background image

 

 

Design and construction of a three-phase transformer for a 1 kW multi-level 

converter

 

Nancy Mondragón-Escamilla, Alejandro Villarruel-Parra, Ismael Araujo-Vargas, Juan Carlos 

Sánchez-García 

Email:

naytsu10@hotmail.com

,

alexvip_22@hotmail.com

School of Mechanical and Electrical Engineering, Postgraduate Section, SEPI-ESIME Culhuacan, National Polytechnic 

Institute of Mexico, Av. Santa Ana No. 1000, Col. San Francisco Culhuacan, Del. Coyoacan, D.F. 

 

Abstract

Figure 1. Block diagram of the multi-level 

converter.

This paper describes the techniques used to design a 
three-phase transformer which is a fundamental 
component of a 1 kW multi-level inverter.  The 
transformer interconnects the outputs of two 6-pulse 
inverters to produce 12-pulse voltage waveforms at the 
output. The transformer transfers half of the throughput 
power to the inverter output.  The design and construction 
of a 500 VA three-phase transformer for a 1kW inverter is 
presented in this paper together with the practical issues 
and considerations to build a transformer prototype. 
 
 

1. Introduction

1

 
  Inverters have been significant power converters for the 
development of modern electric transportation systems; 
however, high harmonic components generated by 6-
pulse inverters can modify the load behaviour.  Several 
strategies have been studied to obtain sinusoidal voltage 
waveforms. For example, one method to diminish the 
harmonic output content of standard 6-pulse inverters is 
using PWM, multi-pulse and/or PWM multi-level 
techniques. 
  Multi-pulse techniques were original developed for AC-
DC converters.  These normally consist of arrangements 
of 6-pulse converters interconnected in series or parallel 
by three-phase transformers, reactors and/or capacitors at 
the input or output of the converters. 
  A  variant  of  multi-pulse inverter has been visualised 
from the work reported in [1], which may be operated as 
12, 24-pulse or even PWM multi-level inverter.  To study 
this variant of multi-pulse inverter and build a preliminary 
prototype, a three-phase transformer design is required. 
  This paper presents the design and construction of the 
three-phase transformer of the converter shown in Fig. 1, 
which is part of a new generation of power inverters. The 

                                                 

  This work was financially supported by the National Council of 
Science and Technology (CONACyT), under the repatriation project 
number 75648, and the National Polytechnic Institute (IPN) of Mexico, 
under the project number SIP-20082849. 

 

techniques used to design and select the transformer 
components are described together with the design results 
obtained to build a 500 VA transformer for a 1kW 
converter. 
 

1. Multi-level  converter description 

 
 

 

The 12-pulse inverter shown in Fig. 1, which is 

composed of a DC rail, two capacitors connected in series 
to filter the supply current and two 6-pulse three-phase 
converters connected in series. The converters outputs are 
connected to a delta-star transformer of  3 :1  turns-ratio, 
and the star winding terminals are passed through a filter 
stage before the load connection. 
  The transistors of each converter are operated in such a 
way that the voltage waveforms v

R1G

v

Y1G

v

B1G

v

R2G

 and 

v

B2G

 

are like those shown in Fig. 2, where v

R1G

,  v

Y1G

 and 

v

B1G

 

are the outputs of converter 1 and, v

R2G

 and v

B2G

 are 

the outputs of converter 2. v

R1N

 is obtained subtracting the 

common mode voltage of the converter, such that: 
 

 

1

1

1

1

2

3

2

R N

R G

Y G

B

v

v

v

v

 

G

 (1) 

 
  The voltage waveform at the transformer primary, v

Rprim

is obtained subtracting the voltages v

R2G

 and v

B2G

 at the 

inputs of the delta windings, and therefore, the voltage at 
the secondary winding, v

Rsec

,

 

is: 

 

 

2009 International Conference on Electrical, Communications, and Computers

978-0-7695-3587-6/09 $25.00 © 2009 IEEE
DOI 10.1109/CONIELECOMP.2009.23

74

background image

 

 

 

Figure 3. Mechanical diagram of the transformer. 

 

sec

1

2

1

3

R

R N

B N

v

v

v

 

 (2) 

 
  The  12-pulse  converter  reported in [2] produces 
waveforms as those shown in Fig. 2 by the natural 
switching of diodes. In contrast, the converter shown in 
Fig. 1 produces the same waveforms but switching 
transistors by an external control stage. 
  In Fig. 2 v

R1G

,  v

Y1G

 and v

B1G

 have a negative semi-cycle 

of magnitude V

S

/2; in contrast, v

R2G

 and v

B2G

 have a 

positive semi-cycle and are phase-shifted by /6 
respective to converter 1.  The last waveform in Fig. 2 
shows the phase voltage  v

RN

, which is a 12-pulse wave 

obtained by adding v

Rsec

 and

 

v

R1N

. The duration of each 

pulse of v

RN

 is /6 due to the transistor switching period of 

each converter. 
  The  waveform  v

Rsec

 is useful to begin the design of the 

transformer and calculate the maximum core flux density. 
This is described in the following section. 
 

3. Analysis of voltage and flux density 
waveforms of the transformer 

 
  The analysis of the core flux is described assuming that 
the three windings have equal core dimensions, as shown 

in the mechanical diagram of Fig. 3, and the total flux in 
the core produced by the three phases may be expressed 
as: 

 

Figure 2. Ideal waveforms of the converter.

 
 

0

I I I

 

 

R

Y

B

 (3) 

 
where the amplitudes and waves of 

I

R

I

Y

, and 

I

B

, are 

equal, but phase-shitted by 120°.  The magnetic flux 
produced by the voltage impressed across the transformer 
delta windings may be calculated using the Faraday’s law:

 

 

 

sec

1

I

 

³

R

R

s

v

dt

N

 (4) 

 
where N

s

 is the number of turns of the secondary winding 

and v

Rsec

 is given in Eq. (2). 

  A  flux  core  density,  B

c

, can be assumed uniform 

throughout the cross sectional area, A

c

, such that B

c

 is 

proportional to the flux density, 

I

R

 

 
 

I

  %

R

c

c

A

 (5) 

 
and hence, Eq. (4) and (5) may be used to calculate B

c

 as 

follows: 
 

 

sec

1

c

R

s

c

B

v

N A

 

³

dt

 (6) 

 
  Fig. 4 shows the ideal waveform of B

c

 obtained with Eq. 

(6). This waveform has negative and positive slopes 
produced by the respective negative and positive steps of 
v

Rsec

, and the constant periods of B

c

 are obtained when the 

steps of v

Rsec

 are zero.  The amplitude of B

c

,  B

pk

, can be 

deduced geometrically from Eq. (6) and Fig. 4, such that: 
 

 

12 3

s

pk

s

c

o

V

B

N A f

 

 (7) 

 

 

75

background image

 

 

 

where f

o

 is the fundamental frequency output and V

s

 is the 

supply voltage of the converter.  The product N

s

A

c

 of Eq. 

(6) may be arranged in terms of Vsf

o 

and B

pk

 

 

12 3

s

s

c

pk

o

V

N A

B f

 

  

(8) 

 
where  N

s

A

c

 should be constant to keep the flux density 

below the saturation level of the core material under a 
fixed ratio of Vs/f

0

.  In this way, Eq. (8) is utilized to 

obtain the number of turns for the primary and secondary 
windings by choosing A

c

 from the manufacturer core 

datasheets. 
 

4. Power loss evaluation 

 
  Part of the power that is transferred from the primary to 
the secondary of the transformer is lost in form of heat 
due to the core excitation, Eddy currents in the core and 
copper resistance of the windings, [4]. These losses 
depend on the voltage and currents applied to the 
transformer windings.  For example, 

I

R

 is produced from 

v

Rsec

, Eqs. (5) and (6), and the core reluctance will 

produce an electro-motive force (emf), 

F=

I

R

R

c

, such that 

the back-emf of the secondary windings is not equal to 
that of the primary, since:  
 
 

p

p p

s s

R

N i

N i

c

I

 

 

F

R  (9) 

 
where  N

P

 i

P

 is the back-emf of the primary, and  

I

R

R

c

 is 

the back-emf equivalent to the excitation and heat 
disipated in the core; whereas a small resistance may be 
considered for the windings since these are formed by 
several meters of copper wire.  The copper loss is 

therefore an important issue for the transformer design, 
since: 

 

 

Figure 4. Ideal flux density waveform of the 

transformer core. 

 

Figure 5. Mechanical diagram of one winding 

inside the E core. 

 

2

1

cu

R

cu

P

i R

 

 (10) 

 
 

 

Several transformer design methods have been 

developed based on Eq. (8) in order to choose the 
appropriated core dimensions and wire diameters for the 
windings.  For example, a transformer design with 
maximum efficiency is described in [3], which equates 
the copper and core losses, P

cu

 = P

c

; whilst in [4], an 

optimization method to reduce the total losses, P

T

 = P

c

 + 

P

cu

, is described assuming that the flux density amplitude 

is below the saturation level. 
  Following the techniques given in [3] and [4], an 
iterative method is described below to determine the 
optimum number of turns for the windings and the core 
size. 
 

5. Determination of the optimum parameters 
for the transformer components 

 
  A 3% Si, 97% Fe wound E core was selected since this 
type of core can be built with thinner strip widths in 
contrast to laminated cores.  Furthermore, three-phase 
transformers can be easily designed over wound E cores 
because all the core limbs are equal in dimension; 
however, wound E cores tend to be noisy due to the 
contact of their half faces, [5], as shown in Fig. 3. 
  Firstly, the number of turns and wire gauge for primary 
and secondary windings, W

gp

 and W

gs

 respectively, may 

be determined considering the available core window area 
W

A

, the current density J and losses of the copper, and the 

bobbin former dimensions.  In order to determine these 
parameters,  N

p

 and N

s

 may be first calculated using Eq. 

(7), ranging the value of A

c

 from the manufacturer core 

datasheet and fixing B

pk

 below the core flux density 

saturation level, B

SAT

.  Once obtained N

p

 and N

s

W

gp

 and 

W

gs

 are selected in such a way that J should be lower than 

5 A/mm

2

, [6], otherwise the temperature of the copper 

wire will be high and the copper insulation could melt. 

 

 

76

background image

 

 

Table 1. Transformer ratings 

Total Power 

1 kW 

Output Voltage 

127 V

rms

±15%

Output Frequency 

60 Hz 

Turns-Ratio 

3 :1

Phase Current (

I

R1

)

3.9321 A 

Maximum Flux Density (

B

pk

)

1.5 T

Next Core Type

Transformer Design

Next Wire Gauge

NWPT ++

End of

Core Types?

End of

Wire Gauges?

2

2

5 A/mm

5 A/mm

p

s

J
J

2

A

P

s

W

A

A

?   &  

?

p

s

N

N

?

T

P

End

Yes

No

Yes

No

No

No

Yes

Yes

 

 

Figure 6. Flux diagram of the transformer design 

strategy. 

Table 2. Transformer winding parameters 

Core Type 

3Q6

N

p

278

N

s

481

NWPT

p

2

NWPT

s

1

Total layers per winding 

12

Total power losses 

34.27 W 

  One  strategy  to  reduce  J is by using multiple wires per 
turn of the same gauge such that the total copper area is 
increased; this is a solution to the current density 
constraint of 5 A/mm

2

.  The number of wires per turn for 

the primary and secondary windings is referred as NWPT

p

 

and NWPT

s

 respectively. 

  Secondly, the winding dimensions are estimated to 
verify that these fit into W

A

 using the calculated values of 

N

p

N

s

NWPT

p

NWPT

s

W

gp

 and W

gs

.  The thickness of an 

inter-layer thermal insulator and the dimensions of a 
bobbin former are also considered in the calculation of the 
winding dimension since these reduce the available 
window area for the windings.  This is shown in Fig. 5 
where the bobbin former thickness and the primary and 
secondary windings areas, A

p

 and A

s

 respectively, are 

indicated.  If the total winding area, A

T

  = A

p

 + A

s

, is 

higher than W

A

 the wire gauge need to be selected again 

until  A

T

 fits into W

A

.  These areas are shown in the 

mechanical diagram of Fig. 5. 
  Once the windings fit into the core, P

T

 is estimated 

calculating  P

c

 and P

cu

.  P

c

 is obtained from the 

performance curves of the manufacturer core datasheets 
for a fixed value of B

pk

, and P

cu

 is calculated as follows: 

 

 

sec

3

3

cu

prim

P

P

P

 

 (11) 

 
where  P

prim

 and P

sec

 are the primary and secondary 

winding copper losses which may be obtained using Eq. 
(10). 
  Finally, the above procedure is iteratively repeated for a 
core type range and different wire gauges, and is 
illustrated in the block diagram shown in Fig. 6.  In this 
way, minimal values of P

T

 are gathered from the results 

and the core size and wire gauges are therefore selected. 
 

6. Design Results 

 
  A three-phase transformer for the converter shown in 
Fig. 1 was designed using a spreadsheet and the 
description given above.  The transformer ratings used for 
this design are listed in Table 1. 
  The core size was ranged from 3Q1 to 3Q12 using the 
Wiltan datasheet specification for wound E cores, [7].  In 
the same way, the wire gauge was ranged from 15 to 27 
using the American Wire Gauge standard.  The 
spreadsheet showed that the optimum core size were 
between 3Q6 and 3Q7; whereas the appropriate wire 
gauges were between 19 and 25.  Minimal total power 
losses were obtained in these ranges assuming that J and 
the winding size were below the maximum values.   
  Figs. 7(a) and 7(b) show in bar charts the power losses 
obtained in the spreadsheet for the cores 3Q6 and 3Q7 
respectively, with combinations of W

gp

,  W

gs

,  NWPT

P

 and 

NWPT

s

.  Fig. 7(a) shows that minimal values of P

T

 are 

obtained for combinations (I) and (II), 34.27 W and 34.31 
W respectively; whilst in Fig. 7(b) combinations (VIII) 
and (XI) produce the lowest power losses, 22.27 W and 
22.65 W respectively. 
  The figures show that the lowest power loss is obtained 
using a 3Q7 core with combination (VIII); however, the 
transformer dimensions for this result are greater than the 
results obtained with the 3Q6 core and, therefore, a 3Q6 
core with combination (I) was chosen to build the 

 

 

77

background image

 

 

transformer.  Table 2 shows the winding construction 
parameters with a 3Q6 core and combination (I). 
  The windings were built using an academic winding 
machine.  NOMEX paper, [8], was used as interlayer 
thermal insulator and a small gap between the windings 
was considered for cooling purposes along their 
construction.  Fig. 8 shows a photograph of the 
constructed transformer. 
 

7. Conclusion 

 
  A three-phase transformer design for a new generation 
multi-pulse inverter was presented in this paper.  The 
design was focused to obtain minimal power losses and 
was performed using an iterative process of component 
selection. 
  The  transformer  core  and winding characteristics were 
obtained from several combinations of core and wire 
gauges that produced minimal power losses.  In this 

fashion, an optimum transformer design was obtained 
with low power losses and reduced dimensions. 

Figure 7. Total losses for different wire gauge 

combinations: (a) 3Q6 core; (b) 3Q7 core. 

 

Figure 8. Constructed Transformer. 

  Future work could consider the use of other core and 
wire materials in order to improve the transformer size 
and weight with low power losses. 
 

8. Acknowledgments 

 
  The authors are grateful to National Polytechnic Institute 
of México (IPN) and the National Council of Science and 
Technology (CONACyT) for their encouragement and 
support to build the prototype. 
 

9. References 

 
[1] Ismael Araujo-Vargas, Andrew J. Forsyth, “High-

Performance Multi-pulse with single-transistor active 
injection”, IEEE transactions on Power Electronics, 
Vol. 23-3, 2008, pp. 1299-1308. 

[2] F.J. Chivite – Zabalza, A.J. Forsyth, D.R. Trainer, “A 

simple, passive 24 – pulse ac-dc converter with in 
herent load balancing”, IEEE transactions on Power 
Electronics, Vol. 21-2, 2006, pp. 430-439. 

[3] T. McLyman Colonel WM., “Transformer and 

inductor design handbook”, third edition, California, 
U.S.A., 2004. 

[4] Erickson Robert W., D. Maksimovic, “Fundamentals 

of power electronics”, second edition, Colorado, 
2001, ISBN 0-7923-7270-0. 

[5] William M. Flanagan, “Handbook of  transformer 

design and applications”, second edition, U.S.A., 
1993, ISBN 0-07-021291-0. 

[6] N. Mohan, T. M. Undeland, W. P. Robbins, “Power 

electronics converters, applications, and design”, 
second edition, U.S.A., 1995, ISBN 0-471-58408-8. 

[7] http://www.wiltan.co.uk/client_files/default/wiltan_g

uide.pdf, “Silicon steel wound E&C cores”, Wiltan 
Telmag magnetic components. 

[8] http://www.pleo.com/dupund/nomex.htm, 0.13mm

Nomex Around paper for Thermal Insulation. 

 

 

78