background image

Krzysztof ZAREMBA

1

, Andrzej PAWLAK

2

Bialystok Technical University (1), Central Institute for Labour Protection - National Research Institute (2) 

 
 

Lens for luminaires with high power LED diodes 

 
 

Abstract. High power LED diodes are characterized by the Lambertian luminous intensity curve, which is undesirable as far as uniform lightning for 
the target surface and the glare limitation are concerned. In order to obtain the luminous intensity curve assuring uniform lightning on the target 
surface, it is necessary to utilize lenses, which will dissipate the axial fraction of the luminous flux emitted by the diode. The presented luminous flux 
method for designing the general shape of such a lens provides means for obtaining the target luminous intensity curve for the given luminaire.  
 
Streszczenie. Diody LED o dużej mocy posiadają lambertowski rozsył strumienia świetlnego, który jest niekorzystny zarówno pod względem 
możliwości równomiernego oświetlenia powierzchni roboczej jak i ograniczenia olśnienia. W celu osiągnięcia równomiernego oświetlenia w 
ograniczonym kącie należy zastosować soczewkę, która rozproszy przyosiową część strumienia świetlnego diody LED. Zaprezentowano metodę 
strumieniową projektowania kształtu soczewki zapewniającej uzyskanie założonej krzywej światłości oprawy. (Soczewki dla opraw z diodami LED 
o dużej mocy

 
Keywords: high power LED, luminaire, uniform illumination, lens 
Słowa kluczowe: diody LED o dużej mocy, oprawa oświetleniowa, równomierne oświetlenie, soczewka 

 
 

1. Introduction 
  Recently, we have been observing a very dynamic 
evolution of LED diodes. They are used currently not only in 
simple signaling devices but also find their application in 
increasing number of luminaires. High power LED diodes 
(1÷5 W), characterized by high luminous flux up to 150 lm 
should be applied for lightning purposes. Such LED diodes 
are currently available on the market [5]. However, such 
high power diodes have numerous parameters which are 
significantly different when compared with their low power 
equivalents. All higher power diodes (3 and 5 W) have 
luminous intensity curves resembling closely Lambertian 
(cosine) distribution. It must be noted that such luminous 
intensity distribution is highly unsuitable when it comes to its 
capability to produce uniform lightning for the target work 
area as well as limiting the glare effect for users. It must be 
taken into consideration that high power LED diodes are 
typically point light sources with luminance values ranging 
from 1 Mcd/m

2

 to 10 Mcd/m

2

, which is comparable with the 

light bulb filament. Due to their aforementioned property, 
such diodes might be used for general lightning purposes 
and especially for illuminating areas with computer monitors 
only when equipped with properly designed luminaires. 

This work presents a synthetic method for determining 

the shape of rotationally symmetrical lenses, capable of 
delivering the target luminous intensity distribution for the 
given luminaire. All calculations of optical and lightning 
components were based on luminous flux method. The 
proposed synthetic method for determining the reflector 
shape is most generally saying based on comparing the 
luminous flux emitted by particular elements of the said 
reflector with the target flux reaching the work area. It is also 
assumed that the rotationally symmetrical lens will comprise 
conical elements (rectilinear in cross-section). Application of 
conical elements does not contradict practical 
implementation of the said reflector using a smooth profile, 
since approximation precision depends only on the size of 
elemental areas to be examined. 

 

2. Luminous intensity curve for the given luminaire 

The proposed method allows for determining the lens’ 

shape, which in the case of a light source with negligible 
dimensions will realize the pre-defined luminous intensity 
curve  I

o

α

 for the given luminaire. This work presents an 

example of the estimation process through analysis of 
luminous intensity curve assuring uniform lightning for a 
target surface, perpendicular to the  x axis of the system 
(see Fig. 1). In order to obtain constant illuminance on the 
target surface, it is necessary to utilize a luminaire with the 

following luminous intensity curve I

o

α

 

(1) 

α

α

3

0

cos

o

o

I

I

=

 

where: I

o0

 – axial luminous intensity for the given luminaire 

(

α

 = 0

°). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. Geometry of the designed luminaire 

 

The value of the axial luminous intensity  I

o0

 may be 

estimated under the assumption that the total luminous flux 

Φ

o

 and luminous flux irradiation angle 

α

o

 for the given 

luminaire are known: 

 

(2)  

o

o

o

o

o

o

o

o

I

I

d

I

d

I

o

o

α

π

Φ

α

π

α

α

α

π

α

α

π

Φ

α

α

α

2

0

2

0

0

3

0

0

tg

tg

cos

sin

2

sin

2

=

=

=

=

=

 

 
 
 
 
 
 

 
 

  

30º

40º

50º

60º

 

70º

 

80º

90º

0

100

200

300

400

500

600

700

800

900

α

o

 

Ι

o0

 [cd/klm] 

 
Fig. 2. Axial luminous intensity I

o0

 depending on the irradiation 

angle 

α

o

 of the luminous flux (

Φ

z

 = 1000 lm) 

Fig. 2 depicts a relation between the axial luminous 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 83 NR 5/2007

 

21

background image

intensity I

o0

 and luminous flux irradiation angle 

α

o

 assuming 

initially, that the luminaire efficiency is estimated at 90%. 
Along with the increase in the irradiation angle 

α

o

 value, the 

axial luminous intensity I

o0

 value decreases rapidly. 

Axial luminous intensity  I

z0

 for a LED diode with the 

Lambertian distribution curve I

z

α

 

(3) 

α

π

α

α

cos

cos

0

z

z

z

I

I

Φ

=

=

 

where: 

Φ

z

 

− light source luminous flux, I

z0

 

− axial luminous 

intensity of the light source, was estimated at 318.3 cd/klm. 
It is worth noting here that the luminous intensity  I

z0

 of the 

diode  is greater than the luminous intensity  I

o0

 of the 

luminaire for irradiation angles 

α

o

 greater than 

approximately 45°. In practical applications, luminaires with 
maximum irradiation angle 

α

o

 estimated at approximately 

55°÷65° are used for general lightning purposes. Such 
luminaires may typically be realized only using lens 
elements, where the axial part of the luminous flux of the 
LED diode is dissipated. 

 

3. Algorithm for evaluating lens’ profile 

The proposed method is based on an algorithm 

comprising comparison between the luminous flux 

ΔΦ

s

which ought to be emitted in the pre-defined direction by the 
given luminaire (lens) with the pre-assumed luminous 
intensity curve I

o

α

, and luminous flux 

ΔΦ

z

 emitted by the light 

source towards the lens (see Fig. 3). The said lens should 
be shaped in such a manner that the compared luminous 
fluxes are equal, having compensated for light loss in the 
lens. Additionally, it was assumed that the distance between 
the diode and the external lens’ surface is a uniform optical 
medium. This particular assumption results in the need to 
design only the external lens’ surface shape. In practice 
however, such optical systems are realized by filling in the 
cavity between the external lens and diode’s surfaces using 
immersion liquid with the light refractive index n

s

 equal to the 

lens’ material refractive index [2]. Optical elements of the 
diode and lenses are typically manufactured using methyl 
polymethacrylate at optical purity and material light 
refractive index n

s

 = 1,497. 

 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3. A diagram for determining lens’ profile using luminous flux 
method 
 

 

Estimation of the lens’ profile begins at the start point 

P

sp

(r

sp

, 0),  which is located on the main axis. The only 

parameter, the value of which needs to be assumed for 
calculation, is the initial radius-vector  r

sp

.  This particular 

parameter defines the resulting dimensions of the given 
lens. A light ray reaching the point P

sp

  traverses without 

direction changes (Fig. 3 – 

α

1

 = 0°), meaning that the first 

lens’ element is perpendicular to the x axis of the rotational 
symmetry of the given optical system. Light rays reaching 
subsequent  i

th

  lens’ elements are directed towards the 

α

1

 

angle, the value of which is determined by comparing the 
luminous flux emitted by the lens of transmission coefficient 

τ

  and the luminous flux emitted by the luminaire with the 

defined luminous intensity curve I

o

α

 

(4)  

=

i

i

d

I

d

I

o

z

α

α

ϕ

ϕ

α

α

π

ϕ

ϕ

τ

π

0

0

sin

2

sin

2

 

In a general case, equation (4) is solved using numerical 
methods. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Diagram for determining parameters of the i

th

 lens’ element – 

refracted light rays do not cross the x axis of the optical system 

 

 

Having established the value of the 

Δα

i

 angle, in order to 

determine the location of the P

sik

 point for the ending i

th

 lens’ 

element, it is necessary to determine the value for the 

β

i

 

angle, describing its inclination relative to the  x  optical 
system axis (Fig. 4). Providing that the lens’ shape is under 
evaluation, contrary to reflectors’ case, it is much better to 
assume that the light rays will not cross the  x  axis of the 
optical system. The values of incidence angle 

γ

i

  for and 

refraction angle 

ψ

i

 for examined light rays are much smaller, 

assuming that the values of 

ϕ

i

 and 

α

i

 angles are constant.

 β

i

 

angle, describing the incidence of the lens' surface element 
relative to the x optical system axis is determined based on 
the following mathematical relation, derived from the 
refraction theorem, holding for incidence 

γ

i

 and refraction 

ψ

i

 

angles, describing a light ray reaching the  i

th

  lens’ element 

(see Fig. 4). 

 

 

(5) 

i

i

s

i

i

s

i

n

n

α

ϕ

α

ϕ

β

sin

sin

cos

cos

arctan

=

 

Next, the coordinates (x

sik

y

sik

) for the ending point P

sik

 of the 

i

th

 lens’ element with the angular size 

Δϕ

I

, are established: 

 

(6) 

(

)

(

) (

)

(

)

(

) (

)

i

i

i

i

i

i

i

sip

sip

sik

i

i

i

i

i

i

i

sip

sip

sik

y

x

y

y

x

x

ϕ

ϕ

ϕ

ϕ

β

ϕ

β

ϕ

ϕ

ϕ

ϕ

β

ϕ

β

Δ

+

Δ

+

+

+

+

=

Δ

+

Δ

+

+

+

+

=

sin

sin

sin

cos

sin

sin

2

2

2

2

 

 

 
 
 
 
 
 
 
 

 

 

x

 
Fig. 

5. Calculated lens’ profile with the irradiation angle 

α

o

 

estimated at 60° 

Approximation of the lens’ surface with conical elements 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 83 NR 5/2007

 

22 

background image

with a constant angular size 

Δϕ

i

 is a most commonly applied 

methods during the design process [1, 3, 4]. 
  An exemplary shape of the lens calculated in 
accordance with the above-presented algorithm, under the 
assumption of the maximum irradiation angle value for the 
luminous flux defined at 

α

o

 = 60° and the initial radius-vector 

r

sp

 = 50 mm, is presented in Fig. 5. 

 

Precision of the proposed estimation method, under the 

assumption of negligible dimensions of the light source, 
depends only on the angular size 

Δϕ

 of the lens’ elements. 

Other, currently typically applied design methods imply 
angular sizes 

Δϕ

  most commonly defined at 5.0° [1, 3]. 

However, the said methods approximate the surface with 
curvilinear profiles and in case of rectilinear elements, the 
referred dimensions must be significantly smaller [5]. Due to 
that fact, the following examination was conducted for the 

Δϕ

 division angle values of 5.0°; 0.5° and 0.05° (see Fig. 6). 

Application of significantly smaller 

Δϕ

 division angle values 

provides visibly better approximation of the estimated 
luminous intensity curves with the pre-assumed curves. In 
practice, it was observed that application of 

Δϕ

  division 

angle value at approximately 0.5° allows for very good 
approximation of the target luminous intensity curve (see 
Fig. 6b). Only for very small 

α

 (0°÷2°) angles, the values of 

the estimated luminous intensity exceeds the pre-defined 
values. This particular effect stems from the applied 
calculation algorithm of the luminous flux method. For small 

α

 angle values, the denominator contains very small values 

for solid angles, resulting in significant numerical errors 
occurring for these directions [5]. This fact is further 
confirmed by significant decrease in the calculation errors 
when the 

Δϕ

  angle is decreased 10 times (see Fig. 6c – 

gray line). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Calculated luminous intensity curves for an examined lens 
for various 

Δϕ

  division angle values: a) 

Δϕ

 = 5,0°;  b) 

Δϕ

 = 0,5°;  c) 

Δϕ

 = 0,05° (gray line); (broken line – assumed I

o

α

 

4. Lens’ transmission coefficient 
 

When designing the lens, it was initially assumed that its 

transmission coefficient 

τ

 is uniform for all light rays. 

However, the said coefficient 

τ

 is influenced by two effects: 

luminous flux absorption and Fresnel reflection on the 
border of two different optical media. Providing that the lens 
is manufactured from high purity optical material, the 
absorption effect might be neglected in practice, mainly due 
to insignificant pathway of the light rays in the optical 
medium. 
 

Fig. 7 presents the relation between the incidence angle 

γ

 of light rays for the exemplary designed lens (see Fig. 5). 

The incidence angles are both positive and negative, 
meaning that they reach the lens’ surface from different 
directions. The absolute incidence angle 

γ

 values do not 

exceed 30° for most values of 

ϕ

 angle, meaning that the 

transmission coefficient 

τ

 value (including Fresnel reflection 

effect), is close to 96% (see Fig. 8). Only a very small 
fraction of the luminous flux reaching the lens’ surface with 
the 

ϕ

 angle value grater than 86% is transmitted with the 

transmission coefficient 

τ

 value lower than 90%. 

 

 

-20º

-10º

10º

20º

30º

40º

10º

20º

30º

40º

 

50º

 

60º

 

70º

 

80º

90º

γ 

ϕ 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Relation between the incidence angle 

γ 

for the surface of the 

designed lens and the 

ϕ

  transmission angle for light rays leaving 

the light source 

 

 

  

0,85

0,90

0,95

1,00

10º

20º

30º

40º

 

50º

 

60º

 

70º

 

80º

90º

τ

ϕ

 

 
 
 
 
 
 
 
 
Fig. 8. Relation between the transmission coefficient 

τ

 for light rays 

traversing the designed lens and the 

ϕ

 transmission angle for light 

rays leaving the light source 
 

Conclusions 
  High power LED diodes are characterized by the 
Lambertian luminous intensity curve, which is undesirable 
as far as uniform lightning for the target surface and the 
glare limitation are concerned. In order to obtain the 
luminous intensity curve assuring uniform lightning on the 
target surface, it is necessary to utilize lenses, which will 
dissipate the axial fraction of the luminous flux emitted by 
the diode. The presented luminous flux method for 
designing the general shape of such a lens provides means 
for obtaining the target luminous intensity curve for the 
given luminaire. Lens’ shape approximation using conical 
elements is possible, providing that the angular size of 
individual elements is sufficiently small. 

 

 

10°

 

20°

 

30°

 

40°

 

50°

 

60°

 

70°

0

 

100

 

200

 

300

 

400

 

500

 

600

 

700

 

800

 

α

I

 

o

 

α

 

 

 

[cd/klm]

 

a

 

a

 

b

 

b

 

c

 

c

 

 

 

REFERENCES 

[1] D y b c z y ń s k i  W.: Floodlight for illuminating a semicircular 

vault, Appl. Optics , Vol. 36, No. 25, 9, 1997, 6480-6484 

[2] P a r k y n  W.A.: Design of illumination lenses via extrinsic 

differential geometry, Illumination and Source Engineering, 
Angelo V. Arecchi, Editor, Proceedings of SPIE, 
Vol. 3428, pp. 
154-162 (1998) 

[3]  S c h m i d t  H.J.: Luminaire design, CIE Seminar on Computer 

Programs for Light and Lighting, Vienna, Austria, 5-9 October, 
1992, p. 13-17 

[4] Z a r e m b a  K.: A Synthetic Method of Designing Rotational 

Reflectors,  13

th

 European Simulation Multiconference 1999, 

Modelling and Simulation: A Tool for the Next Millenium, 
ESM’99, Warsaw, June 1-4 1999, Poland,
 Vol. II, p.307-309 

[5] www.lumileds.com 

 

Acknowledgments: Financing source: The State Committee for 
Scientific Research, grant number W/WE/11/06. 

 

Autors:  Krzysztof Zaremba, Ph.D. (E.Eng), Białystok Technical 
University, Chair of Optical Radiation, ul. Wiejska 45D, 15-351 
Białystok, Poland; phone 48 85 746 94 47, zaremba@pb.edu.pl; 
Andrzej Pawlak, M.Sc. (E.Eng.), Central Institute for Labour 
Protection - National Research Institute, ul. Czerniakowska 16, 00-
701 Warszawa, Poland; phone 48 22 623-46-75, fax 48 22 623-
3695, anpaw@ciop.pl, 

 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 83 NR 5/2007

 

23