background image

An Introduction to Strategy Proof Mechanism Design* 

Nick Baigent 

Institute of Public Economics, Graz University 

nicholas.baigent@kfunigraz.ac.at

 

August, 2003 

The purpose of these notes is to introduce the subject of mechanism design.  Ideally, 
these notes would be read after reading “Mechanism Design: A quick tour” in Baigent 
(2003).  There are some modest mathematics perquisites that would easily be satisfied 
by any student early in a masters course in economics.  They can easily be obtained 
from Stewart and Tall (1977). 

Part 1 reviews some basic game theory, part 2 presents Direct Revelation 
Mechanisms, and part 3 presents General Mechanisms and implementation in 
Dominant Strategies. 

Genuine attempts to do the exercises are essential for two reasons.  First, some 
exercises attempt to lead students to discover important points by themselves.  
Second, the answers to many exercises are used later, especially those marked by *. 

* Both Daniel Eckert and Christian Klamler read the entire manuscript and 
commented in detail.  I am very grateful to both.  The usual disclaimer is accepted. 

background image

 

1: Review of Game theory 

1.1 Introduction 

Conflict and co-operation are essential features in many situations in economics, 

politics, business management and other areas.  There are many examples. 

The performance of a group or organisation may be improved if the people in it work 

hard.  However, individuals may also like to shirk (not work hard).  Indeed, if the 

benefits of success are shared, individuals may have an incentive to shirk, hoping to 

receive benefit without supplying much effort to get that benefit. 

Two regions may have to reduce greenhouse gas emissions in order to achieve 

environmental benefits.  If the total reduction of both regions is all that matters, each 

region may prefer the other to make higher reductions while they make lower 

reductions.  However, neither region may agree to reductions unless the other also 

makes reductions.  A similar situation can arise with the use of renewable resources 

such as fish and forests.  Conservation may require reducing harvests.  While each 

fisherman or forester would like to require the others to reduce their harvest more than 

they do themselves, they may have to reduce harvests themselves in order to get the 

others to make the required reductions. 

The price that one firm gets for its output will depend not only on its own output, but 

also on the output, and therefore the price, of its competitors.  Countries negotiate 

over trade agreements, and other sorts of agreements (taxation, migration, use of 

rivers, lakes and sea) where the actions of each affect the others.  People who live 

together are affected by whether, or how often, the other does the washing up, 

cleaning, gardening and looks after the 

children.  The retired are affected by 

 

2

background image

 

whether the young are prepared to go on paying their pensions by taxation.  In 

democracies, governments are obtained not by the actions of 1 person, but from the 

votes of all citizens. 

Everywhere in private, social, economic and political life, one finds interdependence.  

To analyse what rational individuals would do in such situations of strategic 

interdependence is the main purpose of game theory. 

1.2 

Strategies, outcomes and mechanisms.

1

 

Consider two individuals, 1 and 2, working to produce some output.  They can either 

work (w) or shirk (s).  These are called their strategies.  Thus, the set of all possible 

strategies of 1 is 

 and the set of all possible strategies of 2 is 

1

{ , }

S

w s

=

{ , }

S

w s

=

2

The possible strategy lists may therefore be expressed as follows, writing the strategy 

of 1 first followed by the strategy of 2: 

(w,w)  they both work. 

(w,s)  1 works and 2 shirks. 

(s,s)  they both shirk. 

(s,w)  1 shirks and 2 works. 

Thus, the set of all strategy lists is 

1

2

{( , ),( , ),( , ),( , )}

S S

S

w w w s s w s s

= ×

=

, the 

Cartesian Product of the set of all possible strategies of 1 with the set of all possible 

strategies of 2. 

                                                 

1

 You will need to understand the following concepts from mathematics:  Sets: (set membership 

(

x S

), union, intersection, empty set, power set and Cartesian products of sets.  Functions: (Domain, 

codomain and range.)  Composition of functions.  The use of quantifiers: (“For all” (

) and “for 

some” (

)).  All of these will be used many times in these notes.  If you do not understand any of them 

you must look them up yourself in a mathematics book.  Both Hülsmann et al (1998) and Stewart and 
Hall (1977) cover the required mathematics. 

 

3

background image

 

The possible outcomes of the choice given by strategy lists may be described as 

follows: 

(s,w) leads to outcome a.  In this outcome, success is medium (e.g. medium output), 1 

has low work effort and 2 has high work effort. 

(w,w) leads to outcome b.  In this outcome both supply high effort and a high level of 

success is therefore obtained. 

(s,s) leads to outcome c in which there is low success obtained with low effort from 

both 1 and 2. 

(w,s) leads to outcome d in which there is medium success, but high effort from 1 and 

low effort from 2. 

The important thing is that outcomes are determined by all of the agents’ choices; that 

is by the whole strategy list.  In our example, this may be expressed in the form of a 

table as follows. 

Outcome determination table 

ww ss  ws sw 

b c 

d 

So far, we have two sets, a set of all possible strategy lists S, and a set of all outcomes 

X, and we also have a function that shows what outcomes are determined by each 

possible strategy list.  Such an outcome function is called a mechanism.  It is a 

 

4

background image

 

function 

m S

 that assigns an outcome to all strategy lists in its domain.

2

  In our 

example 

 and 

:

X

( , )

, ( , )

m w s

d m w w

b

=

=

( , )

m s s

c

( , )

m s w

a

=

= , as in the table. 

Exercise 1.1: 

The outcome determination table completely describes the 
mechanism.  Therefore, give a definition of a mechanism in terms of 
a table.  What advantages and disadvantages does your definition 
have compare with the one given. 

A mechanism can also be expressed using a different table as follows. 

 w 

w b 

s a 

In this table, each row corresponds to a strategy choice of agent 1 and each column 

corresponds to a strategy choice of agent 2.  Therefore, each strategy list is a 

combination of row and column.  The outcome for any strategy list is given by the 

cell in the intersection of the row and column corresponding to the strategies in the 

strategy list. 

                                                 

2

 Unfortunately, the terminology is not standardised and mechanisms are also called outcome functions, 

game forms, institutions, organisations or rules. 

 

5

background image

 

1.3 

Preferences, utilities and games in normal form. 

Will the individuals choose to work or shirk?  To answer this, we need to know their 

preferences.  Preferences rank outcomes.  The following table gives a plausible list of 

preferences in which 

1

 is 1’s preference and 

2

 is 2’s preference: 

1

 

2

 

a 

d 

b 

b 

c 

c 

d 

a 

These rankings are obtained as follows.  They both top rank the outcome in which 

they shirk and the other works.  So, the reduced success compared with both working 

is more than offset by not having to work.  They both bottom rank the outcome in 

which they work and the other shirks.  In between are the outcomes in which they 

either both work or both shirk.  Between these, the high success from both working 

offsets their high work effort and they both prefer this to both shirking and the low 

success this achieves.   

It is useful to describe a preference ranking by a utility function.  A utility function 

uses numbers to describe a ranking, assigning higher numbers to higher ranked 

outcomes.  Thus, given 1’s ranking 

1

, let 1’s utility of be 

1

, 1’s utility of 

b be  u b

, 1’s utility of c be  u c

1

( ) 4

=

1

1

( )

=  and 1’s utility of be  u d

.  In the 

same way, let 2’s utility levels of the outcomes be 

1

( )

=

0

0

( ) 1

u d

2

=

 

and  u a

2

( )

u b

= 4

2

( ) 1

u c

=

2

( ) 0

=

( ) 10

u a

=

Thus, for both individuals, there are four levels to their rankings and therefore four 

utility levels.  10 for the top ranked outcome, 4 for the second ranked outcome, 1 for 

 

6

background image

 

the third ranked outcome and 0 for the fourth ranked outcome. 

Of course, these numbers are not the only ones that can describe these preference 

rankings.  Any assignment of numbers to outcomes that give higher numbers to more 

preferred outcomes would also describe these preferences. 

Exercise 1.2*:  Give the domain, codomain and range of the utility function. 

In exercises 1.3 – 1.7, preferences refer to those used in the “work – shirk” example. 

Exercise 1.3: 

Describe the preferences of 1 and 2 by utility functions that are 
different from the ones using values 0, 1, 4 and 10. 

Exercise 1.4: 

Describe 1’s preference by a utility function such that the utility of b 
is equal to 0.  Describe 2’s preference by a utility function such that 
the utility of c is equal to –5. 

Exercise 1.5: 

A utility function is not the only way to describe a preference as a 
function.  It can also be done with a function that has the set of all 
subsets of outcomes as its range.  Give a precise definition of such a 
function (i.e. give its domain, codomain and range, and the rule for 
assigning range elements to domain elements).  (You may have to 
think quite hard to do this.) 

Exercise 1.6: 

Express the preferences of 1 and 2 using tables obtained from the 
function given in the previous exercise. 

Exercise 1.7*:  In the work-shirk example, give the composition of the utility 

function of person 1 with the outcome function.  See figure 1.1.  
Express this composition in the form of a table.  Do the same for 
person 2.
 

The composite functions in exercise 1.7 are called payoff functions and are 

illustrated in figure 1.1. 

1

u

figure 1.1 

1

π

 

7

background image

 

These payoff functions determine a game known as the Prisoners’ Dilemma game.  

The name comes from another interpretation of the strategies.  Although our 

interpretation is different, we follow the usual practice of calling this game the 

Prisoners’ Dilemma (PD) game.  It is an example of what is called a game in normal 

form or a game in strategic form.  In general, a game in normal form is a set of 

players, a strategy set for each player and a payoff function for each player. 

Both payoff functions can also be expressed in a single game table, or bimatrix, as 

follows where, as usual, the rows w and s denote the strategies of 1 and the columns w 

and s denote the strategies of 2: 

 

Prisoners’ Dilemma table

 

w s 

4,4 0,10 

10,0 1,1 

The 4 cells in the table each have a pair of numbers.  In each case, these numbers are 

the payoffs resulting from the strategy given by the row and column of that cell.  The 

first number is 1’s payoff and the second number is 2’s payoff.  Thus, for the strategy 

list (s,w) given by the second row and the first column, 1 gets a payoff of 10 and 2 

gets a payoff of 0.  For 2 person games in which there are a finite number of 

strategies, such tables are often used to present the information contained in the 

payoff functions.  However, for games with either more people or an infinite number 

of strategies, such tables cannot be used, even though the definition given above is 

still satisfactory. 

Exercise 1.8: 

Formulate a model of a duopoly.  What are the strategy sets of the 
two firms?  What are their payoff functions?  What are their utility 
functions? 

 

8

background image

 

Exercise 1.9: 

Formulate a model of a committee that uses majority voting to 
determine outcomes.  What are the strategy sets in your model and 
what are the payoff functions?
 

Exercise 1.10:  Construct an example giving strategy sets, mechanism, utility 

functions and payoff functions for a situation in which there are 3 
players with different size strategy sets.  Can this game be expressed 
by a table? 

1.4 

Dominant Strategy Equilibrium and Pareto Optimality.

 

In the prisoners’ dilemma game, which strategies would 1 and 2 choose?  What would 

the outcome be?  What criteria could be used for deciding whether the outcomes 

determined by the strategies they choose are good outcomes?  According to these 

criteria, would rational choices lead to good outcomes?  It is to these issues that we 

now turn. 

Games in which binding agreements can be made are called cooperative games.  

Games in which binding agreements are not possible are called non cooperative 

games

.  We will assume that binding agreements are not possible. 

Exercise 1.11:  If they could make binding agreements in the Prisoners’ Dilemma 

game, what would they agree to do?  Give your reasons.  Give some 
examples of situations that are cooperative games. 

Given that they cannot make binding agreements in the Prisoners’ Dilemma game, 

agent 1 might reason as follows. 

“If 2 works, I will get 10 rather than 4 if I shirk.  If 2 shirks, I will get 1 rather than 
0 from shirking.  Therefore, whatever 2 does, I am better off shirking.” 

In a similar way, agent 2 would conclude that shirking is the best choice, whatever 1 

chooses.  That is, shirking is a best reply for both to whatever the other could do. 

Thus, if they are rational they will both shirk.  However, they would both be better off 

by working.  If they both worked, they would each get a payoff of 4 which is higher 

 

9

background image

 

than the payoff of 1 that they would each get by rationally shirking. 

A change from strategy list (s,s) to (w,w) is an example of a Pareto improvement.  A 

strategy list from which there are no Pareto improvements is called Pareto optimal

Exercise 1.12:  In the PD game, which of the outcomes are Pareto optimal? 

Exercise 1.13:  Consider the list of three preferences in the following table. 

1

R  

2

R  

3

R  

x z y 

y x z 

z y x 

 

Which outcomes are Pareto Optimal? 

Exercise 1.14:  Construct an example in which there are two agents and 5 outcomes 

such that there is only one Pareto Optimal outcome. 

Exercise 1.15*:  Give a definition of “Pareto optimal”.  (Hint: Pareto Optimality is a 

property.  So, what is Pareto Optimality a property of?  Think about 
a general format for defining properties that will always make clear 
what a property is a property of!) 

Exercise 1.16:  A parent has one bar of chocolate to divide between two children.  

Give all the Pareto Optimal ways to do this.  Would the answer be 
significantly different if there were more than two children? 

In solving the PD game, use was made of the concept of best reply.  This concept is 

very important and used to define other equilibrium solutions for games in normal 

form, such as Nash Equilibrium. 

Exercise 1.17*:  Give a definition of “best reply”.  (Hint:  Structure you definition as 

follows.  A --- is a best reply to --- if and only if ...) 

In any game in normal form, a strategy that is a best reply to all the strategies of 

others is called a dominant strategy.  A list of strategies in which all strategies in the 

list are dominant strategies is called a dominant strategy equilibrium.  In the 

 

10

background image

 

prisoners’ dilemma game, 

 is a dominant strategy equilibrium. 

( , )

s s

Exercise 1.18*:  In the payoff table for the Prisoners’ Dilemma game, is it possible 

to change the payoffs of 2 in such a way that shirking is not a 
Dominant Strategy for 1? 

Exercise 1.19:  Consider the game given by the following table: 

 

left right 

top 

a, e 

c, f 

bottom 

b, g 

d, h 

 

Give values for e, f, g and h such that left is a dominant strategy for 
all values of a, b, c and d. 

Exercise 1.20:  In the Prisoners’ Dilemma game, assume that neither player knows 

the payoff function of the other but that they could buy this 
information.  How much would they be prepared to pay for this 
information?
 

Exercise 1.21:  In the Prisoners’ Dilemma game, it was assumed that binding 

agreements were not possible but nothing was said about the 
possibilities for communication between 1 and 2.  If they could 
communicate, would this make any difference?
 

Exercise 1.22:  Draw a diagram using a horizontal axis for 1’s payoffs and the 

vertical axis for 2’s payoffs.  For each strategy list, show the pairs 
of payoffs given by the payoff function. 

Exercise 1.23:  Is it possible to have a 2 person game in which all strategies are 

dominant strategies?  If so, give an example. 

Exercise 1.24*:  Consider two agents each of which have “human rights”.  Each 

agent can choose r, (to respect the other’s rights) or v, (to violate 
the others rights).  The preferences of the agents are simple.

3

  Each 

only cares whether the other respects or violates their rights.  
Formulate this as a game.  Find the dominant strategies.  Which 
strategy lists are Pareto Optimal? 

Exercise 1.25:  Suppose that you know the payoff function of a game, but not the 

mechanism.  For each strategy and for each person, can you still 

                                                 

3

 This game requires that agents are indifferent between some pairs of outcomes.   

 

11

background image

 

determine whether or not it is a dominant strategy?  If you do not 
need to know the mechanism in order to solve a game, does game 
theory need the concept of mechanism?  If it does, what does it need 
it for? 

Exercise 1.26*:  The following table shows a mechanism in which 1 chooses a 

preference given by a row and 2 chooses a preference given by a 
column.  Their choices thus reveal a preference.  Therefore, for 
each revealed preference list, given by a row and a column, the cells 
show the outcome.  Of course, the preferences revealed by strategy 
choices may not be true preferences. 

 

 






x x x y x x 

x x x x x z 


x x y y x y 

y x y y z y 


x x x z z z 


x z y y z z 

Suppose that 1 has a true preference of y strictly preferred to z and z 
strictly preferred to x, and suppose that 2 has a true preference of z 
strictly preferred to x and x strictly preferred to y.  Let the utility of 
a top ranked outcome be 2, the utility of a second ranked outcome 
be 1 and the utility of a bottom ranked outcome be 0. 

Give the payoff table for the game using the mechanism given by the 
table and for the preferences given in the previous paragraph.  Is it 
a dominant strategy for 1 to choose the row in which their choice is 
also their true preferences?  Is it a dominant strategy for 2 to 
choose the column in which their choice is also their true 
preference?  In general, do you think it is always rational for 
committee members to reveal their true preferences?  Is this a cause 
for concern?  Why? 

 

12

background image

 

In our study of mechanism design, Dominant Strategy equilibria are the only methods 

we will need to solve games.  However, for the sake of completeness and given its 

general importance, section 1 concludes with a brief introduction to solving games 

using Nash Equilibrium. 

1.5 Nash 

Equilibrium. 

Dominant Strategy equilibria, at least when they are unique, give a very convincing 

way to solve a game.  A player who has a dominant strategy has good reason to 

choose it, and arguably no good reasons to choose any other strategy.  This is fine as 

far as it goes.  The problem is that in many games, not all players have dominant 

strategies in which case the game has no dominant strategy equilibria. 

For example, consider the game given in the following table in which 1 chooses rows 

and two chooses columns. 

 Left 

Right 

Top 7,5 

5,4 

Bottom 6,4 

6,3 

1 has no dominant strategy since Top is only a best reply to Left but not a best reply 

to Right.  However, if 1 and 2 are rational, it is fairly clear what they would do.  To 

begin with, 1 would see that Left is a dominant strategy for 2.  Therefore, not only 

would 2 choose Left but 1 would confidently expect 2 to choose Left.  This makes 1’s 

choice easy since Top is the best reply to Left.  Therefore (Top, Left) is a convincing 

solution to this game. 

 

13

background image

 

There is a name for the procedure we have just used.  It is called elimination of 

weakly dominated strategies

.  First, Right was eliminated because it was weakly 

dominated.

4

  This left a game in which 1 had two choices, Top and Bottom, but 2 only 

had one choice, Top.  In this smaller game, 1 does have a dominant strategy since Top 

dominates Bottom.  Eliminating Bottom, we are left with (Top, Left) as the solution to 

the game. 

This is also all right as far as it goes.  The problem is that not all games can be solved 

in this way. 

Consider the game given by the following table in which 1 must choose from Top, 

Middle or Bottom and 2 must choose from Left, Centre or Right. 

 Left 

Centre 

Right 

Top 10,0 

0,10 

3,3 

Middle 2,10 

10,2 

6,4 

Bottom 

3,3 4,6 6,6 

No strategies are dominated, and there are certainly no dominant strategies.  The best 

reply of each depends on what the other will do.  A Nash Equilibrium is a strategy 

list in which each strategy in the list is a best reply to all the other strategies in the 

list.  Note carefully exactly how this differs from the definition of a Dominant 

Strategy equilibrium and that a Dominant Strategy equilibrium must be a Nash 

                                                 

4

 In this example we have strict domination, since for each row, 2’s payoffs are greater in the first 

column than in the second column.  If one were greater than and the other were equal to, then we 
would have weak dominance

 

14

background image

 

Equilibrium but the converse is not generally true.  In the game given by the table, 

(Bottom, Right) is the unique Nash Equilibrium. 

It will be useful later to go deeper into why a Nash Equilibrium is a reasonable 

solution.  In the game given in the table on the previous page, best reply rows vary 

from column to column.  For example, Top is the best reply to Left but Middle is the 

best reply to Centre. 

Thus, for rational players to choose the strategies in a particular strategy list, they 

must believe that other players would choose the other strategies in that list.  For 

(Top, Left) to be chosen, 1 must believe that 2 will choose Left and 2 must believe 

that 1 would choose Top.  But could they rationally have these beliefs? 

Assume they both know the table.

5

  Then, for 1 to expect 2 to choose Left, 2 must 

expect 1 to choose Top.  But if 2 does expect 1 to choose Top then 2’s best reply 

would be Centre and with this expectation 2 would not in fact want to choose Left.  

Furthermore, 1 could not therefore rationally expect 2 to expect that 1 would choose 

Top!  On the other hand, for Nash Equilibria, each player can expectations that 

support their Nash Equilibrium strategy as a best reply.

6

 

                                                 

5

 More specifically, assume that they both know each others payoffs, they both know that each other 

knows that they know this, and that they know that each other knows that they know this and so on.  
This important assumption is called “Common Knowledge”. 

6

 This view of Nash Equilibrium builds on the concepts of “Rationalizability” introduced by D. G. 

Pearce in “Rationalizable Strategic Behaviour and the Problem of Perfection”, Econometrica 52 
(1984): 1029-1050, and D. Bernheim, “Rationalizable Strategic Behaviour”, Econometrica 52 (1984): 
1007-1028.  A simple treatment may be found in “Strategy: An Introduction to Game Theory” (2002), 
Norton, New York, by Joel Watson. 

 

15

background image

 

Exercise 1.27:  What do you think rational players would choose in the following 

game? 

 shirk 

work 

shirk 

1, 1 

1, 0 

work 

0, 1 

2, 2 

 

Give your reasons.  Why do you think games like this are called 
“coordination games”? 

Exercise 1.28:  The following table shows a different game for each possible value 

of x. 

 left 

right 

top x, 

x x, 0 

bottom 

0, 

4, 4 

 

For what values of x is there a unique Dominant Strategy 
equilibrium?  Give the Dominant Strategy equilibrium for each of 
these values of x.  Are there any values of x such that there are Nash 
Equilibria that are not Dominant Strategy equilibria?  Give all of 
the Nash Equilibria in these cases and say which one has the 
strategies that you think will be chosen.  Give your reasons. 

This is all right as far as it goes.  The problem is that not all games have a Nash 

Equilibrium.  Consider the game given by following table in which 1 again chooses 

rows and 2 again chooses columns.   

 Left 

Right 

Top 

1, -1 

-1, 1 

Bottom 

-1, 1 

1, -1 

Starting in the top left pair of payoffs and going around them in a clockwise way: Left 

is not a best reply to Top, Top is not a best reply to Right, Right is not a best reply to 

Bottom and Bottom is not a best reply to Left.  In this case, neither player can develop 

 

16

background image

 

consistent reasons to expect the other to choose any particular strategy. 

It may seem as though this is the end of the road.  However, in the game in the table 

on the previous page, let 1 think that 2 will choose Left with probability p and choose 

Right with probability 1 – p.  In the same way, let 2 think that 1 will choose Top with 

probability q and Bottom with probability 1 – q.  Probabilities p and 1 – p are called a 

mixed strategy for 2 (even though they are 1’s expectations) and probabilities q and 1 

– q are called a mixed strategy for 2 (even though they are 1’s expectations).  The 

rows and columns are now called pure strategies.  Note that, as defined, pure 

strategies are a special case of mixed strategies. 

Given these mixed strategies, the expected payoff of 1 is: 

1

[ , ]

(1

) (1

)

(1

)(1

)

(4

2) 2

1

E p q

pq p

q

p q

p

q

p q

q

=

− −

+ +

+

=

− −

+  

The next step is to determine what value of p* of would maximise the expected 

payoff of 1 for all possible values of q.  It is easily seen that if 

 then 

; if 

 then 

 and if 

 then p* may be any value between 0 and 1 

inclusive.  A similar argument shows that the value q* of q that maximises 2’s 

expected payoff for any particular value of p is as follows:  If 

1 2

p

>

 then 

; if 

* 0

q

=

1 2

p

<

 then 

 and q* may be any value between 0 and 1 inclusive if 

* 1

q

=

1 2

p

=

p

=

2

q

=

1 2

q

>

* 1

p

=

1 2

q

<

* 0

p

=

1 2

q

=

Now let us see what values of p and q we might consider as solutions for this game.  

Let us consider 

 and 

.  This could only be regarded as a solution if 1 

expected 2 to choose Left with probability 

, and 2 expected 1 to choose Top 

with probability 

2 3

q

=

.  But if they did have these expectations they would not in 

fact choose with the probabilities 

expected by each other, and they could 

1 3

3

1 3

p

=

 

17

background image

 

both figure this out!  Indeed, it is only by each choosing their two strategies by tossing 

a fair coin, so that 

p q

, that these expectations can be consistently held and 

the actions justified.  Thus, a Nash Equilibrium in mixed strategies is a list of 

mixed strategies, one for each player, such that each maximises that player’s expected 

payoff given the other mixed strategies in the list.  In other words, a Nash Equilibrium 

in mixed strategies is a list of mixed strategies in which each one is a best reply to the 

others in the list. 

1 2

= =

Guess what.  All games with a finite number of players and a finite number of 

strategies have at least one Nash Equilibrium.  Of course, there may be more than one. 

This concludes the review of the game theory background that is required for 

mechanism design.  It should be emphasised that the coverage is minimal.  This is 

particularly true with respect to Nash Equilibria, especially in mixed strategies.  There 

are many good textbooks in game theory, and most microeconomics textbooks now 

include some game theory though the amount varies a lot from one book to another. 

Exercise 1.29:  Give all the Nash Equilibria in pure and mixed strategies for the 

game in the following table: 

 left 

right 

top 

2, 1 

0, 0 

work 

0, 0 

1, 2 

 

Which Nash Equilibria are Pareto Optimal? 

 

18

background image

 

2: Direct Revelation Mechanisms 

You should begin this section by reviewing exercise 1.26.  In that exercise, the 

possible strategy sets were revealed preferences.  Such mechanisms are called Direct 

Revelation Mechanisms

.  Of course, they are a special case of general mechanisms 

in which the strategy sets need not be preferences.  This section presents an important 

result, the Gibbard-Satterthwaite theorem, about Direct Revelation mechanisms.  

Later, we will see that the Gibbard-Satterthwaite theorem is very useful for the 

analysis of general mechanisms too.  First, we must develop formal notation and 

define concepts more carefully. 

2.1 

Notation and Definitions 

{1, , },

1

N

n n

= …

> :  Finite set of agents. 

{ , , }

X

x y

=

… :  Finite set of at least 2 outcomes. 

,

i

R i N

∈ :  Preference ranking of i N

∈ .  This is a transitive ranking of outcomes in 

which every pair of outcomes is ranked and there is no indifference 

between distinct pairs.  This is only for simplicity and it does not affect 

any of the results.  In some exercises, such as the one about the human 

rights game, indifference between distinct pairs is allowed. 

:  The set of all preference rankings. 

1

( , ,

)

n

R

R

R

=

:  A list of preference rankings, one for each agent. 

 

19

background image

 

n

Π = ℜ :  The set of all preference lists (Cartesian product of the sets of all possible 

preference rankings with each other.) 

(

, *

i

i

)

R R

:  The preference list obtained from 

1

( , ,

)

n

R

R

R

=

 by replacing 

i

 by  *

i

.  

That is,  (

1

1

*,

, ,

)

i

i

n

, *) ( , ,

,

i

i

i

i

R R

R

+

.   (

i

i

 is called an i-

variant of 

R

R R

R

R

=

, *)

R R

Exercise 2.1: 

Prove that every preference list is an i-variant of itself.  If there are 
two agents and three outcomes, how many i-variants are there for 
any preference list, assuming only strict preferences.  Construct 
several examples of i-variants. 

i

:  A strategy (action) choice for i N

∈ . 

i

:  The set of all possible strategy choices for i N

∈ . 

1

( , , )

n

s

s

s

=

:  A strategy list, one strategy for each 

i N

∈ . 

1

n

S

S

S

= × ×

:  The set of all possible strategy lists (Cartesian product of the sets of 

all possible individual strategies with each other). 

( , *

i

i

s s

) :  The strategy list obtained from 

1

( , , )

n

s

s

s

=

1

, , )

n

s

+

 by replacing 

 by 

.  That 

is,  ( ,

.

 

i

*

i

s

1

1

i

i

i

i

i

*) ( , ,

, *,

s s

s

s

s s

=

s S

:

m S

X

S

= Π

                                                

A mechanism is a function 

 that assigns an outcome 

 to all strategy 

lists 

.  It is assumed that agents know the mechanism and their preferences.  A 

Direct Revelation Mechanism

 is a mechanism 

 for which 

.

7

  Thus, 

:

m S

X

( )

m s

 

7

 If there is indifference between distinct pairs of alternatives, this definition is easily extended. 

 

20

background image

 

a Direct Revelation mechanism will be written 

m

, and strategy choices 

reveal a preference

}

z

1

{ , }

S

t

=

1

2

)

R

∈Π

1

R

2

u

R

m u

π

=

:

X

Π →

preference game is any pair 

 consisting of a mechanism and a preference 

list. 

( , )

m R

Exercise 2.2*:  Let 

{1,2}

N

=

{ , , ,

X

x y w

=

b , and 

2

{ , }

S

l r

=

.  The 

mechanism 

m S

,is given in the following table: 

:

X

 left 

right 

top x  w 

work y 

Give preference lists 

( ,

R

R

=

 and 

1

2

( ,

)

R

R R

′ ′

=

∈Π  with 

utility representations    for 

1

u

,    for 

2

1

u for 

1

R′  and   for 

2

u

2

 from which payoff functions 

1

1

2

2

,

,

m u

1

1

m

π

π

=

=

 

and 

2

1

 such that the Prisoners’ Dilemma game is obtained 

with 

π

 and 

2

π

, and the human rights game of exercise 1.24 is 

obtained with 

1

π

′  and 

2

π

′ .  In what sense is the mechanism used in 

the Prisoners’ Dilemma game the same, and what sense is it 
different, from the mechanism used in the human rights game? 

R

u

2

m u

π

=

Strategy, 

i

s

S

i

 is a Dominant Strategy for  i N

∈  in preference game 

 if and 

only if, for all 

( , )

m R

i

i

i

 or  ( , )

i

i

s

( )

m s

m s

=

8

.  

 is a Dominant 

Strategy equilibrium

 of the preference game  (

 if and only if 

,

m R)

i

i

S

s

∈  is a 

Dominant Strategy for all i N 

s S

( , )

( )

m s s R m s

s

S

Now, consider the following example.  

{ , }

X

a b

=

 and there are two agents, 1 and 2, 

with 

 and 

.  The mechanism m is given by the following table: 

1

{ , }

S

u d

=

{ , }

S

l r

=

2

 

 

21

background image

 

 l 

u x 

d x 

Let R denote the preference list in which both 1 and 2 prefer x to y.  Then, the 

Dominant Strategy equilibrium is 

 and the Dominant Strategy equilibrium 

outcome is x.  We may write this as  e m

( , )

u l

( , ) ( , )

R

u l

=

 and 

( , )

m R

x

=

m e

(

)

More generally, we may write  e m

( , )

R

S

∈  for a Dominant Strategy equilibrium 

outcome given mechanism m and preference list R.  If there are multiple Dominant 

Strategy Equilibria, then 

 selects one of them.  Clearly, 

( ,

e m )

R

( , )

m R

m e

 denotes a 

Dominant Strategy equilibrium outcome for mechanism m and preferences list R.

9

 

(

)

It follows that 

 is a function that assigns an equilibrium strategy list to all 

preference lists in 

( , )

e m i

Π .  It will be called a Dominant Strategy equilibrium behaviour 

function

Exercise 2.3: 

Let m be the mechanism of the Prisoners’ Dilemma game.  Give 
examples of 

 such that 

 

 and  e m

( ,

)

e m R′′

=

( , )

w s

)

( ,

) ( ,

R

s w

′′′ =

, ,

R R R

′ ′′ ′′′∈ Π

( , ) ( , )

e m R

w w

′ =

                                                                                                                                            

8

 

 is only required because we do not allow indifference between distinct outcomes. 

( , )

( )

i

i

m s s

m s

=

9

 It is possible to define 

 more generally, so that it depends on customs, social norms and a 

variety of other things.  Also, Dominant Strategy equilibrium could be replaced by Nash Equilibrium. 

( , )

e m R

 

22

background image

 

Since the Dominant Strategies of a player only depend on that player’s preferences,

10

 

we can write 

 for the Dominant Strategy for i in preference game  (

.  

Therefore, e m

 can be written as follows: 

( , )

i

e m R

, )

m R

i

( , )

R

(

)

( ,

)

n

n

m R

1

1

( , )

( , ), ,

e m R

e m R

e

=

Exercise 2.4: 

Let m be the mechanism used in the Prisoners’ Dilemma game.  
Give examples of preference lists 

 and 

 such that: 

,  e m

)

s  and  e m

( ,

( , )

s w

)

R′′′

=

.  Now 

give  e m

,  e m

1

( , )

R

2

( , )

R′ ,  e m

1

( ,

)

R′′ ,  e m

2

( , )

′′

( ,

)

R′′′

,  e m

 and 

1

2

( ,

)

e m R′′′

R′ R′′

R′′′

( , ) ( , )

e m R

w w

′ =

( ,

) ( ,

R

w

′′ =

For any mechanism m, let  e m

 denote the subset of strategy lists that are 

equilibrium behaviour choices for some preference game 

( , )

Π

.  Let 

 denote the subset of outcomes 

( , )

m e m

Π

x X

∈  such that 

(

)

( ,

m e m R)

x

=

 for some 

R

∈Π . 

( , ),

m R R

∈ Π

(

)

Exercise 2.5: 

For the mechanism given by the table on page 21, give  e m

 and 

( , )

Π

(

)

( , )

m e m

Π

2.2 Strategy 

Proofness 

Let 

, and 

{1,2,3}

N

=

{ , , , }

X

w x y z

=

.  Consider the preference list  R

∈ Π  given in the 

following table: 

1

 

2

 

3

 

x y y 

y x x 

w w w 

z z z 

                                                 

10

 Recall exercises 1.18, 1.19 and 1.20. 

 

23

background image

 

Let 

m

 denote the following method suggested by Borda in 1781.  For all 

preference lists 

:

Π →

, let an outcome be given points equal to the number of 

outcomes below it in each preference in the preference list.  Then let the chosen 

outcome 

 be the one that has the highest score.  Ties are broken alphabetically. 

( )

m R

X

R

∈ Π

( )

m R

y

=

*

)

Thus, for the preference list given in the table above, the scores are as follows: y gets 

8 points, x gets 7 points, w gets 3 points and z gets 0 points.  Therefore, 

.  

Now consider the preference list 

1

1

(

,

R R

 defined in the following table: 

*

1

 

2

 

3

 

x y y 

w x x 

z w w 

y z z 

Thus, the preference list  (

,

*

1

1

)

R R

 is obtained from   by changing the ranking of 

person 1, lowering y from second to bottom.  In all other respects, the preference list 

*

)

1

1

(

,

R R

 is the same as the preference list R.  The scores obtained by the outcomes 

from preference list 

*

1

1

(

,

)

R R

*

1

1

(

R

 are: x gets 7 points, y gets 6 points, w gets 4 points and z 

gets 1 point.  Therefore,  m R

x

= . 

Thus, if person 1 thinks that 2 and 3 will express the preferences 

2

 and 

3

 as in the 

tables above, then 1 can bring about the outcome x by expressing 

*

1

 or the outcome y 

by expressing 

1

.  If 

1

 is 1’s true preference, then according to this preference, it 

would be rational, in the sense of maximising true preference, to express 

*

1

 rather 

 

24

background image

 

than 

1

.  Such strategic misrepresentation of preferences is called manipulation.  In 

this example, this is expressed more precisely by saying that person 1 can manipulate 

 at R via 

:

m

Π → X

*

1

 since 

1

xR y

Π →

 or, equivalently, 

*

)

1

1

1

(

,

)

(

m R R R m R

i

∈ N

∈ℜ

(

,

*

i

i

m R R

X

Π →

R

i

∈ N

:

i

∈ N

:

Π

Π

*

i

R

∈ℜ

More generally:  

 can Manipulate  m

 at 

:

R

∈ Π  via  *

i

R

 if and only if 

i

)

( )

R m R

Note that this definition specifies four things:  who can manipulate (person i); what 

can or cannot be manipulated (the mechanism, 

); where it can be 

manipulated (at the preference list 

 in its domain); and finally, how it can be 

manipulated (by expressing preference 

*

i

).  Roughly speaking, for  i

 to be able 

to Manipulate, he or she must be able to do two things.  First, at some preference list, 

 must be able to change the outcome.  Second, the change must be in i’s favour. 

N

:

m

∈ Π

A Direct Revelation mechanism  m

Π →

X

 is Strategy Proof if and only if there is 

no 

 that can Manipulate  m

 at any 

 via any 

X

R

Thus, for a strategy proof mechanism  :

m

X

Π →

, no one has a reason to 

misrepresent their preferences.  Nothing can be gained by revealing a false preference. 

Exercise 2.6: 

Construct an example showing that the Borda Score is not Strategy 
Proof when there are three outcomes and three individuals.  Show 
that if there are only two outcomes then, for any finite number of 
individuals, the Borda Score is Strategy Proof. 

Truthful revelation of preferences is very important in economics, particularly in 

connection with public good problems.  Later, it will become clear that its 

significance is both deeper and wider 

than this.  Before that, the question arises 

 

25

background image

 

as to whether there are any mechanisms  m

 that are Strategy Proof.  After all, 

our example shows that for three outcomes and three individuals, the Borda score is 

not Strategy Proof. 

:

X

Π →

X

2.3 

The Gibbard-Satterthwaite theorem 

There are some Strategy Proof mechanisms  :

Π →

 as the following exercises 

show. 

Exercise 2.7*:  Let 

{ , }

X

x y

=

, and let there be any finite number of individuals 

who can have any strict preference ranking of outcomes.  Consider 
the Direct Revelation mechanism that gives outcome for which there 
is a majority, with ties broken alphabetically.  Show that this 
mechanism is Strategy Proof? 

Exercise 2.8*:  Let 

{ , , }

X

x y z

=

, let there be any finite number of at least 2 

individuals, and for all 

,  m

 is the highest ranked outcome 

according to 

d

R d N

∈  (ties broken alphabetically).  Show that this 

Direct Revelation mechanism is Strategy Proof? 

R

∈Π

( )

R

,  

Exercise 2.9*:  Let 

{ , , }

X

x y z

=

, let there be any finite number of at least 2 

individuals.  Let 

 be a constant function so that there is 

an outcome  x

X

∈  such that 

 for all 

.  Show that 

this Direct Revelation mechanism is Strategy Proof? 

:

m

X

Π →

( )

m R

x

=

R

∈Π

X

From exercise 2.7, it follows that strategic misrepresentation of preferences is not 

really a problem for situations in which there are only two outcomes.  For situations in 

which there are a larger number of outcomes, exercises 2.8 and 2.9 offer somewhat 

unattractive possibilities for attaining Strategy Proofness.  In our search for Strategy 

Proof Direct Revelation mechanisms we will therefore limit our attention to others.  

This is done as follows. 

Given a mechanism, 

, an individual 

d

:

m

Π →

N

 is called a Dictator for that 

Direct Revelation mechanism if and only if, for all preference lists 

 and all 

R

∈Π

 

26

background image

 

pairs of outcomes x and y, if d strictly prefers x to y then y is not chosen.  If there is no 

Dictator for  m

 then it is said to be Non Dictatorial.  This property rules out 

the Direct Revelation mechanisms in exercise 2.8. 

( ) 3

m

Π ≥

:

X

Π →

Confining attention to Direct Revelation mechanism for which at least 3 outcomes are 

achievable (

)

11

, rules out those in exercise 2.9, since such functions cannot 

be constant. 

Exercise 2.10:  Assume there that 

d

N

 is a Dictator for the Direct Revelation 

mechanism  m :

X

d

Π →

 where there are 27 outcomes in X.  What is 

the value of 

(

d

m

)

Π

?  Let 

0

:

m

X

Π →

 be a constant function.  

What is the value of 

0

(

m

)

Π

Note that if a Direct Revelation mechanism  :

m

X

Π →

has the Weak Pareto property 

then it is not constant.  The Weak Pareto property requires that for all preference lists 

and all pairs of outcomes x and y, if everyone Strictly Prefers x to y then y is not 

chosen. 

Exercise 2.11*:  Show that, for any Direct Revelation mechanism  m

X  that 

has the Weak Pareto property, 

:

Π →

( )

m

X

Π =

Exercise 2.12:  Do all, some or no Dictatorial mechanisms have the Weak Pareto 

property? 

Thus, we are led to ask whether there are non dictatorial Strategy Proof Direct 

Revelation mechanisms that can achieve more than two outcomes?  The answer is 

“no”, as shown by the famous Gibbard-Satterthwaite theorem: 

Theorem: 

(Gibbard-Satterthwaite): Let the Direct Revelation mechanism 

:

m

X

Π →

 be such that 

( )

2

m

Π >

.  Then it is either Dictatorial or 

not Strategy Proof. 

                                                 

11

 For any set Y, |Y| denotes the number of elements in it. 

 

27

background image

 

For proofs, see Gibbard (1973) or Kelly (1987). 

Exercise 2.14:  Use a table to prove the Gibbard-Satterthwaite theorem for the case 

of 2 agents and 3 outcomes. 

Exercise 2.14:  Consider the set of all Direct Revelation mechanisms 

 

such that 

:

m

X

Π →

( )

2

m

Π >

.  Draw a Venn diagram to illustrate the 

Gibbard-Satterthwaite theorem. 

Exercise 2.15*:  Show that if X has more than two outcomes, then the only Weakly 

Paretian Strategy Proof mechanisms are Dictatorial. 

Exercise 2.16:    For the Direct Revelation mechanism given in the table below, each 

row corresponds to a strict preference ranking for person 1 and 
each column corresponds to a strict preference ranking for person 
2.  Thus, any row and column determines a strategy list of chosen, 
or revealed, preferences.  Is the mechanism constant?  Is it 
Dictatorial?  Is it Strategy Proof?  If it is not Strategy Proof, give 
full details of all cases of manipulability.  (That is, give all cases of 
who, where and how.) 

 

 






x x x x z z 

x x x x z z 


y y y y z z 

y y y y z z 


z z z z z z 


z z z z z z 

 

 

28

background image

 

Exercise 2.17:   Given three outcomes and two individuals, make your own tables 

like the one in exercise 2.16 that give a Non Dictatorial Direct 
Revelation mechanism without the Weak Pareto property.  Then do 
a table for one that has the Weak Pareto property but not the 
Strategy Proofness property. Now make a table for one that does not 
have the Non Dictatorship property.  Does it have the Weak Pareto 
property? 

Exercise 2.18:  Let there be 2 individuals and three alternatives and consider a 

Direct Revelation mechanism in which all strict preference rankings 
are possible strategies.  Using a table, give a mechanism for which 
both of the following are true: (i) Any outcome ranked top by both 
preferences is the outcome chosen for that list, and (ii) the Weak 
Pareto property is violated. 

Exercise 2.19*:  Using the Direct Revelation mechanism given in the table in 

exercise 2.16, for each true preference that 1 could have, is 
truthfully revealing that preference a best reply to all preferences 
that 2 could reveal?  For each true preference that 2 could have, is 
truthfully revealing that preference a best reply to all preferences 
that 1 could reveal? 

Exercise 2.20:  Assume that there are only 2 individuals and 2 outcomes, use a 

table to give a Direct Revelation mechanism such that, for all true 
preferences that either person could have, expressing true 
preference is a best reply to all preferences that the other might 
choose. 

2.4 

A Game Theoretic version of the Gibbard-Satterthwaite theorem 

The Gibbard-Satterthwaite theorem as presented above, is a theorem about the 

properties of Direct Revelation mechanisms.  Preference games played no explicit 

role.  However, the exercises 1.26 and 2.16 strongly suggest that the Gibbard-

Satterthwaite theorem may be closely related to game theory.  In fact, the theorem can 

be equivalently presented using (preference) games. 

Consider a preference game in which individuals have (true) preferences 

 and in which the mechanism is a Direct Revelation 

mechanism, 

.  Recall that   is a Dominant Strategy for  i

 if and 

only if it is a best reply to all the preferences that others could choose from their 

N

1

( , , , ,

)

i

k

R

R

R

R

=

∈Π

:

m

X

Π →

i

R

 

29

background image

 

strategy sets.  This implies that, for all 

, either 

 or 

(

, )

( )

i

i

m R R

m R

=

.  For such a preference game, a strategy list of chosen preferences 

is a Dominant Strategy Equilibrium if and only if every chosen preference in the 

list is a dominant strategy. 

( , )

m R

R

∈Π

(

, )

( )

i

i

i

m R R R m R

For a Direct Revelation mechanism m, and a preference game 

, if R is a 

Dominant Strategy equilibrium then rational choice may be said to reveal preferences 

truthfully.  While desirable, the possibilities for this are very limited, as the following 

important result shows. 

Theorem: 

(Gibbard-Satterthwaite game theoretic theorem):  Let 

 be a 

non Dictatorial Direct Revelation mechanism and let  e m  be a 
Dominant Strategy equilibrium behaviour function.  If 

, then 

≠  for some 

:

m

X

Π →

( , )

i

(

)

( , )

2

m e m

Π >

( , )

e m R

R

R

∈Π

Π

Exercise 2.21:   Deduce this theorem from the earlier statement of the Gibbard-

Satterthwaite theorem. 

Thus, given Dominant Strategy equilibria, either there is a Dictator or only 2 

outcomes are achievable.  Of course, this only tells us about Direct Revelation 

mechanisms, and these are very special cases of the general mechanisms that are 

much more common in practice. 

Exercise 2.22:  In the Gibbard-Satterthwaite theorem, individuals may have any 

possible preference ranking of the outcomes since the domain of the 
mechanism is 

Π .  Can you find an “escape” from the Gibbard-

Satterthwaite impossibility result by restricting the domain   of the 
mechanism to some proper subset of 

Π 

Exercise 2.23:  Consider a situation in which there are two agents, 1 and 2, and 

three outcomes, x, y and z.  For all preference lists, if 1 and 2 have 
the same top ranked outcome, then assign this to that list.  If they 
have different top ranked outcomes then assign the  top ranked 
outcome that is alphabetically prior.  Is this Direct Revelation 
mechanism Strategy Proof?  If it is not Strategy Proof, show how it 
can be manipulated. 

 

30

background image

 

3 General 

Mechanisms 

Direct Revelation mechanisms are very special cases of general mechanisms.  

However, from any general mechanism, a Direct Revelation mechanism can be 

derived in a specific way.  The derived Direct Revelation mechanism is, in a precise 

sense, equivalent to the general mechanism from which it was derived.  Because of 

this, properties of general mechanisms can be obtained by analysing the much simpler 

derived Direct Revelation mechanism.  Furthermore, given dominant strategy 

behaviour, it can be shown that in all preference games using the derived Direct 

Revelation mechanism, a strategy choice revealing true preference is a dominant 

strategy.  This has the major advantage that we do not need to worry about strategic 

misrepresentation of preferences in these cases. 

All this is shown in a useful and elegant result called the Revelation Principle.  The 

ideas will be developed gradually with the help of an example. 

3.1 MIFA 

Example 

MIFA, the Ministry for Interfering in Family Affairs, is responsible for divorce law.  

That is, it must design a mechanism in which the actions of partners determine 

whether they get a divorce or stay married.  The MIFA example may also be easily 

adapted for terminating other relationships such as business partnerships and 

agreements between cities, regions or governments. 

Consider individuals, 1 and 2, who can either stay married for which we write 

σ , 

(think of this as the status quo), or they can divorce, 

δ , which terminates the 

relationship.  Thus, the set of outcomes is 

.  There are only two preferences 

{ , }

X

σ δ

=

 

31

background image

 

that 1 and 2 can have.  For the preference ranking 

σ  is strictly preferred to δ  

and for the preference ranking 

δ  is strictly preferred to σ .  Thus, there are four 

lists in  :   (

 and  (

,

R R

δ

σ

c

R

σ

R

δ

Π

,

)

R R

σ

σ

(

,

)

R R

δ

δ

(

,

)

R R

σ

δ

)

Remembering that in the status quo they are married, if they want to divorce they can 

go to court and c will denote this strategy.  Of course, if they want to stay married, 

they would not go to court and 

 will denote this strategy.  Thus, the sets of 

possible strategies for 1 and 2 are 

 and 

.  It is assumed that 

only dominant strategies are chosen. 

( , )

m R

1

{ ,~ }

S

c

c

=

2

{ ,~ }

S

c

c

=

Recall the following.  For any general mechanism 

 and preference list 

, there is a preference game 

.  For each such preference game,  e m

 is 

a Dominant Strategy Equilibrium and 

 is a Dominant Strategy equilibrium 

outcome of that preference game.  Now, consider  ˆ

( ,

m m e m

=

i

m

X

( , )

e m i

( , )

m m e m

, the composition of 

 and 

.  See figure 3.1.   

:

Π →

ˆ

m

e m

:

m S

X

R

∈Π

( , )

R

(

)

( , )

m e m R

)

Exercise 3.1: 

What is the domain, codomain and range of 

ˆ

=

i

ˆ

m

Π

( , )

i

figure 3.1

For any general mechanism m, the Direct Revelation mechanism   will be 

called the derived Direct Revelation mechanism.  It is derived from the 

General Mechanism m and the Dominant Strategy equilibrium behaviour 

 

32

background image

 

function e m

.  Many preference games  ( ,

 can be obtained using  , 

one for every 

R

∈ Π

( , )

ˆ

)

m R

ˆ

m

R

∈ Π

Exercise 3.2: 

Give a mechanism m for the MIFA problem such that, for some 

,  e

 is not Pareto Optimal. 

R

∈ Π

( , )

m R

Exercise 3.3: 

Give a mechanism m for the MIFA problem such that, for all 

m e

 is the top ranked outcome for agent 1. 

(

,

)

R

R R

σ

σ

( ,

=

(

)

( , )

m R

(

)

Exercise 3.4: 

Give a mechanism m for the MIFA problem such that 

 

= 1.  For this mechanism, give a preference list 

 such that 

 is not Pareto Optimal. 

X

( , )

m e m

Π

R

∈ Π

( , )

e m R

Exercise 3.5: 

Give a mechanism m for the MIFA problem such that for 

,  e m

σ

σ

)

i

R

R

δ

=

:

m

Exercise 3.6*:  (i) Consider the “Vatican mechanism” 

, defined by the 

following table. 

Π →

c

 

 

c 

 

 

 

σ  

σ  

R

c

 

(ii) For which preference lists is 

m e

 Pareto Optimal? 

(

)

( , )

m R

ˆ

( , )

e m

=

i

 (iii) 

Give 

m m

, and show that 

m e

 for all 

c

(

)

ˆ

( , )

( )

m R

m R

=

∈Π

ˆ

( , )

e m R

R

 

(iv) Show that 

 for all 

σ

R

∈Π

:

m

X

Π →

Exercise 3.7*:  For the MIFA example, consider the mechanism 

 given 

by the following table. 

 

 

δ  

 

 

σ  

σ  

c

 

 

33

background image

 

In the next table, the first column gives all the preference lists.  In the 
second column, fill in the Dominant Strategy equilibria.  In the third 
column, fill in the Dominant Strategy equilibrium outcomes.  Are all 
the entries in the third column Pareto Optimal for the preference lists 
in the same row? 

Π

( , )

e m i

(

)

( , )

m e m i

(

,

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R R

σ

σ

(

,

)

R R

δ

δ

(

,

)

R R

σ

δ

(

,

)

R R

δ

σ

 

Fill in columns 2 and 3 of the following table. 

Π

ˆ

( , )

e m i

(

)

ˆ

ˆ

( , )

m e m i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

,

)

R R

σ

σ

(

,

)

R R

δ

δ

(

,

)

R R

σ

δ

(

,

)

R R

δ

σ

 

Compare the third columns in the previous two tables and discuss 
the relationship between the two..  Compare the first two columns of 
the previous table and discuss the relationship between the two. 

 

34

background image

 

Exercise 3.8: 

For the MIFA problem, consider the Direct Revelation mechanism 

 given by the following table. 

m

 

 

 

 

σ  

δ  

 

 

δ  

R

σ

R

δ

R

σ

δ

ˆ

ˆ

m m

= =

R

δ

 

Give two general mechanisms m and 

m

 such that 

 and 

m m

m

:

m S

X

( , )

e m i

3.2 

The Revelation Principle 

Some of the exercises in the previous section show how a General Mechanism and the 

Derived Direct Revelation mechanism are related in the MIFA example.  We saw that 

telling the truth is a Dominant Strategy equilibrium for all preference games using the 

Derived Direct Revelation mechanism.  The following result shows that this is not just 

a peculiar feature of the MIFA example. 

Theorem:

 (Revelation 

Principle):  For all mechanisms 

, Dominant 

Strategy equilibrium behaviour functions 

 and all preference 

lists 

.

12

 

∈ Π

ˆ

( ,

e m

R

)

R

R

=

The relationship between general mechanisms and Derived Direct Revelation 

mechanisms is illustrated in figure 3.2. 

The arrow going northeast from 

Π

13

 to 

 illustrates that truth-telling is a 

Dominant Strategy equilibrium as given by the Revelation Principle.  It is shown as 

the identity function since any true preference at the beginning of the arrow is also 

revealed by the Dominant Strategy equilibrium choice at the end of the arrow.  Also, 

ˆ= Π

                                                 

( , )

e m i

12

 That is, 

 is the identity function on 

Π

 

35

background image

 

going from left to right, the composition of the two top arrows is the same function as 

the composition of the two bottom arrows.  In this precise sense, which may be called 

Outcome Determination Equivalence

, a general mechanism and its Derived Direct 

Revelation mechanism are equivalent. 

X

( , )

e m i

S

m

Π

ˆ

( , )

e m

id

Π

=

i

ˆ= Π

ˆ

m

 

figure 3.2

Exercise 3.9*:  Prove the Revelation Principle.  (Don’t be afraid.  It is very easy.  

You will need to use the definition of Dominant Strategy 
equilibrium.  See Gibbard (1973) and Kreps (1990, pages 712-713). 

Exercise 3.10:  Let m and R be the mechanism and preference list that is used in the 

Prisoners’ Dilemma.  Give 

 and 

ˆ ( )

m R

ˆ

e m

( , R)

(

)

ˆ

ˆ

( , )

m R

( , )

e m R

R

                                                                                                                                           

m e

Exercise 3.11:  Consider a situation in which there are two agents, 1 and 2, and 

three outcomes, x, y and z.  Each agent must suggest an outcome, 
and the outcome determined by the mechanism m is the most 
popular suggestion with ties broken 
alphabetically.  Is it always a 
Dominant Strategy for agents to suggest their most preferred 
outcome?  Give the derived Direct Revelation mechanism for this 
general mechanism.  Give a preference list R such that 

Exercise 3.12 

Consider the mechanism and preferences for the human rights game 
of exercise 1.24.  There are four Dominant Strategy Equilibria.  
Does it matter which one is used in the Revelation Principle? 

 

13

 The Revelation Principle still holds even if preference lists include preferences in which there is 

indifference between distinct outcomes. 

 

36

background image

 

3.3 General 

Outcome 

Determination 

At this point, we know something about Direct Revelation mechanisms (Gibbard-

Satterthwaite theorem), we know how to get a Direct Revelation mechanism from a 

general mechanism (composition), we know something about the Derived Direct 

Revelation mechanism and how it is related to the general mechanism from which it 

was derived (Revelation Principle).  But we know little about general mechanisms.  

For this, we need GOD. 

Group Outcome Determination

 (GOD) is a pair 

(

)

, ( , )

m e m i

( ,

e m

 consisting of a 

mechanism and a Dominant Strategy equilibrium behaviour function.  The 

terminology GOD is appropriate since, given any mechanism and any equilibrium 

behaviour function, an outcome is determined.  However, both items in GOD, 

m

 and 

, are required for outcome determination.  Either one by itself is not sufficient. 

)

i

d N

,

x y X

d

xR y

(

)

( , )

m e m R

y

(

)

, ( , )

m e m i

ˆ

( , )

e m

=

i

GOD is Dictatorial if and only if there is an individual 

 such that, for all 

 and all 

 implies 

R

∈Π

Exercise 3.13:  Prove the following.  If GOD 

 is Dictatorial then the 

Direct Revelation mechanism  m m

 is Dictatorial. 

We now have all we need.  It is time to put it all together to establish something 

important about general mechanisms. 

Theorem

(Dictatorial GOD).  Let 

 be a mechanism and 

 be a 

Dominant Strategy equilibrium behaviour function such that 

.  Then the GOD 

 is Dictatorial. 

( , )

e m i

:

m S

X

(

)

( , )

2

m e m

Π >

(

)

, ( , )

m e m i

Exercise 3.14:  Prove the previous theorem.  (Hint: Use the Revelation Principle 

and then use the Gibbard-Satterthwaite theorem on the Derived 
Direct Revelation mechanism.  Finally, show that if the Derived 
Direct Revelation mechanism is Dictatorial then so is GOD using 

 

37

background image

 

the general mechanism.) 

Exercise 3.15:  Let 

, let 

 and let m be the mechanism used 

in the Prisoners’ Dilemma.  Is GOD 

(

)

, ( , )

m e m i

(

)

 Dictatorial?  Is 

?  Explain why this is not a counter example to the 

equation above. 

{1,2}

N

=

{ , , , }

X

a b c d

=

( , )

2

m e m

Π >

Exercise 3.16:  Discuss the significance of the previous theorem. 

 

38

background image

 

Appendix:

 Summary 

Notation 

{1, , },

N

n

= …

{ , , }

X

x y

=

,

i

1

n

> :  Finite set of agents. 

:  Finite set of at least 2 outcomes. 

R i N

N

:  Preference ranking of  i

∈ ;  (a ranking of outcomes such that every pair 

of outcomes is transitively ranked with no indifference). 

1

( , ,

)

n

:  The set of all preference rankings. 

R

R

R

=

n

Π = ℜ

(

, *)

i

i

:  A list of preference rankings, one for each agent. 

:  The set of all preference lists (Cartesian product of the sets of all possible 

preference rankings with each other.) 

R R

1

( , ,

)

n

:  The preference list obtained from 

 by replacing   by 

.  

That is,  (

R

R

R

=

i

*

i

R

1

1

, *) ( , ,

, *,

, ,

)

i

i

i

i

i

i

n

R R

R

R

R R

R

+

=

i

:  A strategy (action) choice for i N

∈ . 

i

:  The set of all possible strategy choices for i N

∈ . 

1

( , , )

n

s

s

s

=

i N

:  A strategy list, one strategy for each 

∈ . 

1

n

S

S

S

= × ×

:  The set of all possible strategy lists (Cartesian product of the sets of 

all possible individual strategies with each other). 

 

39

background image

 

( , *)

i

i

s s

1

( , , )

n

s

s

s

:  The strategy list obtained from 

 by replacing   by 

.  That 

is,  ( ,

. 

=

i

*

i

s

1

1

1

*) ( , ,

, *,

, , )

i

i

i

i

i

n

s s

s

s

s s

s

+

=

Definitions 

1. A mechanism is a function 

 that assigns an outcome 

 to all 

preference lists 

:

m S

X

( )

m s

s S

:

X

2. A mechanism 

m S

 is a Direct Revelation mechanism if and only if 

S

= Π

3.  A preference game is a pair  (

 consisting of a mechanism 

 and 

a preference list 

, )

m R

:

m S

X

R

∈ Π

4. Strategy, s

∈  is a Dominant Strategy for i

 in preference game  (

 

if and only if, for all 

 or  m s

=

i

i

S

N

, )

m R

s S

( , )

( )

i

i

i

m s s R m s

( , )

( )

i

i

s

m s

5. 

 is a Dominant Strategy equilibrium of the preference game 

 if 

and only if 

 is a Dominant Strategy for all i N 

s

,

m R

i

i

s

S

S

(

)

6.  For all mechanisms 

, a Dominant Strategy equilibrium Behaviour 

function is a function  e m

 that assigns a Dominant Strategy 

equilibrium, 

, to all preference lists 

:

m S

X

( , ) :

S

Π →

i

( , )

e m R

S

R

∈ Π

( , )

m R

( , )

R

)

)

R

7.  For all preference games 

 with Dominant Strategy equilibrium  e m

 is a Dominant Strategy equilibrium outcome. 

(

( ,

m e m

8.  For any mechanism me m

 is the subset of strategy lists that are 

( , )

Π

 

40

background image

 

equilibrium behaviour choices for some preference game 

( ,

m R R

m e

),

∈ Π

(

)

( , )

m

Π

x X

( ,

m

x

=

9. 

 is the subset of outcomes 

 such that 

 for 

some 

.  

 is the number of outcomes in 

(

)

)

m e

R

R

∈Π

(

)

( , )

m e m

Π

(

)

( , )

m e m

Π

N

10.  i

 can Manipulate 

 at 

 via 

 if and only if 

:

m

X

Π →

R

( )

m R

∈ Π

*

i

R

∈ℜ

(

, *)

i

i

i

m R R R

:

X

11. A Direct Revelation mechanism  m

 is Strategy Proof if and only if 

there is no  i

 that can Manipulate  m

 at any 

 via any 

Π →

N

:

X

Π →

R

∈ Π

*

i

R

∈ℜ

:

X

12. A Direct Revelation mechanism  m

 is not Dictatorial if and only if, 

there is no  i

 such that, for all 

 and all 

 implies 

Π →

N

R

∈ Π

,

x y X

y

i

xP y

( )

m R

:

X

13. A Direct Revelation mechanism  m

 has the Weak Pareto property if 

and only if, for all 

 and all 

 for all  i

∈  implies 

Π →

R

∈ Π

,

x y X

i

xP y

N

( )

m R

y

( , )

i

14. For a mechanism 

 and a Dominant Strategy equilibrium behaviour 

function e m , the Derived Direct Revelation mechanism 

 is 

the composition of 

m S

 and  e m .  Therefore, 

 

for all 

:

m S

X

ˆ

( , )

m m e m

=

i

:

X

( , )

i

(

)

ˆ ( )

( , )

m R

m e m R

=

R

∈ Π

15. Group Outcome Determination (GOD) is a pair 

(

)

, ( , )

m e m i

 consisting of a 

 

41

background image

 

mechanism and a Dominant Strategy equilibrium behaviour function. 

( , )

e m i

16. GOD 

 is Dictatorial if and only if there is a 

 such that, for all 

 and all 

 implies 

(

, (

m e

R

∈ Π

i

(

)

( , )

m R

y

m e

)

, )

i

d

N

( ,

m R

)

)

n

n

m R

X

( )

2

m

Π >

:

m S

X

)

,

x y X

xP y

Results 

Preliminary remark:  The Dominant Strategy of  i

 in preference game 

 may 

be written  e m

 and 

N

)

( , ),

i

i

R

(

1

1

2

, ), ( ,

m R e m

:

m

Π →

( )

2

m

Π >

:

Π

2

( , )

(

), , ( ,

e m R

e

R

e

=

X

Theorem 

(Gibbard-Satterthwaite):  For all Direct Revelation mechanisms 

 such that 

m

 is Strategy Proof if 

and only if it is Dictatorial. 

X

Proof 

Gibbard (1973) or Kelly (1987). 

Corollary If 

X has at least three outcomes, then a Weakly Paretian Direct 

Revelation mechanism 

 is Strategy Proof if and only if it 

is Dictatorial. 

:

m

Π →

Proof: 

This follows from the Gibbard-Satterthwaite theorem and the fact 

that the Weak Pareto property implies that 

 if there are at 

least 3 outcomes. 

Theorem (Revelation 

Principle):  For all mechanisms 

, Dominant 

Strategy equilibrium behaviour functions 

 and all preference 

lists 

= .  (That is, 

 is the identity function 

on 

Π .) 

(

e m,i

R

∈ Π

ˆ

( , )

e m R

R

 

42

background image

 

Proof:  (See Kreps (1990) and Gibbard (1973). 

Theorem 

(Dictatorial GOD).  If 

 is a mechanism and 

 is a 

Dominant Strategy equilibrium behaviour function such that 

, then GOD 

 is Dictatorial. 

:

m S

X

( , )

e m i

(

)

( ,

m e m

)

Π

2

>

(

)

, ( , )

m e m i

 

 

43

background image

 

References 

Baigent, N., (2003a): “Mechanism Design: A quick tour”, Institute of Public 
Economics, Graz University. 

Gibbard, A., (1973): “Manipulation of Voting Schemes: A General Result”, 
Econometrica, 41, 587-602. 

Hülsmann, J.: W. Gamerith, U. Leopold-Wildburger and W. Steindl, (1998): 
“Einführung in die Wirtschaftsmathematik, Springer, chapter 1. 

Kelly, Jerry S., (1987): Social Choice Theory: An Introduction; Berlin; Springer 
Verlag. 

Kreps, D.M., (1990): “A Course in Microeconomic Theory”, Harvester Wheatsheaf, 
New York; pages 712-713. 

Stewart, I. and D. Tall (1977): “The Foundations of Mathematics”, Oxford University 
Press, chapters 3, 5 and 6 (pages 113-116). 

 

44


Document Outline