è

æ

=

ε

ε

ε

ε

ε

2

2

2

2

2

2

2

2

2

 

We see that these expressions agree with the basic definitions and the formulas we found 

earlier by more direct methods.   

3.4 

Two Port Models of Parallel Plate Electrostatic Actuators 

The fact that the stored energy in the electrostatic actuator is a function of both electrical 

and mechanical inputs, makes it convenient to describe it as a two-port circuit element, in 

which one port accepts electrical input, and the other mechanical.  This two-port model is 

shown in Fig. 3.11. 

 

 
 

W(Q,g) 

g

V

 

F

 

I

 

+

-

 

Figure 3.11. Two-port model of the electrostatic transducer illustrating both the electric 

and mechanical nature of the device.  Mechanical energy storage is not 
included in the device, but must be added to the mechanical side off the 
actuator.   

The input variables on the electrical port are voltage and current.  The differential of the 

stored energy:  

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

45 

(

)

dQ

V

dg

F

g

Q

dW

+

=

,

 

shows that for the energy flow to be modeled correctly, we should make the force and the 

time derivative of the gap the input variables on the mechanical port.  With the inclusion 

of a capacitor to model the mechanical spring (we will not consider the mass and 

damping until we are ready to model the dynamics of the actuator), the charge-controlled 

electrostatic actuator is modeled as shown in Fig. 3.12.  The electrical source in this 

system is a current source, which allow us to control the charge on the parallel-plate 

capacitor by switching the source as indicated.  The corresponding model for the voltage-

controlled actuator is shown in Fig. 3.13. 

 

 
 

W(Q,g) 

g

V

 

F

 

I

 

+

-

1/k

z

i

in

 

Switch to control the 
charge on the capacitor 

 

Figure 

3.12. Electrostatic actuator model incorporating the two-port parallel-plate 

capacitor and a capacitor representing the mechanical spring.   

 

 

 
 

W(Q,g) 

g

V

 

F

 

I

 

+

-

1/k

z

V

in

 

 

Figure 3.13. Model of electrostatic actuator with voltage control.   

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

46 

We will use these models later to study the dynamics of the parallel-plate actuator. 

3.5 Electrostatic 

Combdrives 

Voltage-controlled, parallel-plate, electrostatic actuators suffer from problems with snap-

down and limited range of operation as discussed in the preceding chapters.  A much-

used electrostatic actuator that avoids these problems is the electrostatic combdrive 

shown in Fig. 3.14.   

 

Ground plate 

Folded-beam 

suspension 

Micromirror 

(standing upright) 

Anchors 

Movable 
comb 

Stationary 
comb 

 

Figure 3.14. Electrostatic combdrive.  The voltage across the interdigitated electrodes 

creates a force that is balanced by the spring force in the crab-leg 
suspension. 

The operation of the electrostatic combdrive is very similar to that of the parallel-plate 

actuator.  Just like the parallel-plate actuator, the combdrive has two electrodes; one 

stationary, and one that is suspended by a mechanical spring so that is will move under an 

applied force.  The force required to move the suspended electrode is created by setting 

up an electrostatic field between the two electrodes.  This can be accomplished by 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

47 

controlling the charge on the electrodes, or by applying a voltage between them, as is the 

case for the parallel-plate actuator.   

The obvious difference between the combrive and the parallel-plate actuator is in the 

geometry of the electrodes.  The combdrive has interdigitated electrodes as shown in Fig. 

3.14, and that has important consequences for the characteristics of the device.  As the 

two electrodes are pulled together, the increase in the capacitance is mostly due to the 

increased overlap of the teeth of the two combs.  (There is also a small contribution to the 

capacitance increase from the end of the teeth moving closer to the base of the opposite 

electrode, but this contribution is negligible in most practical designs).  This capacitance 

increase is a linear function of the relative positions of the electrodes (this is different 

from the parallel-plate actuator, in which the capacitance is inversely proportional to the 

electrode spacing, i.e. the capacitance is a non-linear function of the relative electrode 

positions).  The combdrive is therefore sometimes referred to as the linear electrostatic 

combdrive.  

 

 

Figure 3.15. Electric field distribution in comb-finger gaps.  Noite that the direction of the 

x-coordinate is chosen opposite of the parameter g in the parallel-plate 
actuator. 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

48 

To calculate the electrostatic force in the combdrive, consider the field distribution shown 

in Fig. 3.15.  We write the capacitance as a sum of two parts; one corresponding to the 

fringing fields, and one corresponding to the fields in the region of overlap between the 

electrodes: 

( )

x

C

C

C

tot

+

=

0

 

The force can be written (Note that the coordinate x here is chosen opposite of g in the 

parallel-plate actuator.  This changes the sign in the expression for the force):  

x

C

V

V

C

x

x

W

F

V

V

=

÷

ø

ö

ç

è

æ

=

=

2

2

1

2

2

*

 

Using the same uniform-field approximation we employed for the parallel-plate actuator, 

we can write: 

g

h

N

V

g

h

N

V

x

C

V

F

=

=

=

ε

ε

2

2

2

2

2

1

2

1

 

where N is number of comb-fingers, h is the thickness of the comb-fingers (perpendicular 

to the plane in Fig. 3.15), and g is the width of gap between the comb-fingers. 

In many practical implementations of the electrostatic combdrive, the thickness, h, of the 

combteeth is comparable to the electrode gap, g.  Under those conditions, the parallel-

plate approximation is relatively inaccurate.  The most accurate representation of the 

fringing field are obtained by numerical techniques, but for many purposes it is sufficient 

to use tabulated correction factors to compensate for the effects of the finite thickness.  

The force can then be expressed as:   

η

ε

α

β

÷

÷
ø

ö

ç

ç
è

æ

=

g

h

N

V

F

2

 

where 

α, β, η are fitting parameters extracted from simulations

1

.  

                                                 

1

 W.C-K. Tang, “Electrostatic Comb Drive for Resonant Sensor and Actuator Applications”, PhD thesis, 

Department of Electrical Engineering and Computer Science, University of California, Berkeley, 1990. 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

49 

We see that the force in the voltage-controlled combdrive is not a function of the 

displacement.  This is what we found for the charge-controlled parallel-late actuator.  

The combdrive does therefore not suffer from snap-down in the primary deflection 

direction (x in Fig. 3.15), even in the voltage-controlled case.  This is one of the major 

reasons for the popularity of combdrives in MEMS technology.   

The voltage-controlled combdrive is, however, susceptible to snap-down in the 

transversal direction.  Figure 3.15 shows clearly that each of the teeth in the movable 

comb are attracted sideways towards their nearest neighbors on either side.  In the ideal 

case, the gaps on both sides are equal, so that the sideways forces exactly balance.  In 

reality, however, the two gaps will not be exactly equal, and there will be a net sideways 

force in one direction or the other.  It is also important to be aware that even in the ideal 

case, the combdrive will be unstable if the voltage and the overlap between the combteeth 

are too large.  This happens when the voltage creates sideways forces that are so big that 

an infinitesimal offset from the perfectly centered position will make the comb snap 

sideways.   

To analyze the stability of the combdrive, we need an expression for the potential energy.  

We start by generalizing the expression for the capacitance of the combdrive to the 

situation where the movable teeth are asymmetrically placed between the stationary 

teeth

2

÷÷

ø

ö

çç

è

æ

+

+

=

y

g

y

g

x

h

N

C

1

1

ε

 

The force can then be expressed: 

x

k

y

g

y

g

h

N

V

x

C

V

F

x

x

=

÷÷

ø

ö

ççè

æ

+

+

=

=

1

1

2

1

2

1

2

2

ε

 

In equilibrium, the electrostatic force must equal the mechanical spring force:  

                                                 

2

 J.D. Grade, “Large-Deflection, High-Speed, Electrostatic Actuators for Optical Switching Applications”, 

PhD thesis, Department of Mechanical Engineering, Stanford University, September 1999. 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

50 

÷÷ø

ö

ççè

æ

+

+

=

Þ

=

÷÷ø

ö

ççè

æ

+

+

y

g

y

g

h

N

x

k

V

x

k

y

g

y

g

h

N

V

x

x

1

1

2

1

1

2

1

2

ε

ε

 

We can write a similar expression for the force balance in the transversal direction: 

(

) (

)

y

k

y

g

y

g

h

N

V

y

C

V

F

y

y

=

÷

÷
ø

ö

ç

ç
è

æ

+

=

=

2

2

2

2

1

1

2

1

2

1

ε

 

Finally, we can write an equation for the total potential energy in the actuator: 

2

2

2

2

1

2

1

2

1

CV

y

k

x

k

PE

y

x

+

=

 

2

2

2

1

1

2

1

2

1

2

1

V

y

g

y

g

x

h

N

y

k

x

k

PE

y

x

÷÷

ø

ö

çç

è

æ

+

+

+

=

ε

 

The values of y where 

PE/y=0 are all possible equilibria, but only those that have 

2

PE/

y

2

>0 are stable:  

(

) (

)

2

3

3

2

2

1

1

V

y

g

y

g

x

h

N

k

y

PE

y

÷

÷
ø

ö

ç

ç
è

æ

+

+

=

ε

 

(

) (

)

÷÷

ø

ö

ççè

æ

+

+

÷

÷
ø

ö

ç

ç
è

æ

+

+

=

y

g

y

g

x

k

y

g

y

g

k

y

PE

x

y

1

1

2

1

1

2

3

3

2

2

 

(

) (

)

(

) (

)

g

y

g

y

g

y

g

y

g

y

g

x

k

k

y

PE

x

y

2

2

2

2

3

3

3

3

2

2

2

÷

÷
ø

ö

ç

ç
è

æ

+

+

+

=

 

(

)

2

2

2

2

2

2

2

2

3

2

y

g

y

g

x

k

k

y

PE

x

y

+

=

 

For y=0, this expression simplifies to: 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

51 

2

2

2

2

2

0

g

x

k

k

y

PE

y

x

y

=

Þ

=

 

In the ideal case (y=0) we therefore have the stability criterion:  

x

y

x

y

k

k

g

x

g

x

k

k

2

0

2

2

2

<

Þ

>

 

We see that sideways snap-down limits the deflection of the electrostatic combdrive.  We 

have to make the ratio of the transversal (y-direction) to the longitudinal (x-direction) 

spring constant as large as possible.  We will discuss this in more detail when we study 

the mechanical properties of MEMS, but it should be noted here that the sideways snap-

down that we have focused on in this treatment is only one of several possible 

electrostatic instabilities that must be considered in the design of combdrives.  Others 

include rotational nap-down, and snap-down to the substrate.    

We can now compare the force in the parallel-plate and the combdrive actuators.  The 

first-order expressions for the force in these two actuators are: 

2

2

2

2

  

:

plate

 

Parallel

  

:

Combdrive

g

V

A

F

d

V

h

N

F

pp

cd

=

=

ε

ε

 

 

To compare these two expressions, we write the area of the combdrive as 

h

d

N

A

cd

= 4

 

where the parameters are defined in Fig. 3.16. 

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

52 

 

4d

g 

A

cd

=4N

⋅d⋅h 

A

pp

=w

⋅h 

Combdrive 

Parallel-plate Actuator 

s

 

a) 

 

h


d

 

A

cd

=4

⋅d⋅h 

 

b) 

Figure 3.16. Calculation of area of the combdrive.  Figure 3.16 a) shows both the 

parallel-plate actuator and the combdrive, and b) shows one unit cell of a 
periodic combdrive. 

Given these definitions, we find the ratio of the force produced by a combdrive and a 

parallel-plate actuator of the same cross-sectional area to be: 

2

2

2d

g

F

F

pp

cd

=

 

We see that the combdrive can generate substantially larger forces than the parallel-plate 

actuator.  If we make the assumptions that the parallel-plate actuator is voltage controlled 

and can be operated over one third of its gap (g/3), and that the gap in the combdrive is 

determined by the lithographic resolution, we find:  

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

53 

(

)

(

)

2

2

2

9

linewidth

range

F

F

pp

cd

=

 

In many applications we might want the total range of travel of the actuators to be one or 

two orders of magnitude larger than the lithographic linewidth.  In these applications, the 

combdrive is clearly vastly superior to the parallel-plate actuator, at least if the maximum 

available force is important.   

We should remember, however, that the range of the combdrive is also limited by snap-

down as discussed above.  Using the expression we found for the deflection in the 

combdrive 

÷

÷
ø

ö

ç

ç
è

æ

=

x

y

k

k

d

x

2

max

, we can rewrite the force ratio as:  

x

y

x

y

pp

cd

k

k

d

k

k

d

F

F

4

9

2

2

9

2

2

=

=

 

Note that this equation is valid for the situation where the parallel-plate actuator and the 

combdrive have the same range of motion, given by the maximum range of motion 

possible in the combdrive.  This is not necessarily the most “fair” way to compare these 

two actuators.  We can often use leverage to trade off force and range such that their 

product is constant.  In many applications we therefore find that the force*range product 

is a better figure-of-merit than the force:  

x

y

x

y

x

y

pp

pp

cd

cd

k

k

k

k

d

g

g

g

k

k

d

g

range

F

range

F

2

2

3

2

2

3

3

2

2

2

2

2

2

=

=

 

We see that this equation is not as favorable for the combdrive as the one derived earlier.  

If the mechanical springs are well designed (k

y

>>k

x

), however, the combdrive is still 

superior to the parallel-plate actuator by a substantial margin.   

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

54 

SUMMARY – Electrostatic Actuation 

Under the assumption of uniform field between the plates and zero field outside, we find 

the following expressions for the electric field, voltage, capacitance, force (note the 

factor of 2 in the denominator)

, and stored energy in parallel-plate capacitors:   

A

Q

E

ε

=

   

A

Q

g

g

E

V

ε

=

=

 

g

A

V

Q

C

=

=

ε

 

A

Q

QE

F

ε

2

2

2

=

=

 

( )

ε

A

g

Q

Q

W

2

2

=

 

Here A is the area of each capacitor plate, g is the spacing of the plates, 

ε is the dielectric 

constant of the material (air) between the plates, and Q is the magnitude of the charge on 

each plate.   

If we control the charge on the capacitor, we can express the force, deflection, gap, and 

voltage as follows:  

A

Q

QE

F

ε

2

2

2

=

=

 

A

k

Q

z

ε

2

2

=

 

A

k

Q

g

z

g

g

ε

2

2

0

0

=

=

 

÷

÷
ø

ö

ç

ç
è

æ

=

=

=

ε

ε

ε

kA

Q

g

A

Q

g

A

Q

g

E

V

2

2

0

 

The deflection is a monothonically increasing function of the charge, increasing from 

zero to the full gap as the charge increases from zero to 

A

k

g

Q

ε

2

ˆ

0

=

.   

The charge controlled parallel plate actuator is stable over the whole electrode gap, but it 

is hard to implement because typical MEMS capacitors are very small (~ fF).  In practice 

we therefore more often use voltage control.  In this case the charge, force, and 

displacement of the capacitor are: 

g

VA

C

V

Q

ε

=

=

                         

2

2

2

2

2

2

2

2

kg

A

V

z

z

k

g

A

V

A

Q

F

ε

ε

ε

=

Þ

=

=

=

 

The displacement is a function of the gap size:   

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

55 

(

)

2

0

2

0

0

2

z

g

k

A

V

g

z

g

g

=

=

ε

      =>       

(

)

z

g

A

k

z

V

=

0

2

ε

 

This cubic equation in z has two solutions for z<g

0

, but only voltages less than 

ε

A

k

g

V

down

snap

27

8

3

0

=

 lead to stable solutions.  

The differential of the stored energy can then be expressed:  

(

)

dQ

V

dg

F

g

Q

dW

+

=

,

  => 

which leads to the following expressions for the force and voltage: 

(

)

(

)

A

Qg

A

g

Q

Q

Q

g

Q

W

V

A

Q

A

g

Q

g

g

g

Q

W

F

Q

g

Q

Q

ε

ε

ε

ε

=

÷

÷
ø

ö

ç

ç
è

æ

=

=

=

÷

÷
ø

ö

ç

ç
è

æ

=

=

2

,

2

2

,

2

2

2

 

The co-energy is defined as:  

( )

( )

g

Q

W

QV

g

V

W

,

,

*

=

  =>  

( )

( )

dg

F

dV

Q

g

Q

dW

dQ

V

dV

Q

g

V

dW

=

+

=

,

,

*

  =>  

( )

( )

g

V

V

g

V

W

Q

g

g

V

W

F

=

=

,

     

          

          

,

*

*

  

The co-energy can be found by integration of the charge for a fixed gap: 

( )

g

AV

CV

dV

CV

dV

Q

g

V

W

V

V

2

2

1

,

2

2

0

0

*

ε

=

=

=

=

ò

ò

 

which leads to the following expressions for the force and charge:  

CV

g

AV

g

AV

V

Q

A

Q

g

AV

g

AV

g

F

g

V

=

=

÷

÷
ø

ö

ç

ç
è

æ

=

=

=

÷

÷
ø

ö

ç

ç
è

æ

=

ε

ε

ε

ε

ε

2

       

          

2

2

2

2

2

2

2

2

 

background image

Electrostatic Actuation 

os, 4/6/2002 

 

 
EE 321, MEMS Design  

 

56 

The force in the electrostatic combdrive, can be found from the equation: 

x

C

V

V

C

x

x

W

F

V

V

=

÷

ø

ö

ç

è

æ

=

=

2

2

1

2

2

*

 

Note that the coordinate x here is chosen opposite of g in the parallel-plate actuator.  

Using the uniform-field approximation, we can write: 

g

h

N

V

g

h

N

V

x

C

V

F

=

=

=

ε

ε

2

2

2

2

2

1

2

1

 

where N is number of comb-fingers, h is the thickness of the comb-fingers (perpendicular 

to the plane in Fig. 3.15), and g is the width of gap between the comb-fingers.   

The force in the voltage-controlled combdrive is not a function of the displacement, 

which means that the combdrive is stable in the longitudinal direction.  Voltage control 

does make the combdrive unstable in the transversal direction.  This limits the range of 

motion even in the perfectly aligned combdrive: 

x

y

k

k

g

x

2

<

 

The ratio of the forces of combdrives and parallel-plate actuators is: 

2

2

2d

g

F

F

pp

cd

=

 

If the range is the same for both actuators, this can be written:  

(

)

(

)

2

2

2

9

linewidth

range

F

F

pp

cd

=

x

y

x

y

pp

cd

k

k

d

k

k

d

F

F

4

9

2

2

9

2

2

=

=

 

The ratio of the force*range products is:  

x

y

x

y

x

y

pp

pp

cd

cd

k

k

k

k

d

g

g

g

k

k

d

g

range

F

range

F

2

2

3

2

2

3

3

2

2

2

2

2

2

=

=

 

Conclusion:

  The combdrive is superior to the parallel-plate actuator, particularly for 

long-range operation.