background image

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

Contents

 

lists

 

available

 

at

 

ScienceDirect

Agriculture,

 

Ecosystems

 

and

 

Environment

j o

 

u r

 

n

 

a l

 

h o m e p a g e :

 

w w w . e l s e v i e r . c o m / l o

 

c a t e / a g e e

Chemical

 

properties

 

of

 

anaerobic

 

digestates

 

affecting

 

C

 

and

 

N

 

dynamics

 

in

amended

 

soils

José

 

Antonio

 

Alburquerque

,

 

Carlos

 

de

 

la

 

Fuente,

 

María

 

Pilar

 

Bernal

Department

 

of

 

Soil

 

and

 

Water

 

Conservation

 

and

 

Organic

 

Waste

 

Management,

 

Centro

 

de

 

Edafología

 

y

 

Biología

 

Aplicada

 

del

 

Segura,

 

CSIC,

 

P.O.

 

Box

 

164,

 

30100

 

Murcia,

 

Spain

a

 

r

 

t

 

i

 

c

 

l

 

e

 

i

 

n

 

f

 

o

Article

 

history:

Received

 

11

 

October

 

2010

Received

 

in

 

revised

 

form

 

1

 

March

 

2011

Accepted

 

14

 

March

 

2011

Available online 8 April 2011

Keywords:
Anaerobic

 

digestion

Animal

 

slurries

Organic

 

matter

 

mineralisation

Biodegradability
Nitrogen

 

immobilisation

a

 

b

 

s

 

t

 

r

 

a

 

c

 

t

The

 

optimisation

 

of

 

digestate

 

recycling

 

as

 

fertilisers,

 

based

 

on

 

both

 

environmental

 

and

 

agricultural

 

crite-

ria,

 

requires

 

an

 

evaluation

 

of

 

the

 

effects

 

on

 

C

 

and

 

N

 

dynamics

 

in

 

soil.

 

In

 

the

 

present

 

paper,

 

six

 

digestates

from

 

several

 

anaerobic

 

co-digestion

 

experiments,

 

using

 

pig

 

or

 

cattle

 

slurry

 

as

 

the

 

main

 

substrate,

 

were

evaluated

 

in

 

short-term

 

incubations

 

in

 

soil.

Digestate

 

properties

 

such

 

as

 

dissolved

 

organic-C

 

(DOC),

 

biochemical

 

oxygen

 

demand

 

(BOD)

 

and

digestate

 

organic-C

 

mineralised

 

in

 

the

 

soil

 

during

 

the

 

first

 

7

 

days

 

represented

 

properly

 

the

 

digestate

biodegradability.

 

These,

 

together

 

with

 

their

 

ratios

 

with

 

respect

 

to

 

the

 

total

 

nitrogen

 

(TN)

 

concentration

in

 

the

 

digestate,

 

were

 

reliable

 

parameters

 

with

 

respect

 

to

 

defining

 

the

 

C

 

and

 

N

 

dynamics

 

in

 

the

 

soil

and

 

hence

 

the

 

N-fertiliser

 

potential

 

of

 

the

 

digested

 

materials.

 

Therefore,

 

highly

 

biodegradable

 

digested

materials,

 

represented

 

in

 

the

 

present

 

study

 

by

 

digestates

 

from

 

cattle

 

slurry–glycerine

 

mixtures

 

were

not

 

suitable

 

for

 

agricultural

 

use

 

as

 

they

 

caused

 

a

 

high

 

CO

2

–C

 

production

 

and

 

led

 

to

 

N-immobilisation

and/or

 

denitrification

 

after

 

their

 

application

 

to

 

soil.

 

Contrastingly,

 

for

 

less

 

biodegradable

 

digested

 

mate-

rials

 

(BOD

5

 

d

<

 

6.0

 

g

 

O

2

L

−1

fresh

 

weight,

 

DOC

 

<

 

5.5

 

g

 

L

−1

fresh

 

weight

 

and

 

DOC/TN

 

<

 

1.5),

 

less

 

CO

2

–C

 

was

evolved

 

and

 

ammonium

 

was

 

rapidly

 

nitrified

 

in

 

soil—being

 

an

 

available

 

N

 

source

 

for

 

crops.

© 2011 Elsevier B.V. All rights reserved.

1.

 

Introduction

Nowadays,

 

there

 

is

 

increasing

 

interest

 

in

 

Europe

 

in

 

the

 

imple-

mentation

 

of

 

anaerobic

 

digestion

 

in

 

productive

 

sectors

 

such

 

as

livestock

 

and

 

agroindustry,

 

where

 

vast

 

amounts

 

of

 

biodegradable

wastes

 

(animal

 

manure

 

and

 

slurries,

 

agricultural

 

and

 

food

 

industry

wastes,

 

etc.)

 

must

 

be

 

adequately

 

managed,

 

due

 

to

 

the

 

demand

 

for

renewable

 

energy.

 

Co-digestion

 

can

 

enhance

 

the

 

energy

 

produc-

tion

 

from

 

animal

 

manure

 

and

 

slurries,

 

as

 

co-digestible

 

materials

such

 

as

 

slaughterhouse

 

wastes,

 

glycerine

 

and

 

energy

 

crops

 

or

silage

 

can

 

increase

 

the

 

amount

 

of

 

biodegradable

 

organic

 

matter,

dilute

 

potential

 

toxic

 

compounds,

 

improve

 

the

 

nutrient

 

balance

and

 

favour

 

synergistic

 

effects

 

of

 

microorganisms,

 

thereby

 

raising

biogas

 

production

 

(

Álvarez

 

et

 

al.,

 

2010;

 

Holm-Nielsen

 

et

 

al.,

 

2009;

Pesta,

 

2007

).

 

However,

 

the

 

sustainability

 

of

 

biogas

 

production

also

 

depends

 

on

 

an

 

appropriate

 

end-use

 

of

 

the

 

digested

 

material

(digestate)—which

 

should

 

be

 

treated,

 

disposed

 

of

 

or

 

re-used

 

in

 

a

proper

 

way,

 

avoiding

 

any

 

negative

 

environmental

 

impact.

The

 

use

 

of

 

digestates

 

as

 

organic

 

fertilisers

 

in

 

agricultural

 

sys-

tems

 

seems

 

the

 

best

 

option

 

for

 

their

 

recycling

 

since

 

they

 

contain

considerable

 

amounts

 

of

 

residual

 

organic-C

 

and

 

plant

 

nutrients.

∗ Corresponding

 

author.

 

Tel.:

 

+34

 

968

 

396200;

 

fax:

 

+34

 

968

 

396213.

E-mail

 

addresses:

 

jalburquerque@cebas.csic.es

,

 

jalburquerquemendez@yahoo.es

(J.A.

 

Alburquerque).

Digestates

 

also

 

present

 

advantages

 

in

 

comparison

 

with

 

untreated

waste,

 

such

 

as

 

greater

 

microbial

 

stability

 

and

 

hygiene

 

and

 

a

 

higher

amount

 

of

 

N

 

present

 

as

 

ammonium

 

(

Al

 

Seadi,

 

2002;

 

Holm-Nielsen

et

 

al.,

 

2009

).

 

So,

 

land

 

spreading

 

of

 

digestate

 

can

 

lead

 

to

 

benefits

if

 

integrated

 

into

 

good

 

agricultural

 

practices,

 

by

 

controlling

 

the

 

N

application

 

rate

 

and

 

heavy

 

metal

 

load,

 

and

 

by

 

securing

 

digestate

hygiene

 

(

Al

 

Seadi,

 

2002;

 

Fuchs

 

et

 

al.,

 

2008;

 

Holm-Nielsen

 

et

 

al.,

2009

).

 

Nevertheless,

 

the

 

biodegradability

 

of

 

these

 

materials,

 

which

determines

 

organic

 

matter

 

(OM)

 

mineralisation

 

and

 

thus

 

nutrient

turnover

 

in

 

soil,

 

is

 

not

 

well

 

characterised.

The

 

complete

 

exhaustion

 

of

 

the

 

most

 

labile

 

organic

 

fraction

during

 

the

 

anaerobic

 

process,

 

in

 

order

 

to

 

obtain

 

digestates

 

with

a

 

high

 

stability

 

degree,

 

is

 

not

 

easy

 

to

 

achieve

 

at

 

the

 

industrial

 

level,

the

 

main

 

objective

 

of

 

the

 

anaerobic

 

co-digestion

 

being

 

the

 

pro-

duction

 

of

 

a

 

high

 

rate

 

of

 

biogas,

 

rich

 

in

 

methane.

 

This

 

process

 

is

conditioned

 

mainly

 

by

 

the

 

composition

 

of

 

the

 

raw

 

materials

 

and

the

 

development

 

of

 

the

 

anaerobic

 

process,

 

leading

 

in

 

some

 

cases

to

 

the

 

production

 

of

 

unstable

 

digested

 

materials

 

which

 

may

 

exert

negative

 

impacts

 

on

 

the

 

plant–soil

 

system

 

(

Abdullahi

 

et

 

al.,

 

2008;

Salminen

 

et

 

al.,

 

2001

).

 

In

 

this

 

context,

 

aerobic

 

respiration

 

indices

based

 

on

 

oxygen

 

uptake

 

are

 

considered

 

the

 

most

 

suitable

 

param-

eters

 

for

 

assessing

 

the

 

biodegradability

 

of

 

organic

 

amendments

(

Barrena

 

et

 

al.,

 

2006;

 

Copperband

 

et

 

al.,

 

2003

).

 

In

 

wastewaters

and

 

animal

 

slurries

 

the

 

biochemical

 

oxygen

 

demand

 

(BOD)

 

test

is

 

a

 

reliable

 

and

 

commonly

 

used

 

method

 

to

 

determine

 

readily

biodegradable

 

OM

 

(

APHA,

 

2005;

 

Brookman,

 

1997;

 

Williams,

 

1983

).

0167-8809/$

 

 

see

 

front

 

matter ©

 

 2011 Elsevier B.V. All rights reserved.

doi:

10.1016/j.agee.2011.03.007

background image

16

J.A.

 

Alburquerque

 

et

 

al.

 

/

 

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

Although

 

there

 

is

 

no

 

threshold

 

value

 

established

 

as

 

a

 

stability

 

and

quality

 

criterion

 

for

 

the

 

agricultural

 

use

 

of

 

waste

 

materials

 

based

on

 

BOD

 

data,

 

it

 

is

 

possible

 

with

 

some

 

caution

 

to

 

compare

 

it

 

with

the

 

limits

 

established

 

in

 

the

 

solid

 

waste

 

field

 

based

 

on

 

oxygen

uptake

 

rate

 

and/or

 

cumulative

 

oxygen

 

consumption

 

indices.

 

Dif-

ferent

 

methodologies

 

for

 

characterising

 

the

 

biological

 

stability

 

of

organic

 

materials

 

have

 

been

 

used,

 

such

 

as

 

SOUR

 

(specific

 

oxygen

uptake

 

rate

 

as

 

the

 

maximum

 

rate

 

of

 

oxygen

 

consumption),

 

OD

20

 

h

(cumulative

 

oxygen

 

demand

 

for

 

the

 

first

 

20

 

h

 

of

 

the

 

test;

 

Lasaridi

and

 

Stentiford,

 

1998

)

 

and

 

DRI

24

 

h

(dynamic

 

respiration

 

index,

 

which

is

 

the

 

average

 

oxygen

 

uptake

 

rate

 

at

 

24

 

h

 

of

 

maximum

 

biological

activity;

 

Adani

 

et

 

al.,

 

2004

).

Also,

 

little

 

information

 

is

 

available

 

about

 

the

 

degree

 

of

 

stabil-

ity

 

of

 

digestates

 

and

 

their

 

C

 

and

 

N

 

dynamics

 

in

 

amended

 

soils

(

Sánchez

 

et

 

al.,

 

2008;

 

Tambone

 

et

 

al.,

 

2009

).

 

The

 

information

 

gained

from

 

decomposition

 

studies

 

in

 

digestate-treated

 

soil

 

(OM

 

mineral-

isation,

 

N

 

mineralisation–immobilisation,

 

etc.)

 

may

 

be

 

useful

 

for

assessing

 

N

 

availability,

 

and

 

for

 

optimising

 

the

 

digestate

 

applica-

tion

 

rate

 

to

 

agricultural

 

soils.

 

Thus,

 

defining

 

the

 

main

 

digestate

properties

 

affecting

 

such

 

C

 

and

 

N

 

dynamics

 

in

 

soil

 

can

 

help

 

achieve

the

 

sustainable

 

use

 

of

 

digestates

 

as

 

fertilisers

 

in

 

soil–plant

 

system,

which

 

will

 

have

 

both

 

agricultural

 

and

 

environmental

 

benefits.

The

 

present

 

paper

 

evaluates

 

the

 

dynamics

 

of

 

C-mineralisation

and

 

inorganic-N

 

in

 

soil

 

amended

 

with

 

six

 

digestates

 

produced

 

from

representative

 

anaerobic

 

co-digestion

 

processes

 

in

 

Spain.

 

These

effects

 

were

 

investigated

 

in

 

aerobic

 

incubation

 

experiments,

 

an

appropriate

 

tool

 

to

 

evaluate

 

the

 

feasibility

 

of

 

the

 

use

 

of

 

organic

amendments

 

in

 

agricultural

 

soils

 

(

Qiu

 

et

 

al.,

 

2008;

 

Trinsoutrot

et

 

al.,

 

2000

).

 

Based

 

on

 

these

 

considerations,

 

the

 

main

 

objective

 

of

this

 

paper

 

is

 

to

 

identify

 

the

 

most

 

relevant

 

parameters

 

related

 

to

digestate

 

composition

 

for

 

assessing

 

the

 

maximum

 

benefits

 

of

 

these

materials

 

as

 

fertilisers.

2.

 

Materials

 

and

 

methods

2.1.

 

Incubation

 

experiments

 

in

 

soil

Six

 

digestates

 

were

 

collected

 

as

 

representative

 

samples

 

from

anaerobic

 

co-digestion

 

experiments

 

based

 

on

 

cattle

 

or

 

pig

 

slurry

mixed

 

with

 

agro-industrial

 

wastes

 

(co-digestion

 

mixtures):

 

cat-

tle

 

slurry

 

+

 

4%

 

glycerine

 

(CG4),

 

cattle

 

slurry

 

+

 

6%

 

glycerine

 

(CG6),

cattle

 

slurry

 

+

 

4.3%

 

cattle

 

manure

 

+

 

11.6%

 

maize–oat

 

silage

 

(CMS),

cattle

 

slurry

 

+

 

5%

 

orange

 

peel

 

waste

 

(CO),

 

pig

 

slurry

 

+

 

1.0%

 

sludge

from

 

a

 

slaughterhouse

 

wastewater

 

treatment

 

plant

 

+

 

6.5%

 

biodiesel

wastewaters

 

(PSB),

 

and

 

pig

 

slurry

 

+

 

0.6%

 

pasteurised

 

slaughter-

house

 

waste

 

(PS).

 

Digestates

 

were

 

sampled

 

directly

 

after

 

anaerobic

digestion

 

(without

 

post-treatments),

 

stored

 

at

 

a

 

temperature

 

<4

C

and

 

processed

 

quickly

 

to

 

prevent

 

any

 

chemical

 

or

 

biological

 

alter-

ation.

 

Their

 

main

 

characteristics

 

and

 

the

 

specifications

 

of

 

anaerobic

co-digestion

 

performance

 

are

 

shown

 

in

 

Table

 

1

.

 

CMS

 

and

 

PSB

 

sam-

ples

 

came

 

from

 

industrial-scale

 

co-digestion

 

processes,

 

while

 

the

rest

 

of

 

the

 

samples

 

came

 

from

 

laboratory-scale

 

experiments,

 

run

mainly

 

to

 

optimise

 

the

 

production

 

of

 

biogas

 

through

 

anaerobic

co-digestion.

From

 

an

 

agricultural

 

soil

 

at

 

La

 

Alberca

 

(Murcia,

 

Spain),

 

soil

 

was

taken

 

from

 

the

 

top

 

20

 

cm,

 

air-dried

 

and

 

sieved

 

to

 

2

 

mm

 

before

 

use.

Its

 

main

 

characteristics

 

were:

 

24%

 

CaCO

3

,

 

pH

 

7.5

 

and

 

electrical

conductivity

 

(EC)

 

1.72

 

dS

 

m

−1

(both

 

saturated

 

paste,

 

with

 

water),

24.3

 

g

 

kg

−1

OM,

 

14.1

 

g

 

kg

−1

total

 

organic-C

 

(TOC)

 

and

 

1.85

 

g

 

kg

−1

total

 

nitrogen

 

(TN),

 

with

 

14.8%

 

clay,

 

22.3%

 

silt

 

and

 

62.9%

 

sand.

The

 

digested

 

materials

 

were

 

mixed

 

thoroughly

 

with

 

the

 

soil

 

in

a

 

proportion

 

of

 

4

 

g

 

of

 

fresh

 

digestate

 

per

 

100

 

g

 

of

 

dry

 

soil

 

(equiva-

lent

 

to

 

a

 

field

 

application

 

of

 

96

 

m

3

ha

−1

).

 

This

 

application

 

rate

 

was

selected

 

in

 

order

 

to

 

avoid

 

excessively

 

low

 

inputs

 

of

 

organic-C

 

to

the

 

soil

 

with

 

some

 

digestate

 

samples,

 

which

 

could

 

limit

 

the

 

accu-

racy

 

of

 

the

 

C-mineralisation

 

study,

 

while

 

keeping

 

the

 

N

 

addition

(140–380

 

kg

 

N

 

ha

−1

)

 

realistic

 

for

 

the

 

requirements

 

of

 

agricultural

crops

 

(

MARM,

 

2010

).

The

 

digestate-soil

 

mixtures

 

were

 

incubated

 

in

 

darkness

 

under

aerobic

 

conditions,

 

at

 

26

 

±

 

1

C

 

for

 

56

 

days.

 

Each

 

treatment

 

was

run

 

in

 

triplicate,

 

and

 

soil

 

without

 

digestate

 

was

 

used

 

as

 

the

 

control.

Soil

 

moisture

 

was

 

maintained

 

at

 

60%

 

of

 

the

 

water-holding

 

capac-

ity

 

during

 

incubation,

 

with

 

deionised

 

water.

 

To

 

follow

 

N

 

dynamics,

a

 

set

 

of

 

destructive

 

samples

 

of

 

the

 

digestate-soil

 

mixtures

 

were

placed

 

in

 

50-mL

 

tubes

 

without

 

drainage

 

holes;

 

then,

 

they

 

were

closed

 

with

 

parafilm

 

 

which

 

allows

 

gas

 

exchange

 

 

to

 

retain

 

soil

moisture

 

and

 

avoid

 

anaerobic

 

conditions

 

(

de

 

la

 

Fuente

 

et

 

al.,

 

2010

).

Periodically,

 

three

 

replicates

 

per

 

treatment

 

were

 

removed

 

from

 

the

incubator

 

(at

 

0,

 

2,

 

7,

 

14,

 

28,

 

42

 

and

 

56

 

days)

 

for

 

analysis

 

of

 

inorganic-

N

 

(NH

4

–N

 

and

 

NO

3

–N).

 

Since

 

the

 

digestate

 

samples

 

were

 

mixed

homogeneously

 

with

 

the

 

soil

 

at

 

the

 

time

 

of

 

application

 

and

 

there

was

 

no

 

airflow

 

at

 

the

 

soil

 

surface

 

during

 

incubation,

 

N-loss

 

through

volatilisation

 

was

 

negligible—as

 

demonstrated

 

by

 

de

 

la

 

Fuente

 

et

 

al.

(2010)

.

 

Net

 

organic-N

 

mineralisation

 

was

 

evaluated

 

by

 

the

 

accu-

Table

 

1

Main

 

characteristics

 

of

 

the

 

digestate

 

samples

 

(mean

 

value

 

±standard

 

deviation,

 

data

 

expressed

 

on

 

a

 

fresh

 

weight

 

basis).

Parameter

 

CG4

 

CG6

 

CMS

 

CO

 

PSB

 

PS

BOD

24

 

h

(g

 

L

−1

)

 

7.5

 

±

 

1.5

 

35.0

 

±

 

3.0

 

1.6

 

±

 

0.2

 

0.5

 

±

 

0.1

 

0.7

 

±

 

0.1

 

1.1

 

±

 

0.1

BOD

5

 

d

(g

 

L

−1

)

 

37.5

 

±

 

3.5

 

52.5

 

±

 

3.5

 

5.9

 

±

 

0.7

 

1.3

 

±

 

0.1

 

2.2

 

±

 

0.2

 

2.3

 

±

 

0.2

pH

 

5.64

 

±

 

0.01

 

7.35

 

±

 

0.03

 

7.50

 

±

 

0.01

 

7.86

 

±

 

0.01

 

8.20

 

±

 

0.02

 

7.95

 

±

 

0.03

EC

 

(dS

 

m

−1

)

 

14.5

 

±

 

0.3

 

11.7

 

±

 

0.2

 

25.7

 

±

 

0.8

 

8.7

 

±

 

0.2

 

30.3

 

±

 

0.9

 

21.1

 

±

 

0.1

DM

 

(g

 

L

−l

)

 

38.3

 

±

 

0.5

 

72.9

 

±

 

5.8

 

90.1

 

±

 

0.2

 

24.4

 

±

 

0.3

 

19.5

 

±

 

0.1

 

21.0

 

±

 

2.4

OM

 

(g

 

L

−l

)

 

26.4

 

±

 

0.1

 

56.4

 

±

 

0.9

 

66.4

 

±

 

0.2

 

18.0

 

±

 

0.1

 

8.5

 

±

 

0.1

 

11.4

 

±

 

0.2

TOC

 

(g

 

L

−l

)

 

17.8

 

±

 

0.1

 

42.8

 

±

 

0.1

 

33.7

 

±

 

0.5

 

9.4

 

±

 

0.1

 

5.9

 

±

 

0.1

 

5.8

 

±

 

0.1

DOC

 

(g

 

L

−l

)

 

10.6

 

±

 

0.3

 

27.6

 

±

 

0.9

 

5.4

 

±

 

0.1

 

1.2

 

±

 

0.1

 

2.4

 

±

 

0.1

 

1.2

 

±

 

0.1

TN

 

(g

 

L

−l

)

 

1.88

 

±

 

0.02

 

2.32

 

±

 

0.07

 

3.97

 

±

 

0.02

 

1.44

 

±

 

0.01

 

3.96

 

±

 

0.03

 

2.89

 

±

 

0.02

NH

4

–N

 

(g

 

L

−l

)

 

0.97

 

±

 

0.03

 

0.89

 

±

 

0.01

 

2.43

 

±

 

0.01

 

0.76

 

±

 

0.01

 

3.46

 

±

 

0.04

 

2.21

 

±

 

0.01

TOC/TN

 

ratio

9.5

 

±

 

0.1

 

18.5

 

±

 

0.5

 

8.5

 

±

 

0.1

 

6.6

 

±

 

0.1

 

1.5

 

±

 

0.1

 

2.0

 

±

 

0.1

Anaerobic

 

co-digestion

 

performance

Operation

 

Discont

 

Discont

 

Cont

 

Discont

 

Cont

 

Cont

Scale

 

L

 

L

 

I

 

L

 

I

 

L

Temperature

 

(

C)

 

35

 

35

 

38.5

 

38

 

37

 

35

HRT

 

(days)

 

40

 

40

 

25

 

28

 

21

 

20

BOD

24

 

h

and

 

BOD

5

 

d

:

 

24-h

 

and

 

5-d

 

biochemical

 

oxygen

 

demand,

 

respectively.

 

EC:

 

electrical

 

conductivity,

 

DM:

 

dry

 

matter,

 

OM:

 

total

 

organic

 

matter,

 

TOC:

 

total

 

organic-C,

 

DOC:

dissolved

 

organic-C

 

and

 

TN:

 

total

 

nitrogen.

 

Discont:

 

discontinuous

 

operation,

 

Cont:

 

continuous

 

operation,

 

L:

 

laboratory-scale

 

(2–6

 

L

 

digester),

 

I:

 

industrial-scale

 

(3000

 

m

3

digester)

 

and

 

HRT:

 

hydraulic

 

residence

 

time

 

CG4:

 

cattle

 

slurry

 

+

 

4%

 

glycerine,

 

CG6:

 

cattle

 

slurry

 

+

 

6%

 

glycerine,

 

CMS:

 

cattle

 

slurry

 

+

 

4.3%

 

cattle

 

manure

 

+

 

11.6%

 

maize–oat

silage,

 

CO:

 

cattle

 

slurry

 

+

 

5%

 

orange

 

peel

 

waste,

 

PSB:

 

pig

 

slurry

 

+

 

1.0%

 

sludge

 

from

 

a

 

slaughterhouse

 

wastewater

 

treatment

 

plant

 

+

 

6.5%

 

biodiesel

 

wastewaters,

 

and

 

PS:

 

pig

slurry

 

+

 

0.6%

 

pasteurised

 

slaughterhouse

 

waste.

background image

J.A.

 

Alburquerque

 

et

 

al.

 

/

 

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

17

mulation

 

of

 

inorganic-N

 

in

 

the

 

soil,

 

since

 

small

 

changes

 

in

 

organic

pools

 

are

 

usually

 

difficult

 

to

 

detect

 

and

 

gaseous

 

losses

 

were

 

consid-

ered

 

negligible

 

under

 

these

 

experimental

 

conditions

 

(

de

 

la

 

Fuente

et

 

al.,

 

2010

).

 

Net

 

N-mineralisation

 

(net

 

N-min)

 

in

 

each

 

treatment

(in

 

digestate

 

amended

 

and

 

non-amended

 

soil)

 

was

 

calculated

 

by

subtracting

 

the

 

soil

 

inorganic-N

 

content

 

at

 

day

 

0

 

from

 

the

 

amount

present

 

in

 

soil

 

after

 

56

 

days

 

of

 

incubation,

 

and

 

expressed

 

as

 

␮g

inorganic-N

 

g

−1

dry

 

soil.

 

The

 

N-mineralisation

 

from

 

the

 

digestates

(N

m

)

 

was

 

calculated

 

as:

N

m

(%)

 

=

 

100

 

×

 

[(inorg

 

 

N

56

 

d

 

inorg-N

0

 

d

)

soil

 

+

 

digestate

 

(inorg

 

-

N

56

 

d

 

inorg-N

0

 

d

)

soil

]/added

 

TN.while

 

nitrification

 

(nitrate

 

conver-

sion)

 

was

 

determined

 

as

 

the

 

percentage

 

of

 

the

 

added-N

 

from

 

the

digestate

 

that

 

had

 

been

 

converted

 

into

 

nitrate

 

after

 

56

 

days.

NC

 

(%)

 

=

 

100

 

×

 

[(NO

3

-N

56

 

d

 

NO

3

-N

0

 

d

)

soil

+digestate

 

(NO

3

-N

56

 

d

 

NO

3

-N

0

 

d

)

soil

]

/added

 

TN.

The

 

dynamics

 

of

 

C-mineralisation

 

was

 

determined

 

in

 

a

 

sepa-

rate

 

set

 

of

 

incubations

 

lasting

 

56

 

days,

 

using

 

500-mL,

 

hermetically

closed

 

glass

 

vessels.

 

A

 

small

 

vial

 

with

 

10

 

mL

 

of

 

0.1

 

M

 

NaOH

 

was

placed

 

inside

 

each

 

vessel

 

to

 

trap

 

the

 

CO

2

evolved

 

during

 

the

 

incuba-

tion,

 

and

 

empty

 

vessels

 

were

 

used

 

as

 

blanks.

 

These

 

were

 

opened

 

for

several

 

minutes

 

when

 

the

 

NaOH

 

vials

 

were

 

replaced,

 

to

 

maintain

adequate

 

aerobic

 

conditions.

 

The

 

CO

2

was

 

measured

 

periodically

(after

 

2,

 

4,

 

7,

 

14,

 

28,

 

42

 

and

 

56

 

days),

 

by

 

titration

 

of

 

the

 

NaOH

solution

 

with

 

0.1

 

M

 

HCl

 

in

 

an

 

excess

 

of

 

BaCl

2

to

 

precipitate

 

car-

bonates.

 

The

 

mineralisation

 

of

 

the

 

organic-C

 

from

 

the

 

digestates

(C

m

)

 

was

 

calculated

 

as

 

the

 

difference

 

between

 

the

 

CO

2

–C

 

evolved

in

 

the

 

amended

 

soils

 

and

 

that

 

produced

 

in

 

the

 

control

 

(unamended)

soil,

 

and

 

was

 

expressed

 

as

 

a

 

percentage

 

of

 

the

 

TOC

 

added

 

with

the

 

digestates.

 

The

 

data

 

for

 

the

 

C-mineralisation

 

from

 

the

 

diges-

tates

 

were

 

fitted

 

to

 

kinetic

 

functions

 

by

 

the

 

non-linear

 

least-square

technique

 

(Marquardt–Levenberg

 

algorithm),

 

using

 

the

 

Sigma-Plot

computer

 

programme

 

(SPSS

 

Inc.).

 

The

 

statistical

 

significance

 

of

 

the

curve-fitting,

 

residual

 

mean

 

square

 

(RMS)

 

and

 

F-values

 

were

 

also

calculated.

2.2.

 

Analytical

 

methods

The

 

following

 

parameters

 

were

 

determined

 

in

 

the

 

digestate

samples:

 

EC

 

and

 

pH

 

(directly,

 

after

 

sample

 

homogenisation);

 

mois-

ture

 

content,

 

after

 

drying

 

to

 

constant

 

weight

 

at

 

105

C;

 

the

 

volatile

solids,

 

which

 

reflect

 

the

 

OM

 

content,

 

by

 

loss

 

on

 

ignition

 

at

 

500

C

 

for

24

 

h.

 

The

 

TOC

 

and

 

TN

 

were

 

measured

 

by

 

automatic

 

microanalysis

(EuroVector

 

elemental

 

analyser,

 

Milan,

 

Italy)

 

of

 

freeze-dried

 

sam-

ples

 

and

 

the

 

dissolved

 

organic-C

 

(DOC)

 

using

 

an

 

automatic

 

analyser

for

 

liquid

 

samples

 

(TOC-V

 

CSN

 

Analyzer,

 

Shimadzu)

 

after

 

sample

filtration

 

(0.45

 

␮m

 

pore-diameter).

 

Ammonium

 

was

 

extracted

 

by

steam-distillation

 

of

 

fresh

 

samples

 

alkalised

 

with

 

MgO,

 

trapped

in

 

boric

 

acid

 

and

 

titrated

 

with

 

HCl.

 

The

 

5-day

 

biochemical

 

oxy-

gen

 

demand

 

(BOD

5

 

d

)

 

was

 

measured

 

with

 

a

 

respirometric

 

Oxitop

®

IS

 

6

 

(WTW,

 

Germany)

 

based

 

on

 

pressure

 

measurement,

 

which

 

is

automatically

 

transformed

 

into

 

mg

 

O

2

L

−1

.

 

In

 

the

 

Oxitop

®

system,

cumulative

 

oxygen

 

consumption

 

measurements

 

were

 

made

 

each

day

 

during

 

a

 

5-day

 

period.

The

 

soil

 

TOC

 

and

 

TN

 

were

 

determined

 

with

 

an

 

automatic

microanalyser.

 

The

 

CaCO

3

content

 

was

 

measured

 

with

 

a

 

Bernard

calcimeter.

 

As

 

incubation

 

progressed,

 

a

 

two-step

 

sequential

 

extrac-

tion

 

procedure

 

was

 

carried

 

out

 

for

 

inorganic-N

 

determination:

ultrapure

 

water

 

(1:5

 

w/v)

 

for

 

NO

3

-N

 

and

 

2

 

M

 

KCl

 

(1:5

 

w/v)

 

for

NH

4

–N.

 

The

 

NO

3

–N

 

was

 

measured

 

using

 

a

 

nitrate-ion

 

selective

electrode

 

(

USEPA,

 

2007

),

 

while

 

NH

4

–N

 

was

 

determined

 

by

 

a

 

colori-

metric

 

method

 

based

 

on

 

Berthelot’s

 

reaction

 

(

Sommer

 

et

 

al.,

 

1992

).

All

 

values

 

refer

 

to

 

soil

 

dried

 

at

 

105

C

 

for

 

24

 

h.

2.3.

 

Statistical

 

analyses

Basic

 

statistical

 

analyses

 

of

 

data,

 

correlation

 

coefficients

 

and

regression

 

equations

 

were

 

calculated

 

using

 

the

 

SPSS

 

18.0

 

pro-

gramme

 

for

 

Windows.

 

The

 

normal

 

distribution

 

of

 

the

 

data

 

was

checked

 

by

 

the

 

Shapiro–Wilk’s

 

test;

 

when

 

data

 

failed

 

this

 

test,

 

they

were

 

adjusted

 

to

 

a

 

normal

 

distribution

 

through

 

log-transformation.

3.

 

Results

 

and

 

discussion

3.1.

 

Digestate

 

microbial

 

stability

In

 

the

 

present

 

study,

 

all

 

digestate

 

samples

 

showed

 

an

 

initial

phase

 

of

 

maximum

 

respirometric

 

activity

 

within

 

the

 

first

 

24

 

h

 

of

testing.

 

As

 

a

 

result,

 

the

 

BOD

24

 

h

accounted

 

for

 

20,

 

67,

 

27,

 

39,

 

30

 

and

47%

 

of

 

the

 

BOD

5

 

d

for

 

CG4,

 

CG6,

 

CMS,

 

CO,

 

PSB

 

and

 

PS,

 

respectively

(

Table

 

1

).

 

This

 

indicated

 

the

 

presence

 

of

 

an

 

easily

 

biodegradable

organic

 

fraction

 

probably

 

including

 

decaying

 

microbial

 

biomass

from

 

the

 

digestate.

 

When

 

the

 

BOD

24

 

h

data

 

were

 

expressed

 

as

 

the

average

 

oxygen

 

uptake

 

rate

 

(mg

 

O

2

g

−1

OM

 

h

−1

),

 

the

 

following

results

 

were

 

obtained:

 

1.0,

 

1.2,

 

3.2,

 

3.9,

 

11.8

 

and

 

25.9

 

for

 

CMS,

 

CO,

PSB,

 

PS,

 

CG4

 

and

 

CG6,

 

respectively.

 

Our

 

results

 

exceed

 

the

 

limit

value

 

established

 

by

 

Adani

 

et

 

al.

 

(2004)

 

of

 

0.5

 

mg

 

O

2

g

−1

OM

 

h

−1

as

the

 

average

 

oxygen

 

uptake

 

over

 

a

 

24-h

 

period

 

of

 

the

 

most

 

intense

biological

 

activity

 

(DRI

24

 

h

)

 

for

 

highly

 

stable

 

materials

 

(mature

compost);

 

only

 

the

 

CMS

 

digestate

 

behaved

 

like

 

a

 

material

 

of

medium

 

stability

 

(limit

 

of

 

1.0

 

mg

 

O

2

g

−1

OM

 

h

−1

).

 

By

 

using

 

the

 

less

restrictive

 

classification

 

proposed

 

by

 

Ponsá

 

et

 

al.

 

(2010)

 

and

 

based

on

 

DRI

24

 

h

data,

 

the

 

CMS,

 

CO

 

and

 

PSB

 

showed

 

a

 

low

 

biodegradabil-

ity

 

(<2

 

mg

 

O

2

g

−1

DM

 

h

−1

):

 

0.8,

 

0.9

 

and

 

1.4

 

mg

 

O

2

g

−1

DM

 

h

−1

,

respectively.

 

The

 

PS

 

had

 

a

 

moderate

 

biodegradability

(2–5

 

mg

 

O

2

g

−1

DM

 

h

−1

)

 

of

 

2.1

 

mg

 

O

2

g

−1

DM

 

h

−1

and

 

the

 

CG

samples

 

showed

 

a

 

high

 

biodegradability

 

(>5

 

mg

 

O

2

g

−1

DM

 

h

−1

):

8.2

 

and

 

20.0

 

mg

 

O

2

g

−1

DM

 

h

−1

for

 

CG4

 

and

 

CG6,

 

respectively.

These

 

results

 

are

 

in

 

agreement

 

with

 

those

 

of

 

Orzi

 

et

 

al.

 

(2010)

and

 

Tambone

 

et

 

al.

 

(2009)

,

 

who

 

compared

 

stability

 

data

 

from

digested

 

and

 

non-digested

 

materials

 

based

 

on

 

cumulative

 

oxygen

demand

 

after

 

20

 

h

 

using

 

the

 

SOUR-test

 

(OD

20

 

h

).

 

They

 

noted

 

clear

decreases

 

in

 

the

 

OD

20

 

h

from

 

235

 

to

 

264

 

mg

 

O

2

g

−1

DM

 

in

 

the

non-digested

 

mixtures

 

to

 

30–95

 

mg

 

O

2

g

−1

DM

 

after

 

anaerobic

digestion,

 

the

 

latter

 

values

 

being

 

comparable

 

to

 

those

 

shown

 

by

stabilised

 

materials.

 

When

 

these

 

values

 

were

 

compared

 

to

 

the

BOD

24

 

h

data

 

obtained

 

in

 

this

 

work

 

(

Table

 

2

),

 

the

 

CG

 

samples

showed

 

values

 

of

 

oxygen

 

demand

 

similar

 

to

 

those

 

reported

 

for

non-digested

 

mixtures,

 

while

 

the

 

rest

 

of

 

the

 

digestates

 

had

 

lower

values,

 

within

 

the

 

range

 

proposed

 

for

 

stabilised

 

materials.

 

These

results

 

can

 

be

 

attributed

 

to

 

the

 

high

 

content

 

in

 

CG

 

digestates

 

of

 

OM

easily

 

degradable

 

by

 

microorganisms

 

(DOC,

 

Table

 

1

),

 

which

 

greatly

affected

 

the

 

degree

 

of

 

stability

 

of

 

the

 

digestate.

 

The

 

DOC

 

accounted

for

 

60,

 

64,

 

16,

 

13,

 

41

 

and

 

21%

 

of

 

the

 

TOC

 

for

 

CG4,

 

CG6,

 

CMS,

 

CO,

 

PSB

Table

 

2

Biochemical

 

oxygen

 

demand

 

(BOD)

 

values,

 

expressed

 

as

 

mg

 

O

2

g

−1

DM,

 

obtained

after

 

24

 

h

 

and

 

2,

 

3,

 

4

 

and

 

5

 

days

 

of

 

testing.

Digestate

 

BOD

24

 

h

BOD

2

 

d

BOD

3

 

d

BOD

4

 

d

BOD

5

 

d

CG4

 

195.8

 

456.9

 

587.4

 

718.0

 

979.1

CG6

 

479.9

 

514.2

 

651.3

 

685.6

 

719.8

CMS

 

18.0

 

33.3

 

45.8

 

55.5

 

66.0

CO

 

20.5

 

32.8

 

41.0

 

45.1

 

53.2

PSB

 

33.4

 

54.0

 

82.3

 

100.3

 

110.5

PS

 

50.0

 

73.8

 

85.7

 

97.6

 

107.1

CG4:

 

cattle

 

slurry

 

+

 

4%

 

glycerine,

 

CG6:

 

cattle

 

slurry

 

+

 

6%

 

glycerine,

 

CMS:

 

cattle

slurry

 

+

 

4.3%

 

cattle

 

manure

 

+

 

11.6%

 

maize–oat

 

silage,

 

CO:

 

cattle

 

slurry

 

+

 

5%

 

orange

peel

 

waste,

 

PSB:

 

pig

 

slurry

 

+

 

1.0%

 

sludge

 

from

 

a

 

slaughterhouse

 

wastewater

 

treat-

ment

 

plant

 

+

 

6.5%

 

biodiesel

 

wastewaters,

 

and

 

PS:

 

pig

 

slurry

 

+

 

0.6%

 

pasteurised

slaughterhouse

 

waste.

background image

18

J.A.

 

Alburquerque

 

et

 

al.

 

/

 

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

Incubation

 

 time

 

 (da

 

ys)

0

 

7

 

14

 

21

 

28

 

35

 

42

 

49

 

56

Cumulative CO

2

-C ev

olv

e

d (µg C

 g

-1

)

0

250

500

750

1000

1250

1500

1750

2000

2250

Soil

Soil

 

+ CG6

Soil

 

+ P

 

S

Soil+ CO

Soil

 

+ CG4

Soil+ CMS 

Soil

 

+ P

 

SB

Incuba

 

tio

 

n time (da

 

ys)

0

 

7

 

14

 

21

 

28

 

35

 

42

 

49

 

56

Cumulativ

e mi

neralised-C (% of 

T

O

C)

0

10

20

30

40

50

60

70

80

90

100

110

CG6

PS

CO

CG4

CMS 

PSB

(a) 

(b) 

Fig.

 

1.

 

Cumulative

 

CO

2

–C

 

evolved

 

from

 

soil

 

during

 

incubation

 

(mean

 

value

 

±standard

 

deviation;

 

where

 

absent,

 

bars

 

fall

 

within

 

symbols)

 

(a)

 

and

 

cumulative

 

mineralised-C

from

 

digestate

 

samples

 

added

 

to

 

soil:

 

symbols

 

are

 

experimental

 

data

 

(mean

 

value

 

±standard

 

deviation,

 

n

 

=

 

3)

 

and

 

lines

 

represent

 

the

 

curve-fitting

 

(b).

 

CG4:

 

cattle

 

slurry

 

+

 

4%

glycerine,

 

CG6:

 

cattle

 

slurry

 

+

 

6%

 

glycerine,

 

CMS:

 

cattle

 

slurry

 

+

 

4.3%

 

cattle

 

manure

 

+

 

11.6%

 

maize–oat

 

silage,

 

CO:

 

cattle

 

slurry

 

+

 

5%

 

orange

 

peel

 

waste,

 

PSB:

 

pig

 

slurry

 

+

 

1.0%

sludge

 

from

 

a

 

slaughterhouse

 

wastewater

 

treatment

 

plant

 

+

 

6.5%

 

biodiesel

 

wastewaters,

 

and

 

PS:

 

pig

 

slurry

 

+

 

0.6%

 

pasteurised

 

slaughterhouse

 

waste.

and

 

PS,

 

respectively.

 

Therefore,

 

the

 

higher

 

such

 

percentage

 

was,

the

 

lower

 

microbial

 

stability

 

exhibited.

Although

 

a

 

significant

 

correlation

 

between

 

the

 

BOD

24

 

h

and

BOD

5

 

d

data

 

was

 

obtained

 

(P

 

<

 

0.01),

 

indicating

 

that

 

both

 

param-

eters

 

can

 

be

 

used

 

to

 

characterise

 

the

 

microbial

 

stability

 

of

 

the

digested

 

materials,

 

the

 

5-day

 

measurement

 

can

 

give

 

more

 

reliable

information

 

since

 

the

 

tested

 

materials

 

usually

 

maintained

 

a

 

high

respirometric

 

activity

 

beyond

 

the

 

first

 

24

 

h

 

of

 

testing.

 

The

 

cumula-

tive

 

data

 

followed

 

a

 

linear

 

tendency

 

over

 

time

 

in

 

all

 

samples

 

after

the

 

first

 

24

 

h

 

of

 

BOD

 

testing,

 

reaching

 

steady

 

rates

 

without

 

showing

clear

 

decreases

 

indicating

 

exhaustion

 

of

 

the

 

easily

 

biodegradable

OM

 

fraction

 

in

 

the

 

digestate

 

(

Table

 

2

).

The

 

BOD

5

 

d

values

 

varied

 

considerably

 

among

 

the

 

digestate

 

sam-

ples

 

(

Table

 

1

).

 

Considering

 

that

 

BOD

5

 

d

values

 

for

 

slurry

 

and

 

silage

effluents

 

can

 

be

 

in

 

the

 

range

 

of

 

10–80

 

g

 

L

−1

(

Brookman,

 

1997

)

 

and

BOD

 

reductions

 

of

 

around

 

70%

 

can

 

be

 

reached

 

after

 

anaerobic

 

diges-

tion

 

(

Smith

 

et

 

al.,

 

2007

),

 

the

 

values

 

found

 

in

 

the

 

present

 

study

 

can

 

be

considered

 

normal

 

for

 

digestates

 

with

 

the

 

exception

 

of

 

CG

 

samples

which

 

were

 

clearly

 

higher.

3.2.

 

Carbon

 

mineralisation

 

of

 

digestates

 

in

 

soil

The

 

addition

 

of

 

digestate

 

to

 

the

 

soil

 

caused

 

a

 

rapid

 

development

of

 

microbial

 

activity,

 

reflected

 

by

 

the

 

high

 

release

 

of

 

CO

2

–C

 

dur-

ing

 

the

 

first

 

days

 

of

 

incubation

 

(

Fig.

 

1

a).

 

This

 

was

 

related

 

to

 

the

presence

 

of

 

an

 

easily

 

degradable

 

organic

 

fraction

 

in

 

the

 

digestate

samples,

 

already

 

detected

 

in

 

the

 

BOD

 

test,

 

with

 

clear

 

differences

among

 

samples

 

(the

 

organic

 

load

 

and

 

its

 

microbial

 

stability).

 

Sub-

sequently,

 

the

 

CO

2

–C

 

production

 

rates

 

decreased

 

rapidly

 

during

 

the

first

 

two

 

weeks,

 

reaching

 

nearly

 

constant

 

values

 

at

 

the

 

end

 

of

 

the

incubation

 

(<10

 

␮g

 

C

 

g

−1

soil

 

and

 

day),

 

similar

 

to

 

those

 

obtained

 

in

the

 

unamended

 

soil

 

as

 

the

 

easily

 

mineralisable

 

OM

 

sources

 

were

exhausted.

The

 

amount

 

of

 

CO

2

–C

 

evolved

 

from

 

digestate-treated

 

soil

 

after

56

 

days

 

of

 

incubation

 

(mineralised-C)

 

increased

 

significantly

 

in

 

the

order

 

(mean

 

value):

 

639

 

<

 

653

 

<

 

730

 

<

 

948

 

<

 

1027

 

<

 

1679

 

␮g

 

C

 

g

−1

soil

 

for

 

soil

 

treated

 

with

 

CO,

 

PS,

 

PSB,

 

CMS,

 

CG4

 

and

 

CG6,

 

respec-

tively

 

(

Fig.

 

1

a).

 

The

 

TOC

 

mineralised

 

from

 

the

 

digestate

 

(C

m

)

 

also

reflected

 

the

 

different

 

biodegradability

 

of

 

the

 

OM

 

present

 

in

 

the

digestates

 

(

Fig.

 

1

b).

 

At

 

the

 

end

 

of

 

the

 

incubation,

 

CO

 

showed

 

the

lowest

 

percentage

 

of

 

C

m

(16%

 

of

 

TOC),

 

followed

 

by

 

CMS

 

and

 

PS

 

(30

and

 

34%,

 

respectively),

 

which

 

were

 

much

 

lower

 

than

 

for

 

the

 

CG4

and

 

CG6

 

digestates

 

(60

 

and

 

63%

 

of

 

TOC,

 

respectively).

 

Thus,

 

CMS,

PS

 

and,

 

especially,

 

CO

 

showed

 

a

 

more

 

recalcitrant

 

nature

 

than

 

the

digestates

 

from

 

the

 

glycerine

 

mixtures,

 

in

 

agreement

 

with

 

the

 

BOD

and

 

DOC

 

results.

 

Also,

 

more

 

than

 

100%

 

of

 

the

 

TOC

 

added

 

with

 

PSB

had

 

been

 

mineralised

 

after

 

56

 

days

 

of

 

incubation,

 

indicating

 

degra-

dation

 

of

 

native

 

soil

 

TOC

 

during

 

incubation

 

(priming

 

effect).

 

Bernal

and

 

Kirchmann

 

(1992)

 

found

 

that

 

the

 

addition

 

to

 

soil

 

of

 

anaerobi-

cally

 

treated

 

pig

 

manure

 

led

 

to

 

105%

 

mineralised-C

 

after

 

70

 

days,

related

 

to

 

the

 

presence

 

of

 

a

 

high

 

amount

 

of

 

easily

 

degradable

 

OM.

The

 

addition

 

to

 

soil

 

of

 

organic

 

materials

 

with

 

a

 

low

 

C/N

 

ratio,

 

such

as

 

PSB

 

(

Table

 

1

),

 

favours

 

high

 

C-mineralisation

 

rates

 

as

 

noted

 

by

Riffaldi

 

et

 

al.

 

(1996)

.

Our

 

results

 

agree

 

well

 

with

 

those

 

obtained

 

by

 

Bernal

 

and

Kirchmann

 

(1992)

 

and

 

Kirchmann

 

and

 

Lundvall

 

(1993)

 

for

 

soil

treated

 

with

 

fresh

 

and

 

aerobically

 

or

 

anaerobically

 

treated

 

ani-

mal

 

slurry

 

and

 

manures,

 

from

 

similar

 

incubation

 

experiments.

The

 

percentages

 

of

 

TOC

 

evolved

 

from

 

these

 

materials

 

after

 

70

days

 

of

 

incubation

 

ranged

 

from

 

23

 

to

 

105%,

 

depending

 

on

 

the

biodegradability

 

of

 

the

 

OM

 

and

 

the

 

presence

 

of

 

highly

 

available

organic

 

compounds

 

to

 

microorganisms

 

under

 

aerobic

 

condi-

tions.

 

Such

 

compounds

 

can

 

accumulate

 

in

 

digested

 

materials

when

 

degradation

 

of

 

complex

 

substrates

 

into

 

simple

 

and

 

water-

soluble

 

compounds

 

(hydrolysis)

 

and

 

their

 

subsequent

 

degradation

to

 

produce

 

methane

 

(methanogenesis)

 

are

 

not

 

completely

 

bal-

anced

 

during

 

anaerobic

 

digestion,

 

leading

 

to

 

the

 

production

 

of

unstable

 

materials

 

(

Drennan

 

and

 

DiStefano,

 

2010;

 

Pesta,

 

2007;

Schievano

 

et

 

al.,

 

2010

).

 

The

 

presence

 

of

 

such

 

intermediate

 

products

could

 

enhance

 

soil

 

microbial

 

activity

 

and

 

oxygen

 

demand

 

when

digestates

 

are

 

added

 

to

 

soil,

 

resulting

 

in

 

oxygen

 

depletion

 

and

N-immobilisation

 

(

Bernal

 

and

 

Kirchmann,

 

1992;

 

Kirchmann

 

and

Lundvall,

 

1993

).

The

 

dynamic

 

of

 

C-mineralisation

 

from

 

the

 

CG4

 

and

 

CG6

 

diges-

tates

 

in

 

the

 

soil

 

fitted

 

to

 

a

 

combined

 

first-

 

and

 

zero-order

 

kinetic

model

 

(

Table

 

3

),

 

which

 

suggests

 

the

 

presence

 

of

 

two

 

different

pools

 

of

 

OM

 

in

 

these

 

digestate

 

samples

 

of

 

different

 

degradability:

 

a

labile

 

pool,

 

which

 

was

 

quickly

 

decomposed

 

in

 

soil

 

during

 

an

 

initial,

intense

 

phase

 

of

 

microbial

 

respiration

 

(about

 

50%

 

of

 

the

 

added

 

TOC,

with

 

high

 

k

 

values),

 

and

 

another,

 

more

 

resistant

 

to

 

microbial

 

degra-

dation

 

and

 

hence

 

mineralised

 

at

 

a

 

low,

 

constant

 

rate

 

with

 

time.

 

In

the

 

CG

 

samples,

 

the

 

addition

 

of

 

glycerine

 

as

 

co-digestion

 

substrate

may

 

have

 

increased

 

the

 

labile

 

pool

 

of

 

TOC,

 

resulting

 

in

 

high

 

insta-

bility

 

with

 

regard

 

to

 

microbial

 

breakdown.

 

The

 

high

 

percentage

 

of

background image

J.A.

 

Alburquerque

 

et

 

al.

 

/

 

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

19

Table

 

3

Parameters

 

of

 

the

 

kinetic

 

models

 

used

 

to

 

describe

 

C-mineralisation

 

of

 

the

 

digestates

 

(

±

 

standard

 

error)

 

and

 

the

 

statistical

 

significance

 

of

 

the

 

non-linear

 

curve-fitting

 

(RMS:

residual

 

mean

 

square,

 

F-value

 

of

 

the

 

ANOVA).

Combined

 

first-

 

and

 

zero-order

 

function:

 

C

m

=

 

C

R

(1

 

 

e

−k

R

t

)

 

+

 

At

Digestate

 

C

m

(%

 

of

 

TOC)

 

C

R

k

R

A

 

RMS

 

F

CG4

 

59.8

 

±

 

2.4

 

52.0

 

±

 

0.6

 

0.330

 

±

 

0.011

 

0.143

 

±

 

0.017

 

0.498

 

3015

*

CG6

 

63.0

 

±

 

0.8

 

46.5

 

±

 

0.5

 

0.362

 

±

 

0.013

 

0.305

 

±

 

0.015

 

0.436

 

3577

*

First

 

order

 

function:

 

C

m

=

 

C

0

(1

 

− e

−kt

)+B

Digestate

 

C

m

(%

 

of

 

TOC)

 

C

0

k

 

B

 

RMS

 

F

CMS

 

30.1

 

±

 

1.2

 

28.9

 

±

 

0.6

 

0.078

 

±

 

0.004

 

 

0.757

 

1447

*

CO

16.1

 

±

 

3.8

16.4

 

±

 

0.3

0.272

 

±

 

0.023

0.425

 

574

*

PSB

108

 

±

 

4.4

106

 

±

 

10

0.025

 

±

 

0.005

 

30.2

 

±

 

1.9

 

4.625

 

568

*

PS

 

34.2

 

±

 

4.8

 

35.5

 

±

 

1.5

 

0.289

 

±

 

0.049

 

 

8.119

 

133

*

CG4:

 

cattle

 

slurry

 

+

 

4%

 

glycerine,

 

CG6:

 

cattle

 

slurry

 

+

 

6%

 

glycerine,

 

CMS:

 

cattle

 

slurry

 

+

 

4.3%

 

cattle

 

manure

 

+

 

11.6%

 

maize–oat

 

silage,

 

CO:

 

cattle

 

slurry

 

+

 

5%

 

orange

 

peel

 

waste,

PSB:

 

pig

 

slurry

 

+

 

1.0%

 

sludge

 

from

 

a

 

slaughterhouse

 

wastewater

 

treatment

 

plant

 

+

 

6.5%

 

biodiesel

 

wastewaters,

 

and

 

PS:

 

pig

 

slurry

 

+

 

0.6%

 

pasteurised

 

slaughterhouse

 

waste.

 

‘–’:

parameter

 

not

 

included

 

in

 

the

 

curve-fitting.

 

C

m

:

 

mineralised-C

 

(%

 

of

 

TOC)

 

after

 

56

 

days

 

of

 

incubation,

 

and

 

t:

 

incubation

 

time

 

(days).

 

In

 

the

 

combined

 

first-

 

and

 

zero-order

function:

 

C

R

,

 

rapid

 

potentially

 

mineralisable-C

 

(%

 

of

 

TOC);

 

k

R

,

 

rapid

 

rate

 

constant

 

(day

−1

);

 

A

 

(%

 

of

 

TOC

 

day

−1

),

 

slowly

 

mineralisable-C

 

rate

 

(equivalent

 

to

 

“C

S

×

 

k

S

”;

 

C

S

:

 

slowly

mineralisable-C

 

and

 

k

S

:

 

the

 

slow

 

rate

 

constant).

 

In

 

the

 

first

 

order:

 

C

0

,

 

potentially

 

mineralisable-C

 

(%

 

of

 

TOC)

 

and

 

k,

 

rate

 

constant

 

(day

−1

).

 

The

 

constant

 

term

 

(B)

 

indicates

 

the

initial

 

mineralisation

 

flux

 

detected

 

in

 

the

 

PSB

 

sample

 

(%

 

of

 

TOC).

*

Significant

 

at

 

probability

 

level

 

P

 

<

 

0.001.

TOC

 

from

 

CG

 

digestates

 

evolved

 

as

 

CO

2

–C

 

during

 

the

 

first

 

stage

of

 

incubation

 

is

 

typical

 

of

 

non-treated

 

animal

 

manure

 

and

 

slurries

(

Dendooven

 

et

 

al.,

 

1998;

 

Kirchmann

 

and

 

Lundvall,

 

1993

),

 

identify-

ing

 

them

 

as

 

unstable

 

materials.

 

The

 

C-mineralisation

 

of

 

the

 

CMS,

CO

 

and

 

PS

 

digestates

 

fitted

 

better

 

to

 

a

 

first-order

 

kinetic

 

model,

with

 

a

 

potentially

 

mineralisable-C

 

of

 

16.4–35.5%

 

(

Table

 

3

),

 

indicat-

ing

 

the

 

existence

 

in

 

these

 

digestates

 

of

 

a

 

predominant

 

proportion

of

 

OM

 

that

 

is

 

hardly

 

degradable

 

under

 

both

 

anaerobic

 

and

 

aerobic

conditions.

 

The

 

PSB

 

dynamic

 

of

 

C-mineralisation

 

needed

 

an

 

inde-

pendent

 

parameter

 

(B)

 

to

 

show

 

the

 

initial

 

flux

 

of

 

CO

2

–C

 

evolved

(30%

 

of

 

the

 

TOC

 

added),

 

suggesting

 

the

 

elevated

 

presence

 

of

 

an

 

OM

fraction

 

susceptible

 

to

 

rapid

 

mineralisation

 

(

Riffaldi

 

et

 

al.,

 

1996

).

Although

 

this

 

digestate

 

had

 

the

 

lowest

 

OM

 

concentration,

 

it

 

was

highly

 

unstable

 

according

 

to

 

the

 

BOD

5

 

d

test

 

(

Table

 

2

).

3.3.

 

Nitrogen

 

dynamics

 

in

 

digestate-treated

 

soil

As

 

shown

 

in

 

Fig.

 

2

,

 

all

 

the

 

digestates

 

supplied

 

NH

4

–N

 

to

 

the

soil.

 

During

 

the

 

first

 

week

 

of

 

incubation,

 

the

 

inorganic-N

 

concen-

tration

 

decreased

 

in

 

most

 

of

 

the

 

amended

 

soils,

 

due

 

mainly

 

to

 

a

reduction

 

in

 

NH

4

–N.

 

However,

 

during

 

the

 

initial

 

stage

 

of

 

incuba-

tion,

 

the

 

NO

3

–N

 

concentration

 

also

 

decreased

 

in

 

soil

 

treated

 

with

CG

 

samples

 

(

Fig.

 

2

).

 

The

 

initial

 

inorganic-N

 

had

 

decreased

 

after

 

7

days

 

and

 

accounted

 

for

 

8,

 

17,

 

22

 

and

 

60

 

␮g

 

N

 

g

−1

soil

 

for

 

soil

 

treated

with

 

CO,

 

PS,

 

PSB

 

and

 

CMS,

 

respectively,

 

while

 

the

 

decrease

 

was

even

 

faster

 

after

 

CG4

 

or

 

CG6

 

addition:

 

74

 

and

 

115

 

␮g

 

N

 

g

−1

soil,

respectively

 

(after

 

2

 

days,

 

Fig.

 

2

).

 

Such

 

initial

 

decreases

 

in

 

inorganic-

N

 

could

 

be

 

due

 

to

 

microbial

 

immobilisation,

 

since

 

a

 

concomitant

strong

 

C-mineralisation

 

was

 

found

 

in

 

all

 

treated

 

soils

 

(

Fig.

 

1

),

 

which

0

 

14

 

28

 

42

 

56

µg N g

-1

0

50

100

150

200

250

300

µg N g

-1

0

50

100

150

200

250

300

350

Soil+CG4

Soil+PS

 

B

0

 

14

 

28

 

42

 

56

Soil+PS

Soi

 

l

0

 

14

 

28

 

42

 

56

Soil+CG6

 

Soil+CMS

14

 

28

 

42

 

56

Soil+CO

Soil

Incubation time (days)

NO

3

-N

NH

4

-N

Inorganic-

 

N (NH

4

-N + NO

3

-N)

Fig.

 

2.

 

Evolution

 

of

 

inorganic-N

 

in

 

a

 

soil

 

treated

 

with

 

digestates

 

during

 

incubation

 

(mean

 

value

 

±standard

 

deviation;

 

where

 

absent,

 

bars

 

fall

 

within

 

symbols).

 

CG4:

 

cattle

slurry

 

+

 

4%

 

glycerine,

 

CG6:

 

cattle

 

slurry

 

+

 

6%

 

glycerine,

 

CMS:

 

cattle

 

slurry

 

+

 

4.3%

 

cattle

 

manure

 

+

 

11.6%

 

maize–oat

 

silage,

 

CO:

 

cattle

 

slurry

 

+

 

5%

 

orange

 

peel

 

waste,

 

PSB:

 

pig

slurry

 

+

 

1.0%

 

sludge

 

from

 

a

 

slaughterhouse

 

wastewater

 

treatment

 

plant

 

+

 

6.5%

 

biodiesel

 

wastewaters,

 

and

 

PS:

 

pig

 

slurry

 

+

 

0.6%

 

pasteurised

 

slaughterhouse

 

waste.

background image

20

J.A.

 

Alburquerque

 

et

 

al.

 

/

 

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

also

 

indicates

 

high

 

activity

 

of

 

soil

 

microorganisms.

 

Kirchmann

and

 

Lundvall

 

(1993)

 

also

 

detected

 

an

 

initial

 

period

 

of

 

inorganic-

N

 

immobilisation,

 

of

 

up

 

to

 

200

 

␮g

 

N

 

g

−1

soil,

 

after

 

amending

 

soil

with

 

animal

 

slurries.

A

 

significant,

 

inverse

 

correlation

 

(r

 

=

 

−0.949

 

at

 

P

 

<

 

0.01)

 

between

the

 

net

 

N-mineralisation

 

and

 

mineralised-C

 

(microbial

 

respiration)

was

 

obtained

 

in

 

the

 

present

 

study

 

(data

 

at

 

56

 

days).

 

The

 

addition

to

 

soil

 

of

 

high

 

amounts

 

of

 

easily

 

degradable

 

OM

 

in

 

the

 

digestates

should

 

induce

 

a

 

quick

 

development

 

of

 

the

 

microbial

 

population,

immobilising

 

inorganic-N

 

for

 

tissue

 

synthesis

 

(

Kirchmann

 

and

Lundvall,

 

1993;

 

Qiu

 

et

 

al.,

 

2008

).

 

Although

 

preferential

 

microbial

immobilisation

 

of

 

NH

4

over

 

NO

3

is

 

generally

 

accepted,

 

microbial

assimilation

 

of

 

NO

3

as

 

a

 

N

 

source

 

can

 

occur

 

(

Drury

 

et

 

al.,

 

1991;

Myrold

 

and

 

Posavatz,

 

2007

).

 

But,

 

N-losses

 

by

 

denitrification

 

cannot

be

 

discounted

 

in

 

the

 

soils

 

treated

 

with

 

CG4

 

or

 

CG6,

 

which

 

sup-

plied

 

high

 

amounts

 

of

 

unstable

 

OM

 

to

 

the

 

soil

 

and

 

produced

 

intense

microbial

 

respiration

 

(CO

2

–C

 

production,

 

Fig.

 

1

a).

 

This

 

high

 

respi-

ration

 

during

 

the

 

first

 

days

 

of

 

incubation

 

could

 

have

 

reduced

 

the

oxygen

 

concentration

 

in

 

the

 

soil

 

system,

 

leading

 

to

 

N-losses

 

by

 

den-

itrification

 

(

Clemens

 

and

 

Huschka,

 

2001;

 

Dendooven

 

et

 

al.,

 

1998

).

After

 

the

 

immobilisation

 

period,

 

inorganic-N

 

increased,

 

indicating

re-mineralisation

 

and

 

nitrification.

The

 

net

 

N-mineralisation

 

after

 

56

 

days

 

of

 

incubation

 

was:

 

+7,

−2,

 

+18,

 

−15,

 

−39

 

and

 

−77

 

␮g

 

N

 

g

−1

soil,

 

for

 

soil

 

amended

 

with

 

CO,

PS,

 

PSB,

 

CMS,

 

CG4

 

and

 

CG6,

 

respectively

 

(

Fig.

 

2

).

 

These

 

values

 

were

equivalent

 

to

 

net

 

N-mineralisation

 

from

 

the

 

digestate

 

(N

m

)

 

of

 

−10,

−15,

 

−8,

 

−19,

 

−68

 

and

 

−96%

 

for

 

CO,

 

PS,

 

PSB,

 

CMS,

 

CG4

 

and

 

CG6,

respectively,

 

indicating

 

the

 

proportion

 

of

 

the

 

TN

 

from

 

the

 

digestate

samples

 

which

 

had

 

been

 

immobilised

 

in

 

the

 

soil.

The

 

PSB,

 

CMS,

 

CO

 

and

 

PS

 

samples

 

led

 

to

 

fast

 

NO

3

-N

 

produc-

tion

 

in

 

the

 

soil

 

after

 

an

 

initial

 

lag

 

phase

 

(related

 

to

 

adaptation

and/or

 

immobilisation

 

periods)

 

and,

 

concomitantly,

 

to

 

a

 

decrease

in

 

NH

4

–N,

 

due

 

to

 

nitrification

 

(

Fig.

 

2

).

 

The

 

percentage

 

of

 

TN

 

added

in

 

digestates

 

that

 

had

 

converted

 

into

 

nitrate

 

after

 

56

 

days

 

(nitrate

conversion:

 

NC),

 

was

 

44%,

 

50%,

 

59%

 

and

 

84%

 

for

 

CO,

 

CMS,

 

PS-MW

and

 

PSB,

 

respectively.

 

These

 

results

 

indicate

 

the

 

N-fertiliser

 

value

of

 

the

 

digestates,

 

as

 

nitrate

 

is

 

the

 

main

 

form

 

of

 

N

 

taken

 

up

 

by

 

plants

from

 

the

 

soil.

3.4.

 

Characteristics

 

of

 

the

 

digestate

 

defining

 

the

 

C

 

and

 

N

dynamics

 

in

 

soil

The

 

digestate

 

composition

 

and

 

stability

 

parameters

 

(BOD

5

 

d

and

 

C-mineralisation

 

in

 

soil)

 

were

 

highly

 

interrelated

 

(

Table

 

4

),

with

 

highly

 

significant

 

correlations

 

between

 

DOC

 

and

 

BOD

24

 

h

and

BOD

5

 

d

and

 

the

 

7-day

 

C-mineralisation

 

from

 

digestate

 

(C

7

 

d

).

 

The

latter

 

is

 

in

 

agreement

 

with

 

the

 

results

 

presented

 

by

 

Trinsoutrot

et

 

al.

 

(2000)

,

 

who

 

related

 

the

 

amount

 

of

 

TOC

 

mineralised

 

from

crop

 

residues

 

after

 

7

 

days

 

of

 

incubation

 

in

 

soil

 

mainly

 

to

 

the

 

water-

soluble

 

organic

 

fraction

 

added

 

with

 

the

 

amendments.

 

In

 

addition,

DOC,

 

BOD

24

 

h

,

 

BOD

5

 

d

and

 

C

7

 

d

correlated

 

significantly

 

with

 

key

parameters

 

which

 

define

 

C

 

and

 

N

 

turnover

 

in

 

soil

 

after

 

digestate

addition,

 

such

 

as

 

mineralised-C

 

and

 

both

 

N

m

and

 

NC;

 

however,

 

for

the

 

two

 

latter

 

parameters,

 

the

 

DOC/TN

 

and

 

C

7

 

d

/TN

 

ratios

 

showed

the

 

most

 

significant

 

correlations

 

(

Table

 

4

).

 

These

 

results

 

suggest

that

 

DOC,

 

BOD

5

 

d

and

 

C

7

 

d

,

 

which

 

represent

 

the

 

most

 

labile

 

organic

fraction

 

of

 

the

 

digested

 

materials,

 

together

 

with

 

their

 

ratios

 

with

respect

 

to

 

the

 

TN,

 

can

 

be

 

considered

 

reliable

 

criteria

 

to

 

assess

 

C

and

 

N

 

dynamics

 

in

 

soil

 

after

 

digestate

 

addition.

 

Although

 

the

 

com-

position

 

of

 

the

 

digestates

 

differed

 

quite

 

a

 

lot

 

in

 

the

 

present

 

study,

significant

 

regression

 

equations

 

were

 

obtained,

 

which

 

allows

 

cau-

tious

 

prediction

 

of

 

the

 

C-mineralisation

 

and

 

N-fertilising

 

potential

of

 

these

 

materials

 

in

 

soil,

 

especially

 

from

 

BOD

 

data

 

(in

 

mg

 

L

−1

),

avoiding

 

time

 

consuming

 

procedures

 

of

 

mineralisation

 

tests

 

in

 

soil:

Mineralised-C

 

(

␮g

 

C

 

g

−1

soil)

 

=

 

523.4

 

×

 

log

 

BOD

24

 

h

 

812.9;

 

r

2

=

 

0.903

 

(P

 

<

 

0.01).

N

m

(%)

 

=

 

−51.0

 

×

 

logBOD

24

 

h

+

 

135.4;

 

r

2

=

 

0.970

 

(P

 

<

 

0.001).

N

m

(%)

 

=

 

−51.6

 

×

 

logBOD

5

 

d

+

 

160.8;

 

r

2

=

 

0.915

 

(P

 

<

 

0.01).

NC

 

(%)

 

=

 

−69.8

 

×

 

logBOD

24

 

h

+

 

262.0;

 

r

2

=

 

0.892

 

(P

 

<

 

0.01).

NC

 

(%)

 

=

 

−87.7

 

×

 

log(DOC/TN)

 

+

 

46.5;

 

r

2

=

 

0.915

 

(P

 

<

 

0.01).

According

 

to

 

the

 

BOD,

 

DOC

 

and

 

DOC/TN

 

data,

 

digestates

 

from

cattle

 

slurry–glycerine

 

mixtures

 

(CG

 

samples)

 

constitute

 

a

 

group

clearly

 

different

 

from

 

the

 

rest

 

of

 

the

 

digestates

 

and

 

represent

 

highly

biodegradable

 

materials,

 

indicating

 

that

 

anaerobic

 

co-digestion

 

in

this

 

case

 

did

 

not

 

produce

 

stable

 

materials.

 

The

 

CG

 

digestates

 

were

characterised

 

by

 

the

 

highest

 

DOC

 

concentrations

 

(>10

 

g

 

L

−1

fresh

weight,

 

accounting

 

for

 

>59%

 

of

 

TOC),

 

DOC/TN

 

>

 

5,

 

BOD

5

 

d

>

 

37

 

g

 

L

−1

fresh

 

weight

 

and

 

the

 

lowest

 

percentages

 

of

 

TN

 

as

 

NH

4

–N

 

(52

 

and

38%

 

for

 

CG4

 

and

 

CG6,

 

respectively).

 

These

 

digestates

 

were

 

charac-

terised

 

by

 

an

 

intense

 

initial

 

period,

 

with

 

a

 

high

 

respiration

 

activity,

after

 

their

 

addition

 

to

 

soil—during

 

which

 

N

 

was

 

mainly

 

immo-

bilised.

 

This

 

limits

 

their

 

N-fertilising

 

potential

 

and

 

hence

 

their

possible

 

use

 

in

 

agriculture,

 

since

 

further

 

stabilisation

 

is

 

necessary

before

 

their

 

use.

In

 

contrast,

 

the

 

CO

 

and

 

PS

 

samples

 

showed

 

the

 

lowest

 

DOC

 

con-

centrations

 

(1.2

 

g

 

L

−1

each,

 

accounting

 

for

 

only

 

12

 

and

 

21%

 

of

 

TOC

for

 

CO

 

and

 

PS,

 

respectively)

 

and

 

a

 

high

 

stability

 

degree

 

according

to

 

the

 

BOD

5

 

d

test

 

(

Table

 

1

),

 

which

 

led

 

to

 

the

 

lowest

 

CO

2

–C

 

produc-

tion

 

in

 

the

 

soil

 

(

Fig.

 

1

a).

 

These

 

digestates

 

showed

 

DOC/TN

 

ratios

<1,

 

clearly

 

lower

 

than

 

those

 

of

 

the

 

CG

 

samples,

 

and

 

high

 

percent-

Table

 

4

Significant

 

correlations

 

found

 

among

 

parameters

 

related

 

to

 

digestate

 

composition,

 

and

 

C-

 

and

 

N-mineralisation

 

dynamics

 

(n

 

=

 

6).

Parameters

 

C

7

 

d

C

7

 

d

/TN

 

Mineralised-C

 

DOC

 

DOC/TN

 

BOD

24

 

h

BOD

5

 

d

Net

 

N-min

 

N

m

NC

C

7

 

d

1

C

7

 

d

/TN

 

0.932

**

1

Mineralised-C

 

0.948

**

0.889

*

1

DOC

 

0.995

***

0.914

*

0.943

**

1

DOC/TN

 

0.957

**

0.991

***

0.912

*

0.951

**

1

BOD

24

 

h

0.969

**

0.945

**

0.950

**

0.943

**

0.944

**

1

BOD

5

 

d

0.975

**

0.944

**

0.880

*

0.959

**

0.953

**

0.966

**

1

Net

 

N-min

 

0.937

**

−0.943

**

−0.949

**

0.915

*

−0.940

**

0.986

***

0.936

*

1

N

m

0.946

**

−0.977

**

−0.918

*

0.914

*

−0.961

**

0.985

***

0.956

**

0.969

**

1

NC

 

0.884

*

−0.981

**

−0.878

*

0.855

*

−0.956

**

0.944

**

0.908

*

0.962

**

0.975

**

1

C

7

 

d

:

 

7-day

 

C-mineralisation

 

from

 

digestate

 

(mg

 

L

−1

fresh

 

digestate

 

weight),

 

mineralised-C:

 

the

 

amount

 

of

 

CO

2

–C

 

evolved

 

from

 

digestate-treated

 

soil

 

after

 

56

 

days

 

of

 

incubation

(

␮g

 

C

 

g

−1

dry

 

soil),

 

DOC:

 

dissolved

 

organic

 

carbon

 

(mg

 

L

−1

fresh

 

digestate

 

weight),

 

BOD

24

 

h

:

 

24-h

 

biochemical

 

oxygen

 

demand

 

(mg

 

O

2

L

−1

fresh

 

digestate

 

weight),

 

BOD

5

 

d

:

5-day

 

biochemical

 

oxygen

 

demand

 

(mg

 

O

2

L

−1

fresh

 

digestate

 

weight),

 

TN:

 

total

 

nitrogen

 

(mg

 

L

−1

fresh

 

digestate

 

weight),

 

net

 

N-min:

 

the

 

net

 

N-mineralisation

 

in

 

the

 

amended

soils

 

after

 

56

 

days

 

of

 

incubation

 

(

␮g

 

N

 

g

−1

dry

 

soil),

 

N

m

:

 

nitrogen

 

mineralisation

 

after

 

56

 

days

 

of

 

incubation

 

(%

 

of

 

TN

 

from

 

digestate)

 

and

 

NC:

 

nitrate

 

conversion

 

as

 

a

 

percentage

of

 

added

 

TN

 

that

 

had

 

been

 

converted

 

into

 

nitrate

 

from

 

digestate

 

after

 

56

 

days

 

of

 

incubation

 

in

 

soil

 

(%

 

of

 

TN

 

from

 

digestate).

*

Significant

 

at

 

probability

 

level

 

P

 

<

 

0.05.

**

Significant

 

at

 

probability

 

level

 

P

 

<

 

0.01.

***

Significant

 

at

 

probability

 

level

 

P

 

<

 

0.001.

background image

J.A.

 

Alburquerque

 

et

 

al.

 

/

 

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

21

ages

 

of

 

TN

 

as

 

NH

4

–N

 

(>50%),

 

which

 

improve

 

the

 

soil

 

N

 

balance

 

(44

and

 

59%

 

of

 

added

 

TN

 

for

 

CO

 

and

 

PS,

 

respectively,

 

was

 

converted

into

 

nitrate

 

with

 

low

 

N-immobilisation),

 

representing

 

an

 

available

N

 

source

 

for

 

plants.

 

Based

 

on

 

the

 

characteristics

 

of

 

such

 

diges-

tates,

 

DOC

 

<

 

1.5

 

g

 

L

−1

(<25%

 

of

 

TOC),

 

BOD

5

 

d

<

 

2.5

 

g

 

L

−1

,

 

C

m

<

 

35%

 

and

DOC/TN

 

<

 

1

 

can

 

be

 

used

 

to

 

define

 

a

 

high

 

quality

 

digestate

 

appropri-

ate

 

for

 

use

 

as

 

a

 

fertiliser.

The

 

characteristics

 

of

 

the

 

PSB

 

and

 

CMS

 

digestates

 

showed

 

a

higher

 

similarity

 

to

 

CO

 

and

 

PS

 

(stable

 

digested

 

materials)

 

than

 

to

 

the

CG

 

samples

 

(highly

 

unstable).

 

The

 

PSB

 

sample

 

showed

 

a

 

relatively

low

 

BOD

5

 

d

value,

 

in

 

accordance

 

with

 

its

 

low

 

TOC

 

content

 

(5.9

 

g

 

L

−1

fresh

 

weight);

 

however,

 

it

 

was

 

highly

 

labile

 

(41%

 

of

 

TOC

 

as

 

DOC)

 

and

had

 

the

 

highest

 

percentage

 

of

 

TN

 

as

 

NH

4

–N

 

(87%).

 

This,

 

combined

with

 

its

 

low

 

DOC/TN

 

ratio

 

(0.6),

 

could

 

explain

 

the

 

observed

 

priming

effect

 

on

 

C-mineralisation

 

when

 

PSB

 

was

 

added

 

to

 

soil;

 

however,

negative

 

effects

 

on

 

the

 

soil

 

N

 

dynamic

 

were

 

not

 

seen.

 

Finally,

 

the

CMS

 

sample

 

showed

 

an

 

acceptable

 

degree

 

of

 

stability

 

considering

its

 

much

 

higher

 

organic

 

load

 

relative

 

to

 

CO

 

and

 

PS

 

(33.7

 

g

 

TOC

 

L

−1

fresh

 

weight,

 

only

 

16%

 

as

 

DOC);

 

however,

 

it

 

showed

 

a

 

relatively

high

 

CO

2

–C

 

production

 

at

 

the

 

end

 

of

 

the

 

incubation,

 

similar

 

to

 

that

resulting

 

from

 

CG4

 

addition

 

to

 

soil.

 

The

 

CMS

 

sample

 

had

 

a

 

DOC/TN

ratio

 

of

 

1.4

 

with

 

61%

 

of

 

its

 

TN

 

as

 

NH

4

–N,

 

leading

 

to

 

a

 

percentage

conversion

 

of

 

TN

 

into

 

nitrate

 

of

 

about

 

50%.

 

Therefore,

 

digestate

properties

 

such

 

as

 

DOC

 

<

 

5.5

 

g

 

L

−1

(<45%

 

of

 

TOC),

 

BOD

5

 

d

<

 

6.0

 

g

 

L

−1

and

 

DOC/TN

 

<

 

1.5

 

can

 

be

 

established

 

as

 

less

 

restrictive

 

quality

 

cri-

teria

 

compared

 

with

 

those

 

defined

 

previously

 

for

 

stable

 

digested

materials.

 

The

 

suitable

 

land

 

application

 

of

 

these

 

digestates

 

may

require

 

some

 

precautions

 

depending

 

on

 

the

 

land

 

use

 

and

 

manage-

ment.

 

A

 

curing

 

or

 

maturation

 

period

 

may

 

be

 

necessary

 

in

 

order

 

to

increase

 

digestate

 

stability

 

or

 

to

 

allow

 

digestates

 

to

 

stabilise

 

in

 

soil

before

 

sowing.

4.

 

Conclusions

Our

 

results

 

demonstrate

 

that

 

digestate

 

composition

 

and

 

stabil-

ity

 

degree

 

can

 

vary

 

greatly

 

depending

 

on

 

the

 

raw

 

materials

 

used

 

for

co-digestion

 

and

 

process

 

characteristics.

 

Therefore,

 

the

 

anaerobic

co-digestion,

 

including

 

the

 

selection

 

of

 

co-substrates,

 

must

 

guaran-

tee

 

that

 

a

 

certain

 

degree

 

of

 

OM

 

stability

 

of

 

the

 

digested

 

material

 

is

reached

 

in

 

order

 

to

 

avoid

 

detrimental

 

effects

 

on

 

the

 

plant–soil

 

sys-

tem.

 

These

 

are

 

mainly

 

conditioned

 

by

 

the

 

biodegradability

 

of

 

the

digested

 

material

 

obtained,

 

which

 

determines

 

whether

 

the

 

diges-

tate

 

can

 

be

 

used

 

directly

 

(highly

 

stable),

 

after

 

a

 

curing/maturation

period

 

(moderately

 

stable)

 

or

 

after

 

aerobic

 

post-treatments

 

to

achieve

 

stabilisation

 

(highly

 

unstable).

In

 

this

 

context,

 

the

 

biochemical

 

oxygen

 

demand

 

(BOD

24

 

h

or

BOD

5

 

d

),

 

dissolved

 

organic-C

 

(DOC)

 

together

 

with

 

the

 

DOC/TN

 

can

be

 

considered

 

the

 

most

 

reliable

 

parameters

 

to

 

describe

 

digestate

biodegradability

 

and

 

hence

 

provide

 

a

 

quick

 

estimation

 

of

 

the

 

main

effects

 

on

 

C

 

and

 

N

 

turnover

 

produced

 

by

 

digestate

 

addition

 

to

 

soil.

Highly

 

unstable

 

and

 

easily

 

biodegradable

 

materials,

 

represented

in

 

our

 

study

 

by

 

digestate

 

from

 

cattle

 

slurry–glycerine

 

mixtures

(BOD

5

 

d

>

 

37

 

g

 

O

2

L

−1

fresh

 

weight,

 

DOC

 

>

 

10

 

g

 

L

−1

fresh

 

weight

 

and

DOC/TN

 

>

 

5),

 

gave

 

rise

 

to

 

a

 

strong

 

CO

2

–C

 

production

 

and

 

a

 

loss

 

of

N-fertiliser

 

value

 

through

 

N-immobilisation

 

in

 

soil.

 

These

 

materials

need

 

more

 

extensive

 

biological

 

treatment,

 

such

 

as

 

aerobic

 

stabilisa-

tion,

 

in

 

order

 

to

 

reduce

 

potential

 

detrimental

 

impacts.

 

In

 

contrast,

ammonium

 

in

 

the

 

more

 

stable

 

digested

 

materials

 

was

 

oxidised

 

by

nitrifiers

 

in

 

the

 

very

 

short

 

term.

 

These

 

less

 

biodegradable

 

digested

materials

 

(BOD

5

 

d

<

 

6.0

 

g

 

O

2

L

−1

fresh

 

weight,

 

DOC

 

<

 

5.5

 

g

 

L

−1

fresh

weight

 

and

 

DOC/TN

 

<

 

1.5)

 

showed

 

a

 

scaled

 

degree

 

of

 

stability,

from

 

highly

 

stabilised

 

materials,

 

which

 

can

 

be

 

used

 

directly

 

in

soils

 

as

 

fertilisers,

 

to

 

moderately

 

stabilised

 

materials,

 

which

 

may

need

 

a

 

curing/maturation

 

period

 

or

 

stabilisation

 

in

 

the

 

soil

 

before

sowing.

Acknowledgements

This

 

research

 

was

 

funded

 

by

 

the

 

“Ministerio

 

de

 

Ciencia

 

e

 

Inno-

vación,

 

Plan

 

Nacional

 

I+D+I

 

2008-2011”

 

and

 

FEDER

 

Funds

 

“Fondo

Europeo

 

de

 

Desarrollo

 

Regional,

 

una

 

manera

 

de

 

hacer

 

Europa”,

 

in

the

 

framework

 

of

 

the

 

project

 

“singular

 

estratégico

 

PROBIOGAS”:

sub-project

 

3

 

Agronomical

 

evaluation

 

of

 

digestates;

 

and

 

subproject

 

8,

Co-digestion

 

of

 

citric

 

and

 

farm

 

residues

 

(Refs.:

 

PSS-120000-2008-58;

PSS-120000-2008-62).

 

The

 

authors

 

thank

 

all

 

the

 

research

 

groups

involved

 

in

 

the

 

project

 

PROBIOGAS

 

(

http://www.probiogas.es

),

especially

 

the

 

GIRO

 

and

 

AINIA

 

Technological

 

Centres,

 

the

 

Univer-

sity

 

of

 

Oviedo,

 

San

 

Ramón

 

Group

 

and

 

Treatments

 

of

 

Juneda

 

Society

(Tracjusa)

 

for

 

providing

 

the

 

digested

 

materials

 

used

 

in

 

this

 

work.

The

 

authors

 

wish

 

to

 

thank

 

Dr.

 

D.J.

 

Walker

 

for

 

the

 

English

 

revision.

References

Abdullahi,

 

Y.A.,

 

Akunna,

 

J.C.,

 

White,

 

N.A.,

 

Hallett,

 

P.D.,

 

Wheatley,

 

R.,

 

2008.

 

Investigat-

ing

 

the

 

effects

 

of

 

anaerobic

 

and

 

aerobic

 

post-treatment

 

on

 

quality

 

and

 

stability

 

of

organic

 

fraction

 

of

 

municipal

 

solid

 

waste

 

as

 

soil

 

amendment.

 

Bioresour.

 

Technol.

99,

 

8631–8636.

Adani,

 

F.,

 

Confalonieri,

 

R.,

 

Tambone,

 

F.,

 

2004.

 

Dynamic

 

respiration

 

index

 

as

 

a

 

descrip-

tor

 

of

 

the

 

biological

 

stability

 

of

 

organic

 

wastes.

 

J.

 

Environ.

 

Qual.

 

33,

 

1866–1876.

Álvarez,

 

J.A.,

 

Otero,

 

L.,

 

Lema,

 

J.M.,

 

2010.

 

A

 

methodology

 

for

 

optimising

 

feed

 

compo-

sition

 

for

 

anaerobic

 

co-digestion

 

of

 

agro-industrial

 

wastes.

 

Bioresour.

 

Technol.

101,

 

1153–1158.

Al

 

Seadi,

 

T.,

 

2002.

 

Good

 

practice

 

in

 

quality

 

management

 

of

 

AD

 

residues

 

from

biogas

 

production.

 

IEA

 

Bioenergy,

 

Task

 

24-Energy

 

from

 

Biological

 

Con-

version

 

of

 

Organic

 

Waste,

 

January

 

2002

 

(Available

 

at:

 

http://web.sdu.dk/

bio/pdf/manage.pdf

).

APHA,

 

2005.

 

Standard

 

Methods

 

for

 

the

 

Examination

 

of

 

Water

 

&

 

Wastewater,

 

21st

ed.

 

American

 

Public

 

Health

 

Association,

 

American

 

Water

 

Works

 

Association

 

and

Water

 

Environment

 

Federation,

 

Washington,

 

DC,

 

USA.

Barrena,

 

R.,

 

Vázquez,

 

F.,

 

Sánchez,

 

A.,

 

2006.

 

The

 

use

 

of

 

respiration

 

indices

 

in

 

the

composting

 

process:

 

a

 

review.

 

Waste

 

Manage.

 

Res.

 

24,

 

37–47.

Bernal,

 

M.P.,

 

Kirchmann,

 

H.,

 

1992.

 

Carbon

 

and

 

nitrogen

 

mineralization

 

and

 

ammo-

nia

 

volatilization

 

from

 

fresh,

 

aerobically

 

and

 

anaerobically

 

treated

 

pig

 

manure

during

 

incubation

 

with

 

soil.

 

Biol.

 

Fert.

 

Soils

 

13,

 

135–141.

Brookman,

 

S.K.E.,

 

1997.

 

Estimation

 

of

 

biochemical

 

oxygen

 

demand

 

in

 

slurry

 

and

effluents

 

using

 

ultra-violet

 

spectrophotometry.

 

Water

 

Res.

 

31,

 

372–374.

Clemens,

 

J.,

 

Huschka,

 

A.,

 

2001.

 

The

 

effect

 

of

 

biological

 

oxygen

 

demand

 

of

 

cattle

slurry

 

and

 

soil

 

moisture

 

on

 

nitrous

 

oxide

 

emissions.

 

Nutr.

 

Cycl.

 

Agroecosys.

 

59,

193–198.

Copperband,

 

L.R.,

 

Stoner,

 

A.G.,

 

Fryda,

 

M.R.,

 

Ravet,

 

J.L.,

 

2003.

 

Relating

 

compost

 

mea-

sures

 

of

 

stability

 

and

 

maturity

 

to

 

plant

 

growth.

 

Compost

 

Sci.

 

Util.

 

11,

 

113–124.

de

 

la

 

Fuente,

 

C.,

 

Clemente,

 

R.,

 

Martínez,

 

J.,

 

Bernal,

 

M.P.,

 

2010.

 

Optimisation

 

of

 

pig

slurry

 

application

 

to

 

heavy

 

metal

 

polluted

 

soils

 

monitoring

 

nitrification

 

pro-

cesses.

 

Chemosphere

 

81,

 

603–610.

Dendooven,

 

L.,

 

Bonhomme,

 

E.,

 

Merckx,

 

R.,

 

Vlassak,

 

K.,

 

1998.

 

N

 

dynamics

 

and

 

sources

of

 

N

2

O

 

production

 

following

 

pig

 

slurry

 

application

 

to

 

a

 

loamy

 

soil.

 

Biol.

 

Fert.

Soils

 

26,

 

224–228.

Drennan,

 

M.F.,

 

DiStefano,

 

T.D.,

 

2010.

 

Characterization

 

of

 

the

 

curing

 

process

 

from

high-solids

 

anaerobic

 

digestion.

 

Bioresour.

 

Technol.

 

101,

 

537–544.

Drury,

 

C.F.,

 

Voroney,

 

R.P.,

 

Beauchamp,

 

E.G.,

 

1991.

 

Availability

 

of

 

NH

4

+

-N

 

to

 

microor-

ganisms

 

and

 

the

 

soil

 

internal

 

N

 

cycle.

 

Soil

 

Biol.

 

Biochem.

 

23,

 

165–169.

Fuchs,

 

J.C.,

 

Berner,

 

A.,

 

Mayer,

 

J.,

 

Smidt,

 

E.,

 

Schleiss,

 

K.,

 

2008.

 

Influence

 

of

 

compost

and

 

digestates

 

on

 

plant

 

growth

 

and

 

health:

 

potentials

 

and

 

limits.

 

In:

 

Fuch,

J.S.,

 

Kupper,

 

T.,

 

Tamm,

 

L.,

 

Schenk,

 

K.

 

(Eds.),

 

Proceedings

 

of

 

the

 

International

Congress

 

CODIS

 

2008.

 

27–29

 

February

 

2008,

 

Solothurn,

 

Switzerland

 

(Available

at:

 

http://orgprints.org/13135/1/fuchs-etal-proceedings-codis-2008.pdf

).

Holm-Nielsen,

 

J.B.,

 

Al

 

Seadi,

 

T.,

 

Oleskowicz-Popiel,

 

P.,

 

2009.

 

The

 

future

 

of

 

anaerobic

digestion

 

and

 

biogas

 

utilization.

 

Bioresour.

 

Technol.

 

100,

 

5478–5484.

Kirchmann,

 

H.,

 

Lundvall,

 

A.,

 

1993.

 

Relationship

 

between

 

N

 

immobilization

 

and

volatile

 

fatty

 

acids

 

in

 

soil

 

after

 

application

 

of

 

pig

 

and

 

cattle

 

slurry.

 

Biol.

 

Fert.

Soils

 

15,

 

161–164.

Lasaridi,

 

K.E.,

 

Stentiford,

 

E.I.,

 

1998.

 

A

 

simple

 

respirometric

 

technique

 

for

 

assessing

compost

 

stability.

 

Water

 

Res.

 

32,

 

3717–3723.

MARM,

 

2010

 

Guía

 

practica

 

de

 

la

 

fertilización

 

racional

 

de

 

los

 

cultivos

 

en

 

Espa ˜

na.

Ministerio

 

de

 

Medio

 

Ambiente

 

y

 

Medio

 

Rural

 

y

 

Marino.

Myrold,

 

D.D.,

 

Posavatz,

 

N.R.,

 

2007.

 

Potential

 

importance

 

of

 

bacteria

 

and

 

fungi

 

in

nitrate

 

assimilation

 

in

 

soil.

 

Soil

 

Biol.

 

Biochem.

 

39,

 

1737–1743.

Orzi,

 

V.,

 

Cadena,

 

E.,

 

D’Imporzano,

 

G.,

 

Artola,

 

A.,

 

Davoli,

 

E.,

 

Crivelli,

 

M.,

 

Adani,

 

F.,

2010.

 

Potential

 

odour

 

emission

 

measurement

 

in

 

organic

 

fraction

 

of

 

municipal

solid

 

waste

 

during

 

anaerobic

 

digestion:

 

Relationship

 

with

 

process

 

and

 

biological

stability

 

parameters.

 

Bioresour.

 

Technol.

 

101,

 

7330–7337.

Pesta,

 

G.,

 

2007.

 

Anaerobic

 

digestion

 

of

 

organic

 

residues

 

and

 

wastes.

 

In:

 

Oreopoulou,

V.,

 

Russ,

 

W.

 

(Eds.),

 

Utilization

 

of

 

By-products

 

and

 

Treatment

 

of

 

Waste

 

in

 

the

 

Food

Industry.

 

Springer,

 

New

 

York,

 

pp.

 

53–72.

Ponsá,

 

S.,

 

Gea,

 

T.,

 

Sánchez,

 

A.,

 

2010.

 

Different

 

indices

 

to

 

express

 

biodegradability

 

in

organic

 

solid

 

wastes.

 

J.

 

Environ.

 

Qual.

 

39,

 

706–712.

background image

22

J.A.

 

Alburquerque

 

et

 

al.

 

/

 

Agriculture,

 

Ecosystems

 

and

 

Environment

 

160 (2012) 15–

 

22

Qiu,

 

S.,

 

McComb,

 

A.J.,

 

Bell,

 

R.W.,

 

2008.

 

Ratios

 

of

 

C,N

 

and

 

P

 

in

 

soil

 

water

 

direct

 

microbial

immobilisation-mineralisation

 

and

 

N

 

availability

 

in

 

nutrient

 

amended

 

sandy

soils

 

in

 

southwestern

 

Australia.

 

Agr.

 

Ecosyst.

 

Environ.

 

127,

 

93–99.

Riffaldi,

 

R.,

 

Saviozzi,

 

A.,

 

Levi-Minzi,

 

R.,

 

1996.

 

Carbon

 

mineralization

 

kinetics

 

as

 

influ-

enced

 

by

 

soil

 

properties.

 

Biol.

 

Fert.

 

Soils

 

22,

 

293–298.

Salminen,

 

E.,

 

Rintala,

 

J.,

 

Härkönen,

 

J.,

 

Kuitunen,

 

M.,

 

Högmander,

 

H.,

 

Oikari,

 

A.,

 

2001.

Anaerobically

 

digested

 

poultry

 

slaughterhouse

 

wastes

 

as

 

fertiliser

 

in

 

agriculture.

Bioresour.

 

Technol.

 

78,

 

81–88.

Sánchez,

 

M.,

 

Gomez,

 

X.,

 

Barriocanal,

 

G.,

 

Cuetos,

 

M.J.,

 

Morán,

 

A.,

 

2008.

 

Assessment

of

 

the

 

stability

 

of

 

livestock

 

farm

 

wastes

 

treated

 

by

 

anaerobic

 

digestion.

 

Int.

Biodeter.

 

Biodegr.

 

62,

 

421–426.

Schievano,

 

A.,

 

D’Imporzano,

 

G.,

 

Malagutti,

 

L.,

 

Fragali,

 

M.,

 

Ruboni,

 

G.,

 

Adani,

 

F.,

 

2010.

Evaluating

 

inhibition

 

conditions

 

in

 

high-solids

 

anaerobic

 

digestion

 

of

 

organic

fraction

 

of

 

municipal

 

solid

 

waste.

 

Bioresour.

 

Technol.

 

101,

 

5728–5732.

Smith,

 

K.A.,

 

Metcalfe,

 

P.,

 

Grylls,

 

J.,

 

Jeffrey,

 

W.,

 

Sinclair,

 

A.,

 

2007.

 

Nutrient

 

value

 

of

digestate

 

from

 

farm-based

 

biogas

 

plants

 

in

 

Scotland.

 

Report

 

for

 

Scottish

 

Exec-

utive

 

Environment

 

and

 

Rural

 

Affairs

 

Department-ADA/009/06

 

(Available

 

at:

http://www.scotland.gov.uk/Resource/Doc/1057/0053041.pdf

).

Sommer,

 

S.G.,

 

Kjellerup,

 

V.,

 

Kristjansen,

 

O.,

 

1992.

 

Determination

 

of

 

total

ammonium

 

nitrogen

 

in

 

pig

 

and

 

cattle

 

slurry:

 

sample

 

preparation

 

and

 

anal-

ysis.

 

Acta

 

Agriculturae

 

Scandinavica

 

Section

 

B.

 

Soil

 

and

 

Plant

 

Science

 

42,

146–151.

Tambone,

 

F.,

 

Genevini,

 

P.,

 

D’Imporzano,

 

G.,

 

Adani,

 

F.,

 

2009.

 

Assessing

 

amendment

properties

 

of

 

digestate

 

by

 

studying

 

the

 

organic

 

matter

 

composition

 

and

 

the

degree

 

of

 

biological

 

stability

 

during

 

the

 

anaerobic

 

digestion

 

of

 

the

 

organic

 

frac-

tion

 

of

 

MSW.

 

Bioresour.

 

Technol.

 

100,

 

3140–3142.

Trinsoutrot,

 

I.,

 

Recous,

 

S.,

 

Bentz,

 

B.,

 

Linères,

 

M.,

 

Chèneby,

 

D.,

 

Nicolardot,

 

B.,

 

2000.

Biochemical

 

quality

 

of

 

crop

 

residues

 

and

 

carbon

 

and

 

nitrogen

 

mineraliza-

tion

 

kinetics

 

under

 

nonlimiting

 

nitrogen

 

conditions.

 

Soil

 

Sci.

 

Soc.

 

Am.

 

J.

 

64,

918–926.

USEPA,

 

2007.

 

Method

 

9210A.

 

Potentiometric

 

determination

 

of

 

nitrate

 

in

 

aque-

ous

 

samples

 

with

 

an

 

ion-selective

 

electrode

 

(Available

 

at:

 

http://www.

epa.gov/epawaste/hazard/testmethods/sw846/pdfs/9210a.pdf

).

Williams,

 

A.G.,

 

1983.

 

Organic

 

acids,

 

biochemical

 

oxygen

 

demand

 

and

 

chemical

 

oxy-

gen

 

demand

 

in

 

the

 

soluble

 

fraction

 

of

 

piggery

 

slurry.

 

J.

 

Sci.

 

Food

 

Agric.

 

34,

212–220.


Document Outline