background image

SPECIAL FUNCTIONS and POLYNOMIALS

Gerard ’t Hooft

Stefan Nobbenhuis

Institute for Theoretical Physics

Utrecht University, Leuvenlaan 4

3584 CC Utrecht, the Netherlands

and

Spinoza Institute

Postbox 80.195

3508 TD Utrecht, the Netherlands

Many of the special functions and polynomials are constructed along standard
procedures In this short survey we list the most essential ones.

October 4, 2005

1

background image

1

Legendre Polynomials P

`

(x) .

Differential Equation:

(1 − x

2

) P

`

00

(x) − 2x P

`

0

(x) + `(` + 1) P

`

(x)

=

0 ,

or

d

dx

(1 − x

2

)

d

dx

P

`

(x) + `(` + 1) P

`

(x)

=

0 .

(1.1)

Generating function:

X

`=0

P

`

(x)t

`

= (1 − 2xt + t

2

)

1
2

for

|t| < 1, |x| ≤ 1.

(1.2)

Orthonormality:

Z

1

-1

P

`

(x) P

`

0

(x) dx =

2

2` + 1

δ

` `

0

,

(1.3)

X

`=0

P

`

(x)P

`

(x

0

)(2` + 1) = 2δ(x − x

0

) .

(1.4)

Expressions forP

`

(x) :

P

`

(x) =

1

2

`

[`/2]

X

ν=0

(−1)

ν

(2` − 2ν)!

ν! (` − ν)! (` − 2ν)!

x

`−2ν

(1.5)

=

1

`! 2

`

d

dx

`

(x

2

− 1)

`

,

(1.6)

=

1

π

Z

π

0

(x +

x

2

− 1 cos ϕ)

`

dϕ .

(1.7)

Recurrence relations:

` P

`−1

− (2` + 1) x P

`

+ (` + 1) P

`+1

= 0 ;

P

`

= x P

`−1

+

x

2

− 1

`

P

0
`−1

;

xP

0
`

− ` P

`

= P

0
`−1

;

xP

0
`

+ (` + 1) P

`

= P

0
`+1

;

d

dx

[P

`+1

− P

`−1

] = (2` + 1) P

`

.

(1.8)

Examples:

P

0

= 1 ,

P

1

= x ,

P

2

=

1
2

(3x

2

− 1) ,

P

3

=

1
2

x(5x

2

− 3) .

(1.9)

1

background image

2

Associated Legendre Functions P

m

`

(x) .

Differential equation:

(1 − x

2

) P

m

`

(x)

00

− 2x P

m

`

(x)

0

+

`(` + 1) −

m

2

1 − x

2

P

m

`

(x) = 0 .

(2.1)

Generating function:

X

`=0

`

X

m=0

P

m

`

(x) z

m

y

`

m!

=

h

1 − 2y

x + z

1 − x

2

+ y

2

i

1
2

.

(2.2)

Orthogonality:

Z

1

-1

P

m

`

(x) P

m

`

0

(x) dx =

2

2` + 1

(` + m)!

(` − m)!

δ

` `

0

,

( `, `

0

≥ m ) .

(2.3)

X

`=m

(2` + 1)

(` − m)!

(` + m)!

P

m

`

(x) P

m

`

(x

0

) = 2δ(x − x

0

) ,

( |x| < 1 and |x

0

| < 1 ) .

(2.4)

Expressions for P

m

`

(x)

1

:

P

m

`

(x) = (1 − x

2

)

1
2

m

 

d

dx

!

m

P

`

(x) .

(2.5)

P

m

`

(x) =

(` + m)!

`! π

(−1)

m/2

Z

π

0

x +

x

2

− 1 cos ϕ

`

cos mϕ dϕ .

(2.6)

Recurrence relations:

P

m+1

`

2mx

1 − x

2

P

m

`

+ {`(` + 1) − m(m − 1)}P

m−1

`

= 0

(2.7)

1 − x

2

P

m+1

`

(x) = (1 − x

2

) P

m

`

(x)

0

+ mx P

m

`

(x) ,

(2` + 1)x P

m

`

= (` + m) P

m

`−1

+ (` + 1 − m) P

m

`+1

,

(2.8)

x P

m

`

= P

m

`−1

− (` + 1 − m)

1 − x

2

P

m−1

`

,

P

m

`+1

− P

m

`−1

= (2` + 1) P

m−1

`

1 − x

2

,

(2.9)

and various others.

Examples:

P

1

1

=

1 − x

2

,

P

2

2

= 3(1 − x

2

) ,

P

1

2

= 3x

1 − x

2

,

P

2

3

= 15 x(1 − x

2

) .

(2.10)

1

Note that some authors define P

m

`

(x) with a factor (−1)

m

, giving P

m

`

(x) = (−1)

m

(1 −

x

2

)

1
2

m

d

dx

m

P

`

(x) . Obviously this minus sign propagates to the generating function, the recurrence

relations and the explicit examples, when m is odd.

2

background image

3

Bessel J

n

(x) and Hankel H

n

(x) functions.

Differential equation (for both J

n

and H

n

):

x

2

J

00

n

(x) + x J

0

n

(x) + (x

2

− n

2

) J

n

(x) = 0 .

(3.1)

Generating function (if n integer):

X

n=−∞

J

n

(αx)

s

α

n

= e

x
2

(s −

α

2

s

)

,

(3.2)

J

−n

= (−1)

n

J

n

.

Orthogonality:

Z

0

ξ J

n

(αξ) J

n

(βξ) dξ =

1

α

δ(|α| − |β|) .

(3.3)

Z

a

0

ξ J

n

(αξ) J

n

(βξ) dξ =

a

2

2

{J

n+1

(αa)}

2

δ

αβ

.

(3.4)

if in the 2

nd

relation α, β are roots of the equation J

n

(αξ) = 0.

Expressions for J

n

(x) (for n integer):

J

n

(x) =

X

k=0

(−1)

k

k! (k + n)!

x

2

n+2k

=

1

2πi

x

2

n

I

t

−n−1

dt e

t−x

2

/4t

.

(3.5)

J

n

(x) =

1

π

Z

π

0

cos (nθ − x sin θ) dθ .

(3.6)

Recurrence relations (for both J

n

and H

n

):

d

dx

{x

n

J

n

(x)} = x

n

J

n−1

(x) ;

J

n−1

(x) + J

n+1

(x) =

2n

x

J

n

(x) ;

J

0
n

(x)

=

J

n−1

(x) −

n

x

J

n

(x) =

n

x

J

n

(x) − J

n+1

(x) =

1
2

(J

n−1

(x) − J

n+1

(x)) .(3.7)

Relations between Hankel and Bessel functions:

H

(1)

n

(x) =

i

sin nπ

e

−nπi

J

n

(x) − J

−n

(x)

;

H

(2)

n

(x) =

−i

sin nπ

e

nπi

J

n

(x) − J

−n

(x)

,

(3.8)

so that

J

n

(x) =

1
2

H

(1)

n

(x) + H

(2)

n

(x)

;

J

−n

(x) =

1
2

e

nπi

H

(1)

n

(x) + e

−nπi

H

(2)

n

(x)

.

(3.9)

3

background image

4

Spherical Bessel Functions j

`

(x).

Differential equation:

(xj

`

)

00

+

x −

`(` + 1)

x

j

`

= 0 .

(4.1)

Generating Function:

X

`=0

j

`

(x) t

`

`!

= j

0

x

2

− 2xt

.

(4.2)

Orthogonality:

Z

0

x

2

j

`

(αx) j

`

(βx) dx =

π

δ(α − β) .

(4.3)

Z

−∞

j

`

(x) j

`

0

(x) dx =

π

2` + 1

δ

``

0

.

(4.4)

Expressions for j

`

:

j

`

(x) =

r

π

2x

J

`+

1
2

(x) = (−1)

`

x

`

 

d

xdx

!

`

sin x

x

,

(4.5)

j

`

(x) =

x

`

2

`+1

`!

Z

1

−1

e

ixs

(1 − s

2

)

`

ds

=

2

`

`!

(2` + 1)!

x

`

1 −

1

1! (` +

3
2

)

x

2

2

+

1

2!(` +

3
2

)(` +

5
2

)

x

2

4

− . . .

. (4.6)

Recurrence relations:

j

`+1

=

`

x

j

`

− j

0

`

=

2` + 1

x

j

`

− j

`−1

.

(4.7)

Examples:

j

0

(x) =

sin x

x

;

j

1

(x) =

sin x

x

2

cos x

x

;

j

2

(x) =

3 sin x

x

3

3 cos x

x

2

sin x

x

.

(4.8)

4

background image

5

Hermite Polynomials H

n

(x).

Differential equation:

H

00

n

(x) − 2x H

0

n

(x) + 2n H

n

(x) = 0 ,

or

d

2

dx

2

H

n

(x) e

1
2

x

2

+ (2n − x

2

+ 1) H

n

(x) e

1
2

x

2

= 0 .

(5.1)

Generating function:

X

n=0

H

n

(x) s

n

/n! = e

−s

2

+2sx

.

(5.2)

Orthogonality:

Z

−∞

H

n

(x) H

m

(x) e

−x

2

dx = 2

n

n!

π δ

nm

(5.3)

X

n=0

H

n

(x) H

n

(y)/(2

n

n!) =

π δ(x − y) e

x

2

.

(5.4)

More general:

X

n=0

H

n

(x) H

n

(y) s

n

/(2

n

n!) =

1

1 − s

2

exp

−s

2

(x

2

+ y

2

) + 2sxy

1 − s

2

.

(5.5)

Expressions for H

n

:

H

n

(−x) = (−1)

n

H

n

(x);

(5.6)

H

n

(x) = (−1)

n

e

x

2

d

dx

n

e

−x

2

;

(5.7)

H

n

(x) = (−1)

n/2

n!

n/2

X

k=0

(−1)

k

(2x)

2k

(2k)! (

1
2

n − k)!

,

if n even,

H

n

(x) = ( − 1)

n−1

2

n!

n−1

2

X

k=0

(−1)

k

(2x)

2k+1

(2k + 1)!

n−1

2

− k

!

,

if n odd.

(5.8)

Recurrence relations:

d

m

H

n

(x)

dx

m

=

2

m

n!

(n − m)!

H

n−1

(x) ,

(5.9)

x H

n

(x) =

1
2

H

n+1

(x) + n H

n−1

(x) ,

(5.10)

H

n

(x) =

2x −

d

dx

H

n−1

(x) .

(5.11)

Examples:

H

0

(x) = 1 ,

H

1

(x) = 2x ,

H

2

(x) = 4x

2

− 2 .

(5.12)

5

background image

6

Laguerre Polynomials L

n

(x).

Differential equation:

x L

00
n

(x) + (1 − x) L

0
n

(x) + n L

n

(x) = 0 .

(6.1)

Generating function:

2

X

n=0

L

n

(x) z

n

=

1

1 − z

e

−xz
1−z

.

(6.2)

Orthogonality:

Z

0

L

n

(x) L

m

(x) e

−x

dx = δ

nm

.

(6.3)

Expressions for L

n

:

L

n

(x) =

e

x

n!

d

dx

n

(x

n

e

−x

)

=

(−1)

n

n!

x

n

n

2

1!

x

n−1

+

n

2

(n − 1)

2

2!

x

n−2

− . . . + (−1)

n

n!

.

(6.4)

Recurrence relation:

(1 + 2n − x) L

n

− n L

n−1

− (n + 1)L

n+1

= 0 ;

x L

0
n

(x) = n L

n

(x) − n L

n−1

(x) .

(6.5)

Examples:

L

0

(x) = 1 ;

L

1

(x) = 1 − x ;

L

2

(x) =

1

2!

(x

2

− 4x + 2).

(6.6)

2

It’s important to note that sometimes different definitions are used for the Laguerre and Associated

Laguerre polynomials, where the Generating Function has the form:

P


n=0

L

n

(x) z

n

/n! =

1

1−z

e

−xz

1−z

. In

this case the Expressions given for L

n

should be multiplied by n! .

6

background image

7

Associated Laguerre Polynomials L

k

n

(x) .

Differential equation:

x L

k
n

00

+ (k + 1 − x) L

k
n

0

+ n L

k
n

= 0 .

(7.1)

Generating function:

X

n=0

L

k
n

(x) z

n

=

1

(1 − z)

k+1

e

−xz
1−z

.

(7.2)

X

k=0

X

n=k

L

k
n

(x) z

n

u

k

k!

=

1

1 − z

exp

−xz + u

1 − z

.

(7.3)

Orthogonality:

Z

0

L

k
n

(x) L

k
m

(x) x

k

e

−x

dx =

(n + k)!

n!

δ

nm

.

(7.4)

Expressions for L

k
n

:

L

k
n

(x) = (−1)

k

d

dx

k

L

n+k

(x) .

(7.5)

L

k
n

(x) =

e

x

x

−k

n!

d

dx

n

(x

n+k

e

−x

) .

(7.6)

Recurrence relation:

L

k
n−1

(x) + L

k−1
n

(x) = L

k
n

(x) ;

x L

k

0

n

(x) = n L

k
n

(x) − (n + k)L

k
n−1

(x) .

(7.7)

Examples:

L

k
0

(x) = 1 ;

L

k
1

(x) = −x + k + 1 ;

L

k
2

(x) =

1

2

h

x

2

− 2(k + 2)x + (k + 1)(k + 2)

i

;

L

k
3

(x) =

1

6

h

−x

3

+ 3(k + 3)x

2

− 3(k + 2)(k + 3)x + (k + 1)(k + 2)(k + 3)

i

. (7.8)

7

background image

8

Tschebyscheff

3

Polynomials T

n

(x).

Differential equation:

(1 − x

2

)

d

2

dx

2

T

n

(x) − x

d

dx

T

n

(x) + n

2

T

n

(x) = 0 .

(8.1)

Generating function:

X

n=0

T

n

(x) y

n

=

1 − xy

1 − 2xy + y

2

.

(8.2)

Symmetry relation:

T

n

(x) = T

−n

(x).

(8.3)

Orthogonality:

Z

1

−1

T

m

(x)T

n

(x)

1 − x

2

dx =

(

1
2

πδ

nm

m, n 6= 0

π

m = n = 0

(8.4)

Expression for T

n

:

T

n

(x) = cos(n cos

−1

x)

(8.5)

T

n

(x) =

1
2

hn

x + i

1 − x

2

o

n

+

n

x − i

1 − x

2

o

n

i

.

(8.6)

Recurrence relation:

T

n+1

− 2x T

n

(x) + T

n−1

= 0

(8.7)

(1 − x

2

)T

0

n

(x) = −nx T

n

(x) + n T

n−1

(x).

(8.8)

Examples:

T

0

(x) = 1 ;

T

1

(x) = x ;

T

2

(x) = 2x

2

− 1 ;

T

3

(x) = 4x

3

− 3x.

(8.9)

3

Transliterations Chebyshev and Tchebicheff also occur.

8

background image

9

Remark.

All of the functions discussed here are special cases of “hypergeometric functions”

m

F

n

(a

1

, a

2

, . . . a

m

; b

1

, b

2

, . . . b

n

; z) defined by:

m

F

n

(a

1

, a

2

, . . . a

m

; b

1

, b

2

, . . . b

n

; z) =

X

r=p

(a

1

)

r

(a

2

)

r

. . . (a

m

)

r

z

r

(b

1

)

r

(b

2

)

r

. . . (b

n

)

r

r!

,

(9.1)

where

(a)

r

Γ(a + r)

Γ(a)

;

r a positive integer.

(9.2)

Differential equations:
m = n = 1:

z

d

dz

2

1

F

1

+ (b − z)

d

dz

1

F

1

− a

1

F

1

= 0 .

(9.3)

m = 2, n = 1:

z(1 − z)

d

dz

2

2

F

1

+

c − (a + b + 1)z

d

dz

2

F

1

− ab

2

F

1

= 0 .

(9.4)

We have:

P

`

(x) =

2

F

1

−`, ` + 1; 1;

1 − x

2

;

(9.5)

P

m

`

(x) =

(` + m)!

(` − m)!

(1 − x

2

)

m/2

2

m

m!

2

F

1

m − `, m + ` + 1; m + 1;

1 − x

2

;

(9.6)

J

n

(x) =

e

−ix

n!

x

2

n

1

F

1

(n +

1
2

; 2n + 1; 2ix) ;

(9.7)

H

2n

(x) = (−1)

n

(2n)!

n!

1

F

1

(−n;

1
2

; x

2

) ;

(9.8)

H

2n+1

(x) = (−1)

n

2(2n + 1)!

n!

x

1

F

1

(−n;

3
2

; x

2

) ;

(9.9)

L

n

(x) =

1

F

1

(−n; 1; x) ;

(9.10)

L

k
n

(x) =

Γ(n + k + 1)

n!Γ(k + 1)

1

F

1

(−n; k + 1; x) ;

(9.11)

T

n

(x) =

2

F

1

−n, n;

1
2

;

1 − x

2

.

(9.12)

9

background image

References

[1] H. Margenau and G.M. Murphy, The Mathematics of Physics and Chemistry, D. van

Nostrand Comp. Inc., 1943, 1956.

[2] I.S. Gradshteyn and I.W. Ryzhik, Tables of Integrals, Series and Products, Acad.

Press, New York, San Francisco, London, 1965.

[3] W.W. Bell, Special Functions for Scientists and Engineers, D. van Nostrand Comp.

Ltd., 1968.

10