background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

1

Chapter 4

DC to AC Conversion

(INVERTER)

• General concept
• Basic principles/concepts
• Single-phase inverter

– Square wave
– Notching
– PWM

• Harmonics
• Modulation
• Three-phase inverter

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

2

DC to AC Converter 

(Inverter)

• DEFINITION: Converts DC to AC power 

by switching the DC input voltage (or 

current) in a pre-determined sequence so as 

to generate AC voltage (or current) output.

• TYPICAL APPLICATIONS:

– Un-interruptible power supply (UPS), Industrial 

(induction motor) drives, Traction, HVDC

• General block diagram

I

DC

I

ac

+

V

DC

V

ac

+

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

3

Types of inverter

• Voltage Source Inverter (VSI)
• Current Source Inverter (CSI)

"DC LINK"

I

ac

+

V

DC

Load Voltage

+

L

I

LOAD

Load Current

I

DC

+

V

DC

C

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

4

Voltage source inverter (VSI) 

with variable DC link 

DC LINK

+

-

V

s

V

o

+

-

C

+

-

V

in

CHOPPER

(Variable DC output)

INVERTER

(Switch are turned ON/OFF

with square-wave patterns)

• DC link voltage is varied by a DC-to DC converter 

or controlled rectifier.

• Generate “square wave” output voltage.

• Output voltage amplitude is varied as DC link is 

varied.

Frequency of output voltage is varied by changing 

the frequency of the square wave pulses.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

5

Variable DC link inverter (2)

• Advantages:

– simple waveform generation
– Reliable

• Disadvantages:

– Extra conversion stage
– Poor harmonics

T

1

T

2

t

V

dc1

V

dc2

Higher input voltage
Higher frequency

Lower input voltage
Lower frequency

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

6

VSI with fixed DC link 

INVERTER

+

V

in

(fixed)

V

o

+

C

Switch turned ON and OFF

with PWM pattern

• DC voltage is held constant.

• Output voltage amplitude and frequency 

are varied simultaneously using PWM 
technique.

• Good harmonic control, but at the expense 

of complex waveform generation

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

7

Operation of simple square-

wave inverter (1)

• To illustrate the concept of AC waveform 

generation

V

DC

T1

T4

T3

T2

+   V

O

   -

D1

D2

D3

D4

SQUARE-WAVE

INVERTERS

S1

S3

S2

S4

EQUAVALENT

CIRCUIT

I

O

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

8

Operation of simple square-

wave inverter (2)

V

DC

S1

S4

S3

+   v

O

   

V

DC

S1

S4

S3

S2

+   v

O

 

  −

V

DC

v

O

t

1

t

2

t

S1,S2 ON; S3,S4 OFF

for t

1

 < t < t

2

t

2

t

3

v

O

-V

DC

t

S3,S4 ON ; S1,S2 OFF

for t

2

 < t < t

3

S2

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

9

Waveforms and harmonics of 

square-wave inverter

FUNDAMENTAL

3

RD

 HARMONIC

5

RD

 HARMONIC

π

DC

V

4

V

dc

-V

dc

V

1

3

1

V

5

1

V

INVERTER

OUTPUT

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

10

Filtering

• Output of the inverter is “chopped AC 

voltage with zero DC component”.In some 
applications such as UPS, “high purity” sine 
wave output is required.

• An LC section low-pass  filter is normally 

fitted at the inverter output to reduce the 
high frequency harmonics.

• In some applications such as AC motor 

drive, filtering is not required.

v

O 1

+

LOAD

L

C

v

O 2

(LOW PASS) FILTER

+

v

O 1

v

O 2

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

11

Notes on low-pass filters

• In square wave inverters, maximum output voltage 

is achievable. However there in NO control in 
harmonics and output voltage magnitude.

• The harmonics are always at three, five, seven etc 

times the fundamental frequency.

• Hence the cut-off frequency of the low pass filter is 

somewhat fixed. The filter size is dictated by the 
VA ratings of the inverter.

• To reduce filter size, the PWM switching scheme

can be utilised.

In this technique, the harmonics are “pushed” to 

higher frequencies. Thus the cut-off frequency of 
the filter is increased. Hence the filter components 
(I.e. L and C) sizes are reduced. 

• The trade off  for this flexibility is complexity in 

the switching waveforms.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

12

“Notching”of square wave

Vdc

Vdc

Vdc

Vdc

Notched Square Wave

Fundamental Component

• Notching results in controllable output 

voltage magnitude (compare Figures 
above).

• Limited degree of harmonics control is 

possible  

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

13

Pulse-width modulation 

(PWM)

• A better square wave notching is shown 

below - this is known as PWM technique.

• Both amplitude and frequency can be 

controlled independently. Very flexible.

1

1

pwm waveform

desired 
sinusoid

SINUSOIDAL PULSE-WITDH MODULATED

APPROXIMATION TO SINE WAVE

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

14

PWM- output voltage and 

frequency control 

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

15

Output voltage harmonics

• Why need to consider harmonics?

– Waveform quality must match TNB supply.  

“Power Quality” issue.

– Harmonics may cause degradation of  

equipment. Equipment need to be “de-rated”.

• Total Harmonic Distortion (THD) is a measure to 

determine the “quality” of a given waveform.

• DEFINITION of THD (voltage)

(

)

(

)

(

)

(

)

frequency.

 

harmonic

at 

 

impedance

 

 the

is

 

:

current

 

harmonic

 with 

 voltage

harmonic

 

the

replacing

by 

 

obtained

 

be

can 

 

THD

Current 

number.

 

harmonics

 

 the

is

 

 

where

,

1

2

2

,

,

1

2

2

,

1

2

,

1

2

2

,

n

n

n

n

RMS

n

RMS

n

RMS

n

RMS

RMS

RMS

n

RMS

n

Z

Z

V

I

I

I

THDi

n

V

V

V

V

V

THDv

=

=

=

=

=

=

=

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

16

Fourier Series

• Study of harmonics requires understanding 

of wave shapes. Fourier Series is a tool to 
analyse wave shapes.

( )

( )

(

)

t

n

b

n

a

a

v

f

d

n

v

f

b

d

n

v

f

a

d

v

f

a

n

n

n

o

n

n

o

ω

θ

θ

θ

θ

θ

π

θ

θ

π

θ

π

π

π

π

=

+

+

=

=

=

=

=

    

where

sin

cos

2

1

)

(

Fourier

 

Inverse

sin

)

(

1

cos

)

(

1

)

(

1

Series

Fourier 

1

2

0

2

0

2

0

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

17

Harmonics of square-wave (1)

V

dc

-V

dc

θ=ωt

π

( )

( )

( )

( )

=

=

=

=

+

=

π

π

π

π

π

π

π

π

π

θ

θ

θ

θ

π

θ

θ

θ

θ

π

θ

θ

π

2

0

2

0

2

0

sin

sin

0

cos

cos

0

1

d

n

d

n

V

b

d

n

d

n

V

a

d

V

d

V

a

dc

n

dc

n

dc

dc

o

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

18

Harmonics of square wave (2)

( )

( )

[

]

[

]

[

]

[

]

π

π

π

π

π

π

π

π

π

π

π

π

θ

θ

π

π

π

π

n

V

b

n

b

n

n

n

V

n

n

n

V

n

n

n

n

V

n

n

n

V

b

dc

n

n

dc

dc

dc

dc

n

4

1

cos

 

odd,

 

is

when 

0

1

cos

 

even,

 

is

when 

)

cos

1

(

2

)

cos

1

(

)

cos

1

(

)

cos

2

(cos

)

cos

0

(cos

cos

cos

Solving,

2

0

=

=

=

=

=

+

=

+

=

+

=

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

19

Spectra of square wave 

1

3

5

7

9

11

Normalised

Fundamental

3rd (0.33)

5th (0.2)

7th (0.14)

9th (0.11)

11th (0.09)

1st

n

• Spectra (harmonics) characteristics:

– Harmonic decreases as increases. It decreases 

with a factor of (1/n). 

– Even harmonics are absent
– Nearest harmonics is the 3rd. If fundamental is 

50Hz, then nearest harmonic is 150Hz.

– Due to the small separation between the 

fundamental an harmonics, output low-pass 
filter design can be quite difficult.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

20

Quasi-square wave (QSW)

( )

[

]

( )

(

)

[

]

(

)

(

)

α

π

α

π

α

π

α

π

α

π

α

π

α

π

θ

π

θ

θ

π

α

π

α

α

π

α

n

n

n

n

n

n

n

n

n

n

n

n

V

n

n

V

d

n

V

b

a

dc

dc

dc

n

n

cos

cos

sin

sin

cos

cos

cos

cos

Expanding,

cos

cos

2

cos

2

sin

1

2

symmetry,

 

wave

-

half

 

 to

Due

   

.

0

 that 

Note

=

+

=

=

=

=

=

=

π

π

2

α

α

α

V

dc

-V

dc

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

21

Harmonics control

( )

[

]

( )

[

]

( )

( )

n

n

b

b

V

b

n

n

V

b

b

n

n

n

V

n

n

n

n

V

b

o

dc

dc

n

n

dc

dc

n

o

3

1

1

90

:

if

 

eliminated

 

be

 

 will

 

harmonic

 

general,

In 

 

 waveform.

 the

from

 

eliminated

 

is

 

harmonic

 

 third

or the

,

0

then 

,

30

 

if

 

example

For 

,

 

adjusting

by 

 

controlled

 

be

 

also

can 

 

Harmonics

α

 

by varying

 

controlled

 

is

 ,

l

fundamenta

 

The

cos

4

:

is

 l

fundamenta

 

 the

of

 

amplitude

 ,

particular

In 

cos

4

 

odd,

 

is

 

If

,

0

 

even,

 

is

 

If

cos

1

cos

2

cos

cos

cos

2

=

=

=

=

=

=

=

=

α

α

α

α

π

α

π

π

α

π

α

π

α

π

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

22

Example

degrees

30

 with 

case

 

 wave

square

-

quasi

for 

 

(c)

 

and

 

(b)

Repeat 

harmonics

 

zero

-

non

 

e

first thre

 

 the

using

by  

 

THDi

 

 the

c)

harmonics

 

zero

-

non

 

e

first thre

 

 the

using

by  

 

THDv

 

 the

b)

formula.

 

exact"

"

 

 the

using

 

THDv

 

 the

a)

:

Calculate

  

series.

in 

 

10mH

L

 

and

 

10R

R

 

is

 

load

 

The

 

100V.

 

is

 

ge

link volta

 

DC

 

The

 

signals.

 

 wave

square

by 

 

fed

 

is

inverter 

 

phase

 

single

 

bridge

-

full

=

=

=

α

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

23

Half-bridge inverter (1)

V

o

R

L

+

V

C1

V

C2

+

-

+

-

S

1

S

2

V

dc

2

Vdc

2

Vdc

S1 ON
S2 OFF

S1 OFF
S2 ON

t

0

G

• Also known as the “inverter leg”.
• Basic building block for full bridge, three 

phase and higher order inverters.

• G is the “centre point”.
• Both capacitors have the  same value. 

Thus the DC link is equally “spilt”into 
two.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

24

Half-bridge inverter (2)

• The top and bottom switch has to be 

“complementary”, i.e. If the top switch is 
closed (on), the bottom must be off, and 
vice-versa.

• In practical, a dead time as shown below is 

required to avoid “shoot-through” faults.

t

d

t

d

"Dead time'   = t

d

S

1

signal

(gate)

S

2

signal

(gate)

S1

S2

+

V

dc

R

L

G

"Shoot through fault" .

I

short

 is very large

I

short

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

25

Single-phase, full-bridge (1)

• Full bridge (single phase) is built from two 

half-bridge leg.

• The switching in the second leg is “delayed 

by 180 degrees” from the first leg. 

S1

S4

S3

S2

+

-

G

+

2

dc

V

2

dc

V

-

2

dc

V

2

dc

V

dc

V

2

dc

V

2

dc

V

dc

V

π

π

π

π

2

π

2

π

2

t

ω

t

ω

t

ω

RG

V

G

R

V

'

o

V

G

R

o

V

V

V

RG

'

=

groumd"

 

virtual

"

  

is

 

G

LEG R

LEG R'

R

R'

  

o

V

+

dc

V

+

-

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

26

Three-phase inverter

• Each leg (Red, Yellow, Blue) is delayed by 

120 degrees.

• A three-phase inverter with star connected 

load is shown below

Z

Y

Z

R

Z

B

G

 

R

Y

B

i

R

i

Y

i

B

i

a

i

b

+V

dc

N

S1

S4

S6

S3

S5

S2

+

+

V

dc

/2

V

dc

/2

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

27

Square-wave inverter 

waveforms

1
3

2,4

2

3,5

4

3
5

4,6

4

1,5

6

5
1

2,6

6

1,3

2

V

AD

V

B0

V

C0

V

AB

V

APH

(a) Three phase pole switching waveforms

(b) Line voltage waveform

(c) Phase voltage waveform (six-step)

60

0

120

0

Interval

Positive device(s) on

Negative devise(s) on

2V

DC

/3

V

DC

/3

-V

DC

/3

-2V

DC

/3

V

DC

-V

DC

V

DC

/2

-V

DC

/2

t

t

t

t

t

Quasi-square wave operation voltage waveforms

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

28

Three-phase inverter 

waveform relationship

• V

RG

, V

YG

, V

BG

are known as “pole 

switching waveform” or “inverter phase 
voltage”.

• V

RY

, V

RB

, V

YB

are known as “line to line 

voltage” or simply “line voltage”.

• For a three-phase star-connected load, the 

load phase voltage with respect to the “N” 
(star-point) potential is known as V

RN 

,V

YN

,

V

BN

It is also popularly termed as “six-

step” waveform

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

29

MODULATION: Pulse Width 

Modulation (PWM)

Modulating Waveform

Carrier waveform

1

M

1

+

1

0

2

dc

V

2

dc

V

0

0

t

1

t

2

t

3

t

4

t

5

t

• Triangulation method (Natural sampling)

– Amplitudes of the triangular wave (carrier) and 

sine wave (modulating) are compared to obtain 
PWM waveform. Simple analogue comparator 
can be used.

– Basically an analogue method. Its digital 

version, known as REGULAR sampling is 
widely used in industry.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

30

PWM types

• Natural (sinusoidal) sampling (as shown 

on previous slide)

– Problems with analogue circuitry, e.g. Drift, 

sensitivity etc.

• Regular sampling

– simplified version of natural sampling that 

results in simple digital implementation

• Optimised PWM

– PWM waveform are constructed based on 

certain performance criteria, e.g. THD.

• Harmonic elimination/minimisation PWM

– PWM waveforms are constructed to eliminate 

some undesirable harmonics from the output 
waveform spectra. 

– Highly mathematical in nature

• Space-vector modulation (SVM)

– A simple technique based on volt-second that is 

normally used with three-phase inverter motor-
drive

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

31

Natural/Regular sampling

( )

(1,2,3...)

integer 

an 

 

is

 

 

and

 

signal

 

modulating

 

 the

of

frequency 

  

 the

is

 

 

where

M

:

at

 

located

normally 

 

are

 

harmonics

 

The

 .

frequency"

 

harmonic

"

 

 the

 to

related

 

is

 

M

 waveform

modulating

 

 the

of

Frequency 

veform

carrier wa

 

 the

of

Frequency 

M

)

(

M

RATIO

 

MODULATION

ly.

respective

 

 voltage,

(DC)

input 

 

and

 

voltage

output 

 

 the

of

  

l

fundamenta

 

are

  

 ,

  

where

 

M

:

holds

 

ip

relationsh

linear 

 

 the

1,

  

M

0

 

If

 

 versa.

 vice

and

high 

 

is

output 

 

 wave

sine

 

the

 then

high,

 

is

M

 

If

 

magnitude.

 

tage

output vol

 

 wave)

(sine

 l

fundamenta

 

 the

 to

related

 

is

 

M

veform

carrier wa

 

 the

of

 

Amplitude

 waveform

modulating

 

 the

of

 

Amplitude

M

:

M

INDEX

  

MODULATION

R

R

R

R

1

I

1

I

I

I

I

I

k

f

f

k

f

p

p

V

V

V

V

m

m

in

in

=

=

=

=

=

=

<

<

=

=

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

32

Asymmetric and symmetric 

regular sampling

T

sample

point

t

M

m

ω

sin

1

1

+

1

4

T

4

3T

4

5T

4

π

2

dc

V

2

dc

V

0

t

1

t

2

t

3

t

t

asymmetric

 sampling

symmetric

sampling

t

Generating of PWM waveform regular sampling

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

33

Bipolar and unipolar PWM 

switching scheme

• In many books, the term “bipolar” and 

“unipolar” PWM switching are often 
mentioned.

• The difference is in the way the sinusoidal 

(modulating) waveform is compared with 
the triangular.

• In general, unipolar switching scheme 

produces better harmonics. But it is more 
difficult to implement.

• In this class only bipolar PWM is 

considered.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

34

Bipolar PWM switching

k

1

δ

k

2

δ

k

α

4

=

δ

π

π

2

carrier

waveform

modulating

waveform

pulse

kth

π

π

2

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

35

Pulse width relationships

k

1

δ

k

2

δ

k

α

4

=

δ

π

π

2

carrier

waveform

modulating

waveform

pulse

kth

π

π

2

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

36

Characterisation of PWM 

pulses for bipolar switching

pulse

 

PWM

kth 

 

The

0

δ

0

δ

0

δ

0

δ

k

1

δ

k

2

δ

2

S

V

+

2

S

V

k

α

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

37

Determination of switching 

angles for kth PWM pulse (1) 

v

Vmsin θ

( )

A

p2

A

p1

2

dc

V

+

2

dc

V

A

S2

A

S1

2

2

1

1

second,

-

 volt

 the

Equating

p

s

p

s

A

A

A

A

=

=

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

38

PWM Switching angles (2)

[

]

)

sin(

sin

2

     

      

cos

)

2

cos(

sin

sinusoid,

 

by the

 

supplied

 

second

-

 volt

The

  

 where

;

  

2

Similarly,

 

where

2

2

2

)

2

(

2

:

as

given 

 

is

 

pulse

 

PWM

 

 the

of

 

cycle

 

half

each 

 

during

 

 voltage

average

 

The

2

1

2

2

2

2

1

1

1

1

1

1

1

o

k

o

m

k

o

k

m

m

s

o

o

k

k

dc

k

k

o

o

k

k

s

k

o

o

k

dc

o

k

o

k

dc

k

V

V

d

V

A

V

V

V

V

V

V

k

o

k

δ

α

δ

α

δ

α

θ

θ

δ

δ

δ

β

β

δ

δ

δ

β

β

δ

δ

δ

δ

δ

δ

δ

α

δ

α

=

=

=





=

=





=

=





=





=

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

39

Switching angles (3)

)

sin(

)

2

(

)

sin(

2

2

2

edge

 

leading

 

for the

 

Hence,

     

;

strategy,

 

modulation

 

 the

derive

 

To

2

2

       

;

2

2

,

 waveforms

PWM

 

 the

of

 

seconds

-

 volt

The

)

sin(

2

Similarly,

)

sin(

2

 

small

for 

  

sin

Since,

1

1

2

2

1

1

21

2

1

1

2

1

o

k

dc

m

k

o

k

m

o

o

dc

k

s

p

s

p

o

dc

k

p

o

dc

k

p

o

k

m

o

s

o

k

m

o

s

o

o

o

V

V

V

V

A

A

A

A

V

A

V

A

V

A

V

A

δ

α

β

δ

α

δ

δ

β

δ

β

δ

β

δ

α

δ

δ

α

δ

δ

δ

δ

=

=

=

=

=

=

+

=

=

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

40

PWM switching angles (4)

[

]

[

]

)

sin(

1

    

and

)

sin(

1

width,

-

pulse

 

for the

 

solve

 

 to

ng

Substituti

)

sin(

:

derived

 

be

can 

 

edge

 

 trailing

 the

method,

similar 

 

Using

)

sin(

Thus,

1.

 

 to

0

 

from

 

It varies

 

depth.

or 

index 

 

modulation

 

as

known 

 

is

   

2

ratio,

 

voltage

The

2

1

1

1

2

1

o

k

I

o

k

o

k

I

o

k

o

o

k

k

o

k

I

k

o

k

I

k

dc

m

I

M

M

M

M

)

(V

V

M

δ

α

δ

δ

δ

α

δ

δ

δ

δ

δ

β

δ

α

β

δ

α

β

+

+

=

+

=

=

=

=

=

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

41

PWM Pulse width

[

]

k

I

o

k

k

k

k

k

M

α

δ

δ

δ

δ

δ

δ

δ

δ

α

δ

α

sin

1

 

,

Modulation

 

Symmetric

For 

 

different.

 

are

 

and

i.e

 ,

Modulation

 

Asymmetric

for 

 

 valid

is

equation 

 

above

 

The

 :

edge

 

Trailing

   

    

 :

edge

 

Leading

    

:

is

 

pulse

kth 

 

 the

of

 

angles

 

switching

 

 the

Thus

2k 

1k 

2k 

1k 

1

1

+

=

=

=

+

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

42

Example

• For the PWM shown below, calculate the switching 

angles for all the pulses.

V

5

.

1

V

2

π

π

2

1

2

3

4

5

6

7

8

9

t1

t2

t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

t13

t14

t15

t16

t17

t18 π

2

π

1

α

carrier

waveform

modulating

waveform

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

43

Harmonics of bipolar PWM

{

}

)

2

(

cos

)

(

cos

 

     

          

)

(

cos

)

(

cos

      

          

)

(

cos

)

2

(

cos

:

 to

reduced

 

be

can 

Which 

sin

2

2

sin

2

2

sin

2

2

sin

)

(

1

2

:

as

 

computed

 

be

can 

 

pulse

 

PWM

 

(kth)

each 

 

of

content 

 

harmonic

symmetry,

 

wave

-

half

 

is

 

 waveform

PWM

 

 the

Assuming

2

1

2

1

2

2

0

2

2

1

1

o

k

k

k

k

k

k

k

k

k

o

k

dc

nk

dc

dc

dc

T

nk

n

n

n

n

n

n

n

V

 b

d

n

V

d

n

V

d

n

V

d

n

v

f

b

o

k

k

k

k

k

k

k

k

k

o

k

δ

α

δ

α

δ

α

δ

α

δ

α

δ

α

π

θ

θ

π

θ

θ

π

θ

θ

π

θ

θ

π

δ

α

δ

α

δ

α

δ

α

δ

α

δ

α

+

+

+

+

+

=





−

+





+





−

=



=

+

+

+

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

44

Harmonics of PWM

[

]

      

          

equation.

 

 this

of

computatio

 

 the

shows

 

page

next 

 

on the

 

slide

 

The

:

i.e.

 

period,

 

one

over 

 

pulses

 

 

for the

 

 

of

 

sum

 

isthe

 

 waveform

PWM

for the

 

coefficent

Fourier 

 

ly.The

productive

 

simplified

 

be

cannot 

equation 

 

This

2

cos

cos

2

 

        

          

)

2

(

cos

)

(

cos

2

Yeilding,

1

1

1

=

=

+

=

p

k

nk

n

nk

o

k

k

k

k

k

dc

nk

b

b

p

b

n

n

n

n

n

V

b

δ

α

α

δ

α

π

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

45

PWM Spectra

p

p

2

p

3

p

4

0

.

1

=

M

8

.

0

=

M

6

.

0

=

M

4

.

0

=

M

2

.

0

=

M

Amplitude

Fundamental

0

2

.

0

4

.

0

6

.

0

8

.

0

0

.

1

NORMALISED HARMONIC AMPLITUDES FOR

SINUSOIDAL PULSE-WITDH MODULATION

Depth of

Modulation

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

46

PWM spectra observations

• The amplitude of the fundamental decreases or 

increases linearly in proportion to the depth of 

modulation (modulation index). The relation ship is 

given as:  V

1

= M

I

V

in

• The harmonics appear in “clusters” with  main 

components at frequencies of :                                  

f = kp (f

m

);

k=1,2,3....                                       

where f

m

is the frequency of the modulation (sine) 

waveform. This also equal to the multiple of the 

carrier frequencies. There also exist “side-bands” 

around the  main harmonic frequencies.

• The amplitude of the  harmonic changes with M

I

. Its 

incidence (location on spectra) is not.

• When p>10, or so, the harmonics can be normalised 

as shown in the Figure. For lower values of p, the 

side-bands clusters overlap, and the normalised 

results no longer apply.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

47

Bipolar PWM Harmonics

 h
         M

I

0.2

0.4

0.6

0.8

1.0

1

0.2

0.4

0.6

0.8

1.0

M

R

1.242

1.15

1.006

0.818

0.601

M

+2

0.016

0.061

0.131

0.220

0.318

M

+4

0.018

2M

+1

0.190

0.326

0.370

0.314

0.181

2M

+3

0.024

0.071

0.139

0.212

2M

+5

0.013

0.033

3M

R

0.335

0.123

0.083

0.171

0.113

3M

+2

0.044

0.139

0.203

0.716

0.062

3M

+4

0.012

0.047

0.104

0.157

3M

+6

0.016

0.044

4M

+1

0.163

0.157

0.008

0.105

0.068

4M

+3

0.012

0.070

0.132

0.115

0.009

4M

R

+5

0.034

0.084

0.119

4M

+7

0.017

0.050

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

48

Bipolar PWM harmonics 

calculation example

( )

 

harmonics.

dominant 

 

 the

of

 

some

 

and

 

voltage

frequency 

-

l

fundamenta

 

 the

of

 

 values

the

Calculate

 

47Hz.

 

is

 

lfrequency

fundamenta

 

The

 

39.

M

 

0.8,

M

 

100V,

V

 

inverter,

 

PWM

 

phase

 

single

 

bridge

-

full

 

In the

:

Example

M

 

of

function 

 

a

 

as

2

ˆ

:

from

 

computed

 

are

 

harmonics

 

The

2

     

PWM,

bipolar 

 

phase

-

single

 

bridge

 

full

for 

 :

Note

R

I

DC

I

'

,

=

=

=

=

=

=

DC

n

RG

RG

G

R

RG

RR

o

V

V

v

v

v

v

v

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

49

Three-phase harmonics: 

“Effect of odd triplens”

• For three-phase inverters, there is 

significant advantage if is chosen to be:

– odd and multiple of three (triplens) (e.g. 

3,9,15,21, 27..)

– the waveform and harmonics and shown on the 

next two slides. Notice the difference?

• By observing the waveform, it can be seen 

that with odd p, the line voltage shape 
looks more “sinusoidal”.

• The even harmonics are all absent in the 

phase voltage (pole switching waveform). 
This is due to the chosen to be odd.

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

50

Spectra observations

• Note the absence of harmonics no. 21, 63 

in the inverter line voltage. This is due to 
which is multiple of three.

• In overall, the spectra of the line voltage is 

more “clean”. This implies that the THD is 
less and the line voltage is more sinusoidal.

• It is important to recall that it is the line 

voltage that is of the most interest. 

• Also can be noted from the spectra that the 

phase voltage amplitude is 0.8 
(normalised). This is because the 
modulation index is 0.8. The line voltage 
amplitude is square root three of phase 
voltage due to the three-phase relationship.  

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

51

Waveform: effect of “triplens”

2

dc

V

2

dc

V

2

dc

V

2

dc

V

2

dc

V

2

dc

V

2

dc

V

2

dc

V

dc

V

dc

V

dc

V

dc

V

π

π

2

RG

V

RG

V

RY

V

RY

V

YG

V

YG

V

6

.

0

,

8

=

M

p

6

.

0

,

9

=

M

p

ILLUSTRATION OF BENEFITS OF USING A FREQUENCY RATIO

THAT IS A MULTIPLE OF THREE IN A THREE PHASE INVERTER

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

52

Harmonics: effect of 

“triplens”

0

2

.

0

4

.

0

6

.

0

8

.

0

0

.

1

2

.

1

4

.

1

6

.

1

8

.

1

Amplitude

 voltage)

line

 

 to

(Line

  

3

8

.

0

Fundamental

41

43

39

37

45

47

23

19

21

63

61

59

57

65

67

69 77

79

81

83

85

87

89

91

19

23

43

47

41

37

61

59

65

67

83

79

85

89

COMPARISON OF INVERTER PHASE VOLTAGE (A) & INVERTER LINE VOLTAGE

(B) HARMONIC (P=21, M=0.8)

A

B

Harmonic Order

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

53

Comments on PWM scheme

• It is desirable to push to as large as 

possible.

• The main impetus for that when p is high, 

then the harmonics will be at higher 
frequencies because frequencies of 
harmonics are related to: f = kp(f

m

), where

f

m

is the frequency of the modulating 

signal.

• Although the voltage THD improvement is 

not significant, but the current THD will 
improve greatly because the load normally 
has some current filtering effect.

• In any case, if a low pass filter is to be 

fitted at the inverter output to improve the 
voltage THD, higher harmonic frequencies 
is desirable because it makes smaller filter 
component. 

background image

Power Electronics and 

Drives (Version 2): Dr. 

Zainal Salam, 2002

54

Example

The amplitudes of the pole switching waveform harmonics of the red
phase of a three-phase inverter is shown in Table below. The inverter 
uses a symmetric regular sampling PWM scheme. The carrier frequency

is 1050Hz and the modulating frequency is 50Hz. The modulation
index is 0.8. Calculate the harmonic amplitudes of the line-to-voltage
(i.e. red to blue phase) and complete the table.

Harmonic 

number

Amplitude (pole switching 

waveform)

Amplitude (line-to 

line voltage)

1

1

19

0.3

21

0.8

23

0.3

37

0.1

39

0.2

41

0.25

43

0.25

45

0.2

47

0.1

57

0.05

59

0.1

61

0.15

63

0.2

65

0.15

67

0.1

69

0.05


Document Outline