background image

Intersil Corporation Digital Library

 

Technical White Paper 

Digital Multiphase Power for 
CPU Cores

 

 
 
 
 
 
 

written by 

Scott Deuty, Tom Duffy, and Philip Chesley (Primarion) 

Larry Pearce (Intersil) 

 
 
 
 
 
 
 
 
 
 
 

 

Abstract 

Technology’s relentless march toward ever increasing CPU speed and 
performance is taxing today’s power systems and promises to demand 
significantly more in the future.   

Digital Multiphase Power (DMP) from Primarion and Intersil is the first 
architecture that meets key performance, user accessibility, reusability, 
and upgradeability requirements. 

 

 

 
 
 
 

background image

 

Technical White Paper 

 
 

 

 
 
 

 

Contents 

 

 

The Need for a New Regulator Architecture 

3

Digital Multiphase Power Regulation 

3

Design Optimization and Diagnostics Monitoring 

4

Single Solution for Multiple Platforms 

4

Powering the Future 

5

Conclusion 5

 

Legal Notice and Trademark Information 

The information provided in this document is provided on an "AS IS" basis for informational purposes only. In addition, all warranties 
are hereby disclaimed, including the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. 
Intersil shall not, under any circumstances, be liable to any person for any special, incidental, indirect or consequential damages 
whatsoever (including, without limitation, damages resulting from us of or reliance on the information provided, loss or profits, 
business interruption, loss of information), even if Intersil has been advised of the possibility of such damages. 
Copyright 2002 Intersil Corporation. All rights reserved. All other companies, products, and service names and brands are the 
trademarks or registered trademarks of their respective owners. 

 

background image

 

Technical White Paper 

 

3

 

 
 

The Need for a New 

Regulator Architecture 

 

Technology’s relentless march toward ever increasing CPU speed and performance is 
taxing today’s power systems and promises to demand significantly more in the 
future.  While processor core voltages will drop to 1 V and below, current demand will 
rise, likely topping 150 A by 2005.  Simultaneously, processor clock frequencies will 
push into the multiple-GHz range, yielding transients estimated to be 1000 A/ns at the 
processor and 1000 A/us at the socket.  At these rates, even the smallest parasitic 
inductance creates voltage transients that can overwhelm sub-1V logic gates.  Current 
technology has been shown to generate 160 mV voltage transients on a 1.5 VDC core 
voltage, a variation that threatens data integrity. 

To minimize line inductance, OEMs place the core power supply at the processor, 
requiring the supply to meet small form factor and high efficiency demands along with 
electrical performance.  A new power architecture is needed to meet these 
requirements while providing fast time-to-market and scalability.  Digital Multiphase 
Power (DMP) from Primarion and Intersil is the first architecture that meets key 
performance, user accessibility, reusability, and upgradeability requirements. 

 

Digital Multiphase 

Power Regulation 

 

Today’s processors use multiphase, BUCK switching-converters that consist of a 
switching controller, gate drivers, and discrete FET power stages as in Figure 1.  DMP 
from Primarion/Intersil changes the controller architecture from typical analog control 
to digital control with associated signal and power partitioning.  The DMP architecture 
offers greater flexibility, multi-tasking, and noise immunity.   

15 amp

60 amp

6 amp

24 amp

Normal Operating Mode

Normal Operating Mode

Active Transient Response Mode

(ATR High Shown)

P W M

Cont rol

IC

Driver

Driver

Driver

Driver

 

Figure 1: 

Typical Multiphase BUCK Regulator Schematic and Current 

Waveforms 

 

The Primarion/Intersil signal partitioning isolates analog signals at the Driver/FET and 
uses digital signals to communicate with the purely digital controller.  Digital control 
allows for better optimization and real-time adaptation of the control loop.  The 
controller also provides a digital link to the outside world allowing the user 
unprecedented access to programmable control-loop characteristics and readable 
system status data.  The programmable DMP architecture is reusable across multiple 
voltage and current applications and can accommodate future processor needs. 

The Primarion/Intersil power partitioning integrates the high-side FET with the gate 
drivers and analog-digital interfacing.  This allows control intelligence to be keyed on 
the integrated high-side FET, while low-side FET flexibility is maintained for addressing 
dissipation challenges of high step-down ratio, low duty-cycle applications. 

To meet the transient requirements of 2GHz and greater processors, a multiphase 
regulator must operate in two modes, normal and Active Transient Response (ATR) as 
shown in Figure 1.  DMP optimizes performance in both modes and smoothly manages 
mode transitions.  In normal mode, phase pulses are evenly distributed across the 
switching cycle to minimize the combined ripple as in Figure 1.  This allows lower 
phase inductance than a single-phase design of the same ripple.  During ATR the 
phases are time-aligned yielding a current ramp that is the sum of all phase ramps, 

 

background image

 

Technical White Paper 

 

4

 

 
 

effectively paralleling the inductors.  The Primarion/Intersil architecture allows up to 
eight phases operating at up to 1 MHz for di/dt rates in excess of 800 A/us at the 
inductors and over 1500 A/us at the output capacitor. 

Rapid and efficient transition from ATR to normal mode requires adjustment of the 
control loop.  Digital control provides for such a smooth transition between ATR and 
normal operating modes.  A patent pending algorithm performs control loop correction 
for the transition in DMP.  With advanced loop adjustment to manage ATR activity, 
output settling-time between modes falls from 50 us to 300 ns. 

DMP architecture facilitates the implementation of flexibility and scalability features in 
the regulator design.  The multitasking that DMP naturally provides allows quick 
adaptation of the ATR window to match changes in AVP and VID.  DMP automatically 
supports one to eight phases per controller allowing designs to scale to meet output 
load current requirements.  Also, current is evenly distributed among the phases by 
the DMP control.  Future versions of DMP will detect the loss of a phase and adjust the 
system accordingly. 

Serial digital signaling allows for point-of-load placement of the power stages 
independent of controller placement.  Digital signaling to the power stages confines 
drive currents to the power stage, along with the analog signals.  The integrated 
design and use of advanced semiconductor processes enables the DMP solution to 
operate up to 1MHz.  This increased switching speed reduces filter component size and 
maximizes system bandwidth to increase current ramp rates. 

The selection of low-side FETs is based on the response time versus efficiency 
tradeoff.  The DMP architecture allows both the switching frequency and dead-time to 
be adjusted for optimal performance with chosen FET and at various system operating 
conditions.   

 

Design Optimization 

and Diagnostics 

Monitoring  

 

Figure 2: 

Users have ultimate control 

of the system via Primarion

TM

 

PowerCode

TM

 Architecture Manager 

software. 

 

Optimizing the power system for the chosen processor load is critical to today’s 
computer system design.  The DMP architecture from Primarion /Intersil allows the 
power system designer to set key performance parameters through the Primarion

TM

 

PowerCode

TM

 Architecture Manager software.  This innovative tool allows designers to 

optimize the power system for the processor it powers.  Designers can choose low side 
FET types, phase inductor values, output capacitor values, non-overlap times, loop 
compensation, AVP window, voltage and current, fault monitoring indicators, and 
various support component values.  Once these values are inserted into the variable 
fields, system performance is easily simulated and tested.  Data generated by the 
Primarion

TM

 PowerCode

TM

 software can be ported to PSPICE

TM

 or Matlab

TM

 simulators 

for more detailed analysis. 

Recent processor designs specify the amount and location of the voltage regulator 
output capacitance, which necessarily impacts the regulator’s bandwidth and stability.  
Via the Primarion™ PowerCode™ software interface, the control loop is easily adjusted 
for optimal performance with the specified capacitance and other system parameters.  
These adjustments can be made during system operation.  Designers need not shut 
down the system to change analog loop components.  These in situ adjustments allow 
rapid, non-invasive system optimization, a boon to any product development. 

The ability to quickly customize designs and optimize system performance also means 
a reduction in inventory required to adjust systems to specification.  Rather than 
storing an inventory of analog components and perhaps controllers, system 
customization is reduced to adjusting a set of digital parameters loaded into the 
controller. 

 

Single Solution for 

Multiple Platforms 

The Digital Multiphase architecture is inherently adaptable to various low-voltage, 
high-current applications such as DDR memory, memory hub controllers, and DSPs, 
as well as other computing platforms.  By matching the power stage components to 
the application, users can scale the design to optimally meet current and ripple 
demands.  At 1 MHz switching frequency users can add phases in 15 A increments; of 
course other current and frequency phase combinations are possible.  The DMP 
operating range of 250 KHz to 1 MHz allows system optimization when considering the 
tradeoffs of response time versus efficiency.   

Switching frequency has a direct effect on overall system efficiency.  With DMP 
control, the designer is free to set a slower switching frequency for improved 

 

background image

 

Technical White Paper 

 
 

 

5

 

 

efficiency, or faster switching frequency for rapid response to load transients.  By 
simply inputting new values into the software, switching frequency is easily optimized.  
Likewise, the DMP architecture allows designers to optimize inductance versus number 
of phases, which directly affects output ripple voltage and system response.    

 

Powering the Future 

DMP from Primarion/Intersil enables an upgrade path to meet ever-increasing 
microprocessor slew rate requirements.  The DMP architecture establishes an Active 
Voltage Stabilization Interface between the DMP regulator and Primarion point-of-use 
transient regulators residing inside the processor package.  This system balances 
power sourcing between the switching regulator and the transient regulators, 
minimizing thermal impact to the processor while maximizing system performance.  

The future for digital control of power systems is very bright.  Control through 
programming expands the functionality of the controller.  Future digital controllers 
could easily regulate multiple voltage loops, detect loss of phase, and scale to greater 
than eight phases.  Multiple voltage regulation could include a step down front end for 
the 48V market.  All of these options are provided through software programming 
therefore reducing the amount of added circuitry required to increase functionality. 

 

Conclusion   

 

Digital Multiphase Power from Primarion and Intersil delivers the much-needed 
performance, accessibility, reusability and upgradeability that will keep processor 
speed and performance on track with Moore’s Law despite significantly tighter 
regulation and greater current ramp requirements.  Digital Multiphase Power also 
provides the benefits of accessibility and reusability, allowing designers to quickly and 
easily optimize systems with Primarion

TM

 PowerCode

TM

 Architecture Manager software.  

Not only can Digital Multiphase Power be applied to a range of existing systems, it 
allows for upgrade to meet the needs of next-generation processors through its Active 
Voltage Stabilization Interface.  With Digital Multiphase Power from Primarion and 
Intersil, designers can cut design times, enhance system performance, and rely on 
clean, efficient, intelligent power to drive advanced processors. 

 

© 2002, Primarion, Inc., 
Primarion and the Primarion logos are trademarks of Primarion, Inc. 
Pentium is a registered trademark of Intel Corporation. 
Other names and brands are the property of their respective owners. 
 

 


Document Outline