background image

Electronic copy available at: http://ssrn.com/abstract=1804959

 

1

 

 

UNDERSTANDING THE EFECTS OF  

VIOLENT VIDEO GAMES ON VIOLENT CRIME 

 

A. Scott Cunningham, Baylor University 

Benjamin Engelstätter, Zentrum für Europäische Wirtschaftsforschung 

Michael R. Ward, University of Texas at Arlington 

Corresponding Author:  
Michael R. Ward 
Associate Professor 
Department of Economics 
University of Texas at Arlington 
Arlington, TX 76019 
(tel) 817-272-3090 
(fax) 817-272-3145 

mikeward@uta.edu

 

 

ABSTRACT: Video games are an increasingly popular leisure activity. As many of best-selling 
games contain hyper-realistic violence, many researchers and policymakers have concluded that 
violent games cause violent behaviors. Evidence on a causal effect of violent games on violence 
is usually based on laboratory experiments finding violent games increase aggression. Before 
drawing policy conclusions about the effect of violent games on actual behavior, these 
experimental studies should be subjected to tests of external validity. Our study uses a quasi-
experimental methodology to identify the short and medium run effects of violent game sales on 
violent crime using time variation in retail unit sales data of the top 50 selling video games and 
violent criminal offenses from the National Incident Based Reporting System (NIBRS) for each 
week of 2005 to 2008. We instrument for game sales with game characteristics, game quality and 
time on the market, and estimate that, while a one percent increase in violent games is associated 
with up to a 0.03% decrease in violent crime, non-violent games appear to have no effect on 
crime rates.  

 

JEL Codes: D08, K14, L86

*

 

Keywords: Video Games, Violence, Crime

background image

Electronic copy available at: http://ssrn.com/abstract=1804959

 

2

 

 

I. 

Introduction 

Violence in video games is a growing policy concern. The issue has generated six reports 

to the US Congress by the Federal Trade Commission (FTC, 2009) and was the subject of a 2011 

US Supreme Court decision.

2

 Policymaker concern has been motivated by the connection 

between violent video game imagery and psychological aggression in video game players, 

particularly adolescents. While researchers have documented an effect on aggression in the 

laboratory, some have suggested that violent video games are responsible for violent crime such 

as school shootings (Anderson 2004).

3

 

The shortrun effect of violent games on aggression has been extensively documented in 

laboratory experiments (Anderson, Gentile and Buckley, 2007). These experiments generally 

conclude that media violence is self-reinforcing rather than cathartic. This link has not been 

found with crime data however. A recent study by Ward (2011) found a negative association 

between county-level video game store growth and the growth in crime rates. Dahl and 

DellaVigna (2009) find that popular violent movies caused crime to decrease in the evening and 

weekend hours of a movie’s release lasting into the following week, with evidence that violent 

movies were drawing men into theaters and away from alcohol consumption. These two studies 

suggest the real world relationship between violent media and crime may be more complex than 

the results from laboratory studies suggest.  

We estimate the reduced form effect of violent video games on violent crime using a 

strategy similar to Dahl and DellaVigna (2009). We proxy for video game play using video game 

sales information harvested from VGChartz, an industry source tracking the weekly top 50 best-

selling video game titles from 2005 to 2008.

4

 The violent content for each video game was 

matched using information provided by the Entertainment Software Rating Board (ESRB).

5

 Our 

background image

 

3

 

 

measure of crime is from the National Incident Based Reporting System (NIBRS) which we use 

to create a time series of violent and non-violent crime levels for the periods in question. To 

address possible endogeneity of game releases with unobserved determinants of crime, such as 

the coincident release of non-gaming violent media, we instrument for weekly game sales with 

game characteristics, such as time a game has been on the market and experts’ reviews of each 

game in our sample using Gamespot, a video game review aggregation website.

6

 Our 

identification strategy requires game quality to be uncorrelated with the unobservable 

determinants of crime. 

Our main finding is that we do not find evidence for a positive effect on crime. Our most 

robust evidence supports the opposite conclusion for a negative effect of violent games on crime. 

Our basic 2SLS results indicate that violent crimes fall with violent video game popularity but are 

virtually unaffected by changes in weekly non-violent video game sales. These results are not 

consistent with games causing aggression but are consistent with either  violent games having a 

cathartic or an incapacitation effect. We estimate the elasticity of violent crime with respect to 

violent game sales to be small, on an order of –0.01 to –0.03. 

The rest of our paper is organized as follows: Section II provides background; Section III 

describes our data and empirical strategy; Section IV describes our empirical findings; and 

Section V concludes. 

 

II.  

Background 

From the sensational crime stories of the 19

th

 century (Comstock and Buckley 1883), to 

the garish comic books of the early 20

th

 century (Hadju 2009), to the contemporary debate over 

background image

 

4

 

 

violent games, Americans have always been concerned about the harmful effects of violent media 

on children. Unlike comic books and pulp “true crime” stories, violence in media, including 

video games, have received substantial attention by psychologists and media specialists. 

Anderson and Bushman (2001) and Anderson et al. (2007) discuss hundreds of controlled studies 

on the effects of violence in media, whereas the number of studies on violence in print media is 

particularly smaller in comparison. 

The impact of violent media on crime has three possible theoretical mechanisms, which 

we label “aggression,” “incapacitation,” and “catharsis.” The aggression mechanism is based on a 

psychological theory called the “general aggression model,” or GAM. GAM posits that violent 

video games increase aggressive tendencies. This model generalizes from social learning theory 

(Bandura, 1973), script theory (Huesmann, 1998), and semantic priming (Anderson et al., 1998; 

Berkowitz & LePage, 1967) through a process of social learning whereby the gamer develops 

mental scripts to interpret social situations both before they occur as well as afterwards. This 

effect creates reasoning biases, a tendency to jump to conclusions and may even cause 

personality disorders (Bushman and Anderson 2002).

7

 While GAM suggests that aggression 

increases with repeated exposure to violent content, most of the evidence for it comes from short-

run laboratory experiments. 

The incapacitation explanation is based on the economic theory of time use (Becker 

1965). Many modern video games are time-intensive forms of entertainment involving intense 

narratives with complex plots and characterization taking dozens, and sometimes several 

hundreds, of hours to complete.

8

 Insofar as video game play draws adolescents from other 

activities, the time use explanation implies a short-run decrease in violence as individuals 

substitute away from outdoor leisure to indoor leisure, but allow for a possible long-run increase 

background image

 

5

 

 

in violence as predicted by GAM. The American Time Use Survey (ATUS) indicates that 

individuals aged 15-19 spent an average 0.85 hours per weekday playing games and using 

computers, but only 0.12 hours reading, 0.11 thinking, and 0.67 in outdoor recreation, such as 

sports or exercising. Ward (2012) uses ATUS data to show that, when the currently available 

video games’ sales are higher, individuals’ time spent gaming increases significantly while time 

spent in class or doing homework falls. Stinebrickner and Stinebrickner (2008) found that 

students randomly assigned a roommate in college with a video game console caused them to 

study less often, and in turn, perform worse in school. 

The catharsis explanation is that video games act as a release for aggression and 

frustration so that actual expressions of aggression are reduced. While gamers believe this to be 

true (Ferguson et al., 2010; Olson et al., 2008), it is not without controversy. Most cross-sectional 

studies fail to find cathartic effects, but none control for selection on unobservables. Denzler et 

al. (2008) state rather unequivocally that “social psychological literature lends no support for the 

catharsis hypothesis.” They then find that aggression can reduce further aggression when it serves 

to fulfill a goal but caution that these results “do not justify violent media.” A possible 

physiological mechanism for catharsis comes from evidence that Internet video game playing is 

associated with dopamine release that might act to sate the gamer (Han et al., 2007; Koepp et al. 

1998). Han et al. (2009) study the similarity of the effects of video game playing and 

methylphenidate (i.e., Ritalin) in children with ADHD and suggest that Internet video game 

playing might be a means of self-medication.  

 

 

 

background image

 

6

 

 

III. 

Data and Methodology 

The three explanations have different implications for the effects of violent video games 

on violent crime. GAM predicts that crime would increase with greater exposure to violent video 

games, especially continuous exposure over long time periods, but not with non-violent games. 

While GAM should have long-run effects, to date, most evidence comes from short-term 

experiments. Incapacitation predicts that crime would decrease in the shortrun with both violent 

and non-violent games, perhaps more so for non-violent games not subject to GAM. Catharsis 

predicts that crime, especially violent crime, would decrease with violent games, but not with 

non-violent games. In this section, we explain how we specify tests for these predictions and the 

data sources we employ.  

 

A.  Estimation Strategy 

We begin by estimating a standard multivariate regression model of the incidence of 

various crimes as functions of, among other controls, the prevalence of non-violent and violent 

video games. Our outcome variables of interest, C

t

, are the total number of reported criminal 

incidents in week t that are classified as violent or non-violent. Any criminal incident may reflect 

some level of aggression, but we interpret violent crimes as reflecting more aggression than non-

violent crimes. While the dataset we use documents criminal offenses on a daily basis, since the 

video game sales data are available only on a weekly basis, we aggregate crimes into weekly 

measures to avoid double counting of responses to stimuli. Accordingly, we employ a simple 

least squares estimator so as to more easily instrument for video game exposure.

9

  

A game purchased by a gamer in one week is often played in subsequent weeks until the 

gamer loses interest and moves on to another game. To address this possibility, we experimented 

background image

 

7

 

 

with the effect of game sales on crime for up to a lag of six-weeks. Our main explanatory 

variables are aggregated current and lagged values of weekly sales volumes for both non-violent 

and violent video games. Video games appear to depreciate quickly with use. This may be 

because new games are played intensively for a few weeks after purchase and are not replaced 

with a new game until after some diminishing returns have been reached, or it may suggest that 

firms typically stagger the release dates of games. Given that we do not know the relative 

intensity of game play after game purchase, we do not have strong priors on the pattern of 

coefficients on these lags. We focus on the cumulative effect of games measured with the volume 

of the current week’s sales, along with the various lags of previous weeks’ sales, so as to capture 

the effect of higher volume of game play with varying time lag to trigger crime.  

Our model of criminal offenses, C

t

, is:  

 

 

  ∑  

 

 

 

   

 

 

  ∑  

  

 

 

   

  

 

  ∑  

 

    

 

 

   

 

    

 

   

 

  

The number of crime incidents depends on the exposure to violent video game sales 

 

 

 

 and non-

violent games

  

 

  

. The sum over 

 of 

 

 

 

 can be interpreted as the cumulative increase in 

criminal incidents over the 

 weeks for an increase in violent video games sold in week t while 

the similar sum for 

 

  

 

 can be similarly interpreted for non-violent video games. We include an 

annual trend and weekly seasonal fixed effects to account for secular increases and seasonality in 

both video game purchases and crime. Thus, identification of the parameters of interest comes 

from within week-of-year variation around the linear trend. Because many video games are 

purchased as Christmas gifts, as a check we also analyze the data omitting this season. 

Correlations between video game play and crime may or may not reflect a causal 

relationship if the unobserved determinants of crime are correlated with the determinants of video 

game play. For instance, bad weather such as rain or heavy snow which causes individuals to 

background image

 

8

 

 

remain at home would both increase the likelihood of playing video games and decrease the 

returns to crime through higher chances of finding a resident at home. Hence, negative 

correlations between crime and violent video game play could purely be a consequence of 

omitted variable bias. A low opportunity cost of time would affect both video game sales and the 

relative return to criminal activity (Jacob & Lefgren, 2003). For example, both video game sales 

and the crime rate increase during the summer when most teenagers are out of school. 

Additionally, producers of multiple media sources - movies, television, music and video games – 

may be simultaneously targeting time periods in which consumers have low opportunity costs of 

time that is unobservable to the researcher. If so, we could be attributing to a causal video game 

effect what is actually a more general media effect. We address this potential endogeneity of 

video games using characteristics of video games, time on the market and expert reviews of each 

title, as an instrument for purchases. 

Zhu and Zhang (2010) show that consumer reviews of video games are positively related 

to game sales. Ratings are valuable pieces of information for video games because games are 

complex experience goods for which gamers cannot know their preferences without playing. Our 

data on professional ratings contain rich information that communicates the kinds of information 

that gamers value in forecasting their beliefs about the game, and as beliefs and anticipation are 

drivers of the game sales, we would expect these rating institutions to play important roles in 

forming consumer prior beliefs about the game and therefore their purchases. But we also have 

some evidence from other industries that would suggest scores would independently cause 

purchases to rise, independent of the unobserved factors that cause expert opinion and purchases 

to be highly correlated. Reinstein and Snyder (2005) used exogenous variation in Siskel and 

Ebert movie ratings due to disruptions in their pair’s reviewing to determine a causal effect on 

movie demand. More recently, Hilger et al. (2010) found that randomly assigned expert scores on 

background image

 

9

 

 

bottles of wine in a retail grocery store caused an increase in sales for the higher rated, but less 

expensive, wines. While these studies do not confirm that there are exogenous forces in video 

game ratings that drive consumer purchases, they are suggestive.  

Besides the benchmark specification we employ two additional specifications as 

robustness checks. These specifications identify specific segments of the population and locations 

where we expect a differential gaming-to-violence link, e.g. counties with a high youth 

population and crimes committed in proximity of students. We measure criminal incidents using 

the National Incident Based Reporting System (NIBRS) as it provides detailed information on the 

criminal offense, including the exact date of the incident, some offender characteristics and the 

location of the incident. In the first robustness check, we examine how the effect varies by the 

fraction of the county population that is 15-24 years old. In our second check, we extend our 

estimation procedure to compare the effects on the number of incidents reported on high school 

and college campuses to the number committed at other locations.  

 

B.  Video Game Data 

VGChartz reports US retail video and computer game unit sales for each week’s top 50 

selling video console based games each week consistently beginning in 2005.

10

 We harvested 

these data using a web-scraping program to create a panel of weekly sales by title for the period 

from January, 2005 to December, 2008. We matched each game title with information about the 

game’s violent content provided by ESRB’s online database. Finally, we matched each game title 

with information about game quality from a game review website, Gamspot.com.  

Our video game sales dataset consists of 1,117 separate titles over 208 weeks with some 

of these titles being the same game for different gaming consoles. In sum, the games are provided 

from 47 different publishers and designed for 9 different gaming consoles. While VGChartz 

background image

 

10

 

 

includes the top 50 selling console-based games each week, it only covers a portion of all sales in 

the US video game market. A game’s week of release is almost always its top selling week. 

Figure 1 indicates that most games stay in the top 50 for only a few weeks. Moreover, as Figure 2 

indicates, games sales by title fall quickly with game age. These features suggest that there is 

considerable week-to-week variation in the composition of video games being played. Table 1 

compares VGChartz data to the Entertainment Software Association (ESA) and indicates that 

VGChartz account for about one-quarter of all units in 2005 (ESA Annual Report, 2010).

11

. The 

ESA also includes sales of non-console based games such as computer and smartphone games. 

Still, this fraction rises to almost one-half in 2008. While this raises some concerns about 

comparability over time, we expect some of this effect to be subsumed into the annual trend. 

 

Insert Table 1 about here 

Insert Figure 1 and 2 about here 

 

We record the violence content of each game using the ESRB’s rating and descriptions of 

the game’s content. This non-profit body independently assigns a technical rating (E, E10, T, M, 

and A) which defines the audience the game is appropriate for where E classifies games for 

everybody, E10 for everyone aged 10 and up, T for teens, M games for a mature audience, and A 

for adult content. In addition, ESRB provides detailed description of the content in each game on 

which the rating was made, including the style of violence, e. g. language, violence, or adult 

themes. For all of the 1,117 titles in our sample we collected the appropriate ESRB-rating and all 

content descriptors. Based on this content information, we identify 672 non-violent and 445 

violent games, of which 113 titles are described as intensely violent. Almost all violent games are 

rated T or M. All intensely violent games are rated M. Since most of the policy concern stems 

background image

 

11

 

 

from these mature games, we concentrate on the intensely violent games. Merging both data 

sources together we can construct measures of the aggregate unit sales of non-violent and 

intensely violent video games for each week. The weekly sales are depicted in Figure 3 for all 

games and for intensely violent games. Overall, the two graphs follow a similar pattern with a 

large peak around the Christmas gift-purchasing period. In the middle of 2008, however, the 

intensely violent game sales spiked to account for almost all sales of the violent games.  

 

Insert Figure 3 about here 

 

Our expert review data comes from the GameSpot website. GameSpot provides news, 

reviews, previews, downloads and other information for video games. Launched in May 1996 

GameSpot’s main page has links to the latest news, reviews, previews and portals for all current 

platforms. It also includes a list of the most popular games on the site and a search engine for 

users to track down games of interest. The GameSpot staff reviewed all but a handful of the 

games in our sample and rated the quality of the titles on a scale from 1 to 10 with 10 being the 

best possible rank. These so-called GameSpot-scores assigned to each game are intended to 

provide an at-a-glance sense of the overall quality of the game. The overall rating is based on 

evaluations of graphics, sound, gameplay, replay value and reviewer’s tilt. GameSpot changed 

the rating system in the middle of 2007 and, as a consequence, a game will not get an aspect-

specific rating score anymore. Our examination of overall GameSpot-scores indicates that they 

were unaffected by this change in the GameSpot focus. Weekly sales of individual games are 

highly sensitive to both game quality and time on the market (Nair, 2007). Accordingly, we 

separately aggregate the violent and non-violent games among top 50 games on the market in a 

background image

 

12

 

 

week into average GameSpot-scores and average ages, measured in weeks from release, to be 

used as instrumental variables. 

 

 

 

C.  Crime Data 

For our measure of weekly crime, we used the NIBRS. NIBRS is a federal data collection 

program begun by the Bureau of Justice Statistics in 1991 for gathering and distributing detailed 

information on criminal incidents for participating jurisdictions and agencies. Participating 

agencies and states submit detailed information about criminal incidents not contained in other 

data sets, such as the Uniform Crime Reports. For instance, whereas the Uniform Crime Reports 

contain information on all arrests and cleared offenses for the eight Index crimes, NIBRS consists 

of individual incident records for all eight index crimes and the 38 other offenses (Part II 

offenses) at the calendar date and hourly level (Rantala and Edwards 2000).  

Because of the detailed information about the incident, including the precise time and date 

of the incident, economists such as Dahl and DellaVigna (2009), Card and Dahl (2009), Jacob 

and Lefgren (2003) and Jacob, Lefgren, and Moretti (2007) have used it for event studies. In our 

case, we exploit detailed information about the crime’s location for our robustness checks. 

One potential drawback of NIBRS is its limited coverage. Unlike the FBI’s Uniform 

Crime Reports, only a subset of localities participate. Overall, 32 states currently participate, and 

many states with large markets – California, New York, DC – do not participate at all. Moreover, 

not all jurisdictions participate within states over time. To address possible selection problems, 

we limit our sample to a balanced panel of agencies that participated with NIBRS at the start of 

our sample and continued each year. 

background image

 

13

 

 

 

Crimes follow a seasonal pattern. Figure 4 indicates a consistent pattern of gradual 

increases in both total and violent crimes from winter to summer. Our method was developed to 

account for seasonality in both of our main variables of interest crime and games. Much of the 

seasonality in crimes is believed to be due to weather while seasonality in games is likely due to 

holiday gift giving (Lefgren, Jacobs and Moretti, 2007). Failure to address these may create 

spurious correlations between crime and video game sales. As indicated above, we accommodate 

this in two ways. First, weekly dummy variables should capture much of the seasonality. Second, 

we use IVs constructed from information on games’ Game Spot Scores as well as how long 

games have been on the market to isolate the variation in game sales solely due to the 

characteristics of the currently available video games.  

 

 

 

Insert Figure 4 about here 

 

 

D.  Final Sample 

 

Our final sample includes 208 weekly observations on video games sales and crimes from 

early 2005 through 2008. However, four observations are excluded from final regressions 

because of the use of lagged video game sales. Table 2 reports basic descriptive statistics for our 

sample.  

 

 

Insert Table 2 about here 

 

 

Our method is most like Dahl and DellaVigna (2009), and therefore we contrast our study 

to illustrate its strengths and weaknesses. Like Dahl and DellaVigna (2009), we do not have 

geographic variation in sales data. Whereas first run movies can be described as non-durables 

background image

 

14

 

 

lasting two hours on average, video games are more complex. Unlike feature films, they are 

durable goods, being played repeatedly after purchase with actual time use being highly variable 

both by title and individual player. Some families budget time allowances for video game play, 

while others allow unlimited play time. The time use decision to do so is likely related to the 

family characteristics that are correlated with the determinants of crime, such as family structure 

and income. Furthermore, box office movie sales are available by day whereas video game data 

are only available at the weekly level. Hence one of the reasons we favor our instrumental 

variables strategy is that it provides greater confidence in the results by exploiting the variation in 

game characteristics to identify exogenous variation in weekly game sales.  

 

IV. 

Results 

 

Figure 5 demonstrates the challenges faced by our methodology. When “Grand Theft 

Auto IV” was released in on April, 29, 2008 it sold over two million units in its first week. This 

was double the weekly sales of any other intensely violent video game in our sample and raised 

sales of intensely violent games that week to ten times the sample average (see figure 3 also). 

Yet, even with this massive “stimulus,” it is not clear that there was a subsequent “response” in 

the number of crimes. Any actual effects are likely to be so small that they are not revealed by 

individual events, even large ones. 

 

 

Insert figure 5 about here 

 

 

Before proceeding to estimation results, we first conduct tests confirming the stationarity 

of the relevant data series after detrending and deseasonalizing each series. We conduct 

background image

 

15

 

 

Augmented Dickey-Fuller (ADF) tests for a unit root with four lags. The lag length was chosen 

using the Schwarz's Bayesian Information Criterion (SBIC) for various lag lengths. As table 3 

reports, we can reject a unit root for the four series representing crimes and video game sales. 

 

 

Insert table 3 about here 

 

A.  Basic Results 

Our basic OLS regression results are presented in Tables 4. Table 4 reports estimates of 

specifications for four lags of the effect of video games sales, measured in thousands, on violent 

crimes and on all crimes. Video games are separated between those that the ESRB rated as 

“intensely violent” and those that are not. Recall that the lesser rating of merely “violent” does 

not warrant an ESRB rating of “Mature.”

13

 Control variables include 52 weekly dummies to 

capture seasonality and a year trend to capture a possible spurious correlation due to an upward 

trend in games sales and a downward trend in crime. The specification reported here includes 

four lags of game sales. Higher order lags failed to achieve significance but specifications with 

either more or fewer lags generated similar overall results. While the non-violent video game 

sales variables display no obvious pattern, those for violent video games are all negative.  

With this this many lags and with lag values possibly being correlated, we do not expect 

to be able to distinguish the effect of one week from the next. Instead, we concentrate on the 

cumulative effect over all lags. F tests for the cumulative effect over all four lags, reported in the 

first two columns of the top panel of table 5, indicate that violent games are associated with 

reductions in both the violent and all crime outcome measures. These effects are consistent only 

background image

 

16

 

 

with the hypothesized cathartic effect from violent video games. However, the estimated effect is 

small, implying an average elasticity of crime with respect to violent games of about -0.01.  

Insert Tables 4 and 5 about here. 

 

B.  Results without the Christmas season 

One concern is that the lag structure from purchase to playing to effects on crime will 

differ during the Christmas gift-giving season. Many purchases made weeks before Christmas 

will not be played until after Christmas. This is above and beyond the seasonality shift effects we 

expect the weekly dummy variables to capture. To address this, we re-estimate the basic model 

but omit the last four weeks and first two weeks of the calendar year. Rather than report 

coefficients of all lag values, we report the cumulative effects in the bottom panel of table 5. 

These results are not very different from those that include the Christmas season. 

 

C.  Instrumental Variable Results 

As mentioned above, it could be possible that the release of different types of games 

coincides with other possible factors affecting crime. For example, demand for various multiple 

media may be higher during periods when the target audience has low opportunity cost of time 

not accounted for by seasonality. If so, the actual effect on crime may be due to an omitted 

variable and not playing video games. To attempt to address this issue, we repeat our analysis 

with a 2SLS estimator using average game quality and time on the market as instruments. In this 

way the variation in video game sales will be related to these product characteristics and not 

background image

 

17

 

 

necessarily to demand side factors. With four lags of two variables, we instrument for eight 

endogenous variables. Table 6 reports first stage results for video game sales lagged 1 week. For 

both violent and non-violent games, while some other lags may be significant, increases in 

contemporaneous average quality and age tend to significantly increase and decrease sales 

respectively.

14

 Table 7 indicates significant variation in all eight endogenous variables emerging 

from the instruments.  

Table 8 reports the second stage results to the same specification as the OLS regressions 

in table 4. Note that Sargan’s statistic fails to reject the null hypothesis that the instruments are 

valid. These results generate a pattern similar to the OLS results of table 4, but generally with 

larger, in absolute value, coefficient estimates. The cumulative effects are reported in the right 

two columns of table 5, both including and excluding the Christmas season. These indicate that 

violent video games are associated with reductions in crimes but non-violent video games have 

no effect. The implied elasticity of crime with respect to violent video game sales is now -0.015 

to -0.028, a larger reduction in crime from violent video game sales than the OLS estimates 

indicate.  

Insert Tables 6, 7 and 8 about here. 

 

D.  Results by County Youth Population 

A potential robustness check is to test for differential effects of video games on criminal 

offences by the age profile of an area. While the age profile of video game players is increasing, 

video games are still primarily played by children, teens and younger adults and not more mature 

adults. If younger people play more video games then areas with higher concentrations of 

background image

 

18

 

 

younger people should be more affected by video game playing. We distinguish between areas 

with high or low concentrations of potential video game players by calculating the fraction of 

each county’s population aged between 15 and 25. We separate the counties with a fraction above 

the mean of 14.1% from those with a fraction below the mean. Under the assumption that this age 

group plays video games more, our model should find that the measured effects will be larger for 

counties with a high youth population. 

The results of this robustness check are reported in table 9. This table reports results from 

the 2SLS estimator but the OLS results are qualitatively similar. Except for disaggregating the 

dependent variables by age profile, the specification is identical to that of table 8. Moreover, 

across all columns, the overall results are similar to those from table 8. The key difference is the 

magnitude of the implied elasticities of violent video games on crime for the low youth versus 

high youth counties. For violent crimes, the reduction in crimes when violent video game demand 

is high is about 60% higher in high youth counties. However, for all crimes, the reduction in 

crimes when violent video game demand is high is about 40% lower in high youth counties. 

Thus, this robustness check yields mixed results. 

Insert Table 9 about here 

 

E.  On Campus Results 

Another potential robustness check is to distinguish between crimes committed at schools 

and colleges and those committed elsewhere. Schools and colleges tend to be highly 

disproportionately populated with people who are of video game playing age. The NIBRS data 

record the location of each incident as a categorical variable where one possible choice out of 

background image

 

19

 

 

eleven is “school or college campus.” One advantage of this variable over using the age profile of 

the county is that the vast majority of on campus crimes will be committed by the population that 

disproportionately plays video games. A disadvantage is that many of the younger video gamers 

also commit crimes away from schools.  

Table 10 reports the results of this robustness check. This table also reports results from 

the 2SLS estimator but the OLS results are qualitatively similar. Again, except for disaggregating 

the dependent variables by location of the crime, the specification is identical to that of table 8 

and the overall results are similar to those from table 8. The robustness test focuses on magnitude 

of the implied elasticities of violent video games across the two groups. For both violent crimes 

and all crimes, the reduction in crimes when violent video game demand is about twice as high 

on campus than off campus. Thus, this robustness check provides further evidence that our basic 

result is not due to spurious correlations. 

Insert Table 10 about here 

 

V

Conclusion 

Regulation of the content of video games is usually predicated on the notion that the 

industry has large and negative social costs through games’ effect on aggression. Many 

researchers have argued that these games may also have caused extreme violence, such as school 

shootings, because of the abundance of laboratory evidence linking violent media to measured 

psychological aggression. Yet to date, because the field has not moved beyond suggestive 

laboratory studies, we argue their external validity to understanding the impact on crime is 

limited. With the exception of Ward (2011), social scientists have yet to move beyond the 

background image

 

20

 

 

laboratory to understand whether concerns about game violence’s causal effect on crime are 

warranted. Similar to Dahl and DellaVigna (2009) our evidence finds robust evidence that 

violence in media may even have social benefits by reducing crime. Consistent with these 

studies, we find that the short and medium run social costs of violent video games may be 

considerably lower, or even non-existent. The measured effect stemming from only violent video 

games and not non-violent games is consistent with catharsis and not with incapacitation. 

Our results are not completely inconsistent with GAM. Most theories in GAM are related 

to long term exposure to violent media. Our tests measure only short-term responses to video 

game violence. It is possible that there exists a long-term GAM effect as well as a short-term 

cathartic effect. The case for regulatory intervention depends on whether both of these effects 

apply. While some early work has been done on the long-term effects of video game play, nearly 

all the laboratory evidence that currently exists has only uncovered very short-term effects.

15

 

Our findings also suggest unique challenges to game regulations. GAM proposes that the 

individuals playing violent video games are developing, accidentally, a biased hermeneutic 

towards people wherein they believe they are in danger. It is possible that the decrease in violent 

outcomes that we observe in our study, possibly due to short-run catharsis, is masking the long-

run harm to society if these violent behaviors are developing within gamers. This suggests that 

regulation aimed at reducing violent imagery and content in games could in the long-run reduce 

the aggression capital stock among gamers, but potentially also cause crime to increase in the 

short-run if the marginal player is currently being drawn out of violent activities. This tradeoff 

may not pass a cost-benefit test.  

A related policy question centers on whether reducing violent content of video games so 

as to diminish GAM related aggression effects also would diminish any time use and cathartic 

background image

 

21

 

 

effects. Presumably, publishers include content that is violent because there is a market niche that 

demands it. They believe that removing the violence would lower profits because it would reduce 

these gamers’ willingness-to-pay. It is not clear how much time use might fall, but lower utility 

from such games would reduce game demand and game play time by some amount. The ability to 

craft a regulation restricting violent content that does not also lower consumer utility seems 

remote. 

Using our approach we find a negative inelastic relationship between weekly non-violent 

video game sales and weekly crime of no more than –0.03. As our research design exploits 

shortrun variation in weekly sales up to a four week lag, caution should be used in applying it 

outside our sample frame. For instance, if behavioral effects from popular, higher quality games 

diverge from that of popular, lower quality games, then our approach may misstate the average 

elasticity of games independent of quality. Furthermore, our elasticity is exclusively based on 

shortrun variation in sales, which may be different from effects in the longrun. For instance, the 

substitution out of schooling to video gameplay as Stinebrickner and Stinebrickner (2008) and 

Ward (2012) show might imply that longrun effects of violent games on crime are positive by 

reducing human capital and wages (Grogger 1998). With this caveat, we use this elasticity to 

construct a simple counterfactual for US crimes from 2005 to 2008.  

To provide context for the magnitude of our estimated effects, we consider a simple back-

of-the-envelope calculation using the numerical growth in video game sales over our sample 

period. From Table 1, we calculate that video game unit sales increased by an average of 9.6% 

per year. Assuming this applies to both violent and non-violent games, our estimated violent 

video game-to-violent crime elasticity of approximately -0.03 would predict almost 0.3% fewer 

violent crimes per year due to violent video game sales. Nationwide, this would translate to about 

background image

 

22

 

 

10 fewer violent crimes committed per day.

16

 By comparison, the estimated incapacitation effect 

from Jacob and Lefgren (2003) of 13.3% more property crimes due teacher in-service days, 

would translate into about 2,300 property crimes for a hypothetical national in-service day.

17

 

Since the video game effect occurs year round, this suggests that there are potentially large social 

externalities associated with crime that violent games are disrupting in the shortrun. 

This approach can help guide investigators to develop more holistic research designs, such 

as field experimentation and other quasi-experimental methodologies, to determine the net social 

costs of violent games. The main shortcoming of our approach is due to the limitations of our 

data on game sales. Unfortunately, the industry does not report cross-sectional variation in game 

sales – only the national weekly sales of the top 50 highest grossing games are available. As a 

result, our paper follows a methodology similar to Dahl and DellaVigna (2009), who estimated 

the impact of violent movies, as proxied by daily ticket sales, on crime using only time series 

methods. These analyses are suggestive of the hypothesis that violent media paradoxically may 

reduce violence in the short-run while possibly increasing the aggressiveness of individuals in the 

long-run.  

background image

 

23

 

 

References 

Anderson, Craig A. (2004). “An update on the effects of playing violent video games,” Journal of 

Adolescence 27, 113–122. 

Anderson, C. A., Benjamin Jr., A. J., & Bartholow, B. D. (1998). Does the gun pull the trigger? 

Automatic priming effects of weapon pictures and weapon names. Psychological Science
9, 308–314. 

Anderson, Craig A, Douglas A. Gentile, Katherine E. Buckley. (2007) Violent video game effects 

on children and adolescents: theory, research and public policy. Oxford University Press, 
1st edition. 

Anderson, C. A. and B. J. Bushman. 2001. “Human aggression.” Annual Review of Psychology

53:27–51. 

Bandura, A. (1973). Aggression: A social learning analysis. Englewood Cliffs: Prentice Hall. 

Becker, Gary S. (1965). “A theory of the allocation of time.” Economic Journal 75 (299), pp. 

493-517. 

Becker, Gary and Kevin M. Murphy (1988). “A theory of rational addiction.” The Journal of 

Political Economy 96: p. 675-700. 

Berkowitz, L., & LePage, A. (1967). “Weapons and aggression eliciting stimuli.” Journal of 

Personality and Social Psychology, 7, 202–207. 

Bushman, B. J. and C. A. Anderson (2002). “Violent video games and hostile expectations: a test 

of the general aggression model.” Personality and Social Psychology Bulletin 28 (12): 
1679-1686. 

Card, David and Gordon B. Dahl (2011). “Family violence and football: the effect of unexpected 

emotional cues on violent behaviour.” Quarterly Journal of Economics (forthcoming).  

Comstock, Anthony and J. M. Buckley (1883) Traps for the young. Republished in 1967 by 

Beknap Press, First Edition.  

Dahl, Gordon and Stefano DellaVigna (2009). “Does movie violence increase violent crime?” 

Quarterly Journal of Economics, 124(2) 637–675.  

Denzler, Markus, Förster, Jens and Liberman, Nira (2008). How goal-fulfillment decreases 

aggression. Journal of Experimental Social Psychology 45 (1): 90-100.  

Federal Trade Commission. 2009. “Marketing Violent Entertainment to Children: A Sixth 

Follow-Up Review of Industry Practices in the Motion Picture, Music Recording & 
Electronic Game Industries: A Federal Trade Commission Report to Congress.” 
Washington, DC. <

 

http://www.ftc.gov/os/2009/12/P994511violententertainment.pdf

>. 

Ferguson, C. J. and J. Kilburn (2008). “The public health risks of media violence: a meta-analytic 

review.” The Journal of Pediatrics 154(4): 759−763.  

background image

 

24

 

 

Ferguson, Christopher J., Cheryl K. Olson, Lawrence A. Kutner, and Dorothy E.Warner 

(forthcoming) "Violent Video Games, Catharsis Seeking, Bullying, and Delinquency: A 
Multivariate Analysis of Effects," Crime & Delinquency

Grogger, Jeff (1998). “Market wages and youth crime”. Journal of Labor Economics 16(4) 

October: 756-791. 

Hadju David (2009), The ten-cent plague: the great comic-book scare and how it changed 

america. New York: Farrar, Strauss and Giroux. 

Han DH, Lee YS, Yang KC, Kim EY, Lyoo IK, Renshaw PF. (2007). “Dopamine genes and 

reward dependence in adolescents with excessive internet video game play.” Journal of  
Addiction Medicine
 1(3), 133-8. 

Han, Doug Hyun, Young Sik Lee, Churl Na, Jee Young Ahn, Un Sun Chung, Melissa A. Daniels, 

Charlotte A. Haws, Perry F. Renshaw (2009). “The effect of methylphenidate on Internet 
video game play in children with attention-deficit/hyperactivity disorder.” Comprehensive 
Psychiatry
 50, 251–256. 

Hilger, James, Greg Rafert and Sofia Villas-Boas (2010). “Expert opinion and the demand for 

experience goods: an experimental approach in the retail wine market.” Review of 
Economics & Statistics
, forthcoming. 

Huesmann, L. R. (1998). The role of social information processing and cognitive schema in the 

acquisition and maintenance of habitual aggressive behavior. In R. G. Geen & E. 
Donnerstein (Eds.), Human aggression: Theories, research and implications for policy 
(pp. 73–109). New York: Academic. 

Jacob, B. A., and L. Lefgren (2003). “Are idle hands the devil's workshop? incapacitation, 

concentration, and juvenile crime.” The American Economic Review 93 (5): 1560-1577. 

Jacob, B. A., L. Lefgren and E Moretti (2007). “The dynamics of criminal behavior: evidence 

from weather shocks.” Journal of Human Resources 42 (3): 489–527. 

Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ 

and Grasby PM (1998) “Evidence for striatal dopamine release during a video game.” 
Nature 393, 266-8. 

Nair, Harikesh (2007). "Intertemporal price discrimination with forward-looking consumers: 

Application to the US market for console video-games," Quantitative Marketing and 
Economics
, 5(3), 239-292. 

Olson, Cheryl K., Lawrence A. Kutner, and Dorothy E. Warner (2008). "The Role of Violent 

Video Game Content in Adolescent Development Boys’ Perspectives.” Journal of 
Adolescent Research
 23(1), 55-75. 

Rantala, Ramona R and Thomas J. Edwards (2000). “Effects of NIBRS on crime statistics”. NCJ 

Publication 178890. US Department of Justice. 

background image

 

25

 

 

Reinstein, D. and C. Snyder (2005). “The influence of expert reviews on consumer demand for 

experience goods: A case study of movie critics.” Journal of Industrial Economics 53(1): 
27–51. 

Stinebrickner, Ralph and Todd R. Stinebrickner (2008). “The causal effect of studying on 

academic performance.” The B.E. Journal of Economic Analysis & Policy: Frontiers 8(1) 
Article 14.  

Ward, Michael R. (2011). “Video games and crime.” Contemporary Economic Policy. 29(2) 261-

273. 

Ward, Michael R. (2012). “Does time spent playing video games crowd out time spent 

studying?,” http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2061726. 

Zhu, Feng and Xiaoquan (Michael) Zhang (2010). “Impact of online consumer reviews on sales: 

the moderating role of product and consumer characteristics.” Journal of Marketing, Vol. 
74 (March 2010), 133–148.  

background image

 

26

 

 

Figure 1 

Number of Weeks a Game is in the Top 50 Sellers 

 

 

 

background image

 

27

 

 

Figure 2 

Average US Video Game Unit Sales by Weeks after Release 

 

 

background image

 

28

 

 

Figure 3 

Weekly Sales of Video Games 

 

 

 

background image

 

29

 

 

Figure 4 

Total and Violent Crimes by Week 

 

 

 

background image

 

30

 

 

Figure 5 

Intensely Violent Video Game Sales and Crimes Around the Release of Grand Theft Auto IV 

 

 
 

 

 

background image

 

31

 

 

Table 1 

Comparison of Unit Sales of Video Games (millions) from  

VGChartz and the Entertainment Software Association (ESA) 

 

Year 

VGChartz 

Entertainment 

Software 

Association 

Percent 

2005 

56.7 

226.3 

25.1% 

2006 

76.2 

240.7 

31.7% 

2007 

107.0 

267.8 

40.0% 

2008 

141.3 

298.2 

47.4% 

VGChartz from authors’ calculations and ESA from 
http://www.theesa.com/facts/pdfs/VideoGames21stCentury_2010.pdf. 

 

background image

 

32

 

 

Table 2 

Summary Statistics 

Variable 

Mean 

Std. Dev. 

Intensely Violent Video Game Sales (1,000s) 

256 

373 

Not Intensely Violent Video Game Sales (1,000s) 

1,572 

1,273 

Average Intensely Violent GameSpot Score 

8.584 

0.658 

Average Not Intensely Violent GameSpot Score 

7.420 

0.662 

Average Intensely Violent Weeks on Market 

18.6 

13.8 

Average Not Intensely Violent Weeks on Market 

18.0 

9.8 

Violent Crimes 

19,639 

1,601 

All Crimes 

49,491 

4,168 

Violent Crimes in High Youth Counties 

7,377 

584 

Violent Crimes in Low Youth Counties 

12,263 

1,050 

All Crimes in High Youth Counties 

30,586 

2,714 

All Crimes in Low Youth Counties 

18,905 

1,500 

Violent Crimes on Campuses 

871 

338 

Violent Crimes Not on Campuses 

20,524 

1,830 

All Crimes on Campuses 

1,887 

630 

All Crimes Not on Campuses 

51,628 

4,667 

Descriptive statistics of the 208 observations used in later tables.  

 

 

 

background image

 

33

 

 

Table 3 

Tests of Time Series Stationarity 

Variable 

Z value 

Violent Crimes 

-3.132* 

All Crimes 

-3.688** 

Violent Video Game Sales 

-4.430** 

Non-Violent Video Game Sales 

-3.475+ 

The null hypothesis is that there is a unit root in de-seasoned 
and de-trended time series data. We report the results of 
Augmented Dickey-Fuller tests for a unit root with four lags. 
Lag length determined by Schwarz's Bayesian information 
criterion (SBIC). 
+ significant at 10%; * significant at 5%; ** significant at 1% 

 

 

 

background image

 

34

 

 

Table 4 

Ordinary Least Squares (OLS) Results of Video Game Sales on Crime 

 

Violent 

Crimes 

All 

Crimes 

Non-Violent Video Game 
    Sales Lagged 1 week 

-0.011 

-0.026 

(0.108) 

(0.229) 

Non-Violent Video Game 
    Sales Lagged 2 weeks 

-0.066 

-0.206 

(0.109) 

(0.231) 

Non-Violent Video Game 
    Sales Lagged 3 weeks 

0.100 

0.168 

(0.109) 

(0.232) 

Non-Violent Video Game 
    Sales Lagged 4 weeks 

-0.201+ 

-0.368 

(0.109) 

(0.231) 

 

 

 

Violent Video Game Sales 
  Lagged 1 week 

-0.117 

-0.227 

(0.189) 

(0.401) 

Violent Video Game Sales 
    Lagged 2 weeks 

-0.242 

-0.595 

(0.198) 

(0.420) 

Violent Video Game Sales 
    Lagged 3 weeks 

-0.290 

-0.543 

(0.198) 

(0.420) 

Violent Video Game Sales 
    Lagged 4 weeks 

-0.239 

-0.686+ 

(0.189) 

(0.402) 

 

 

 

Year 

68.793 

-500.642** 

 

(84.221) 

(179.011) 

Week Dummies 

Sign. 

Sign. 

R-squared 

0.891 

0.928 

Sample includes 204 weekly observations. Specification 
includes 52 weekly dummy variables. Standard errors are 
in parentheses. ** p<0.01, * p<0.05, + p<0.1 

 

 

 

background image

 

35

 

 

Table 5 

Summary of Main Results 

 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 

 

 
 
 
 
 

 

 
 
 
 
 

 

 

Including Christmas Season 

 

 

 

 

  

OLS 

2SLS 

  

Violent 

Crimes 

All 

Crimes 

Violent 

Crimes 

All 

Crimes 

Sum Non-Violent Video Games 
Coefficients 

-0.179 

-0.432 

-0.129 

-0.016 

(0.166) 

(0.352) 

(0.435) 

(0.854) 

Sum Violent Video Games 
Coefficients 

-0.888**  -2.051**  -2.351**  -3.864** 

(0.255) 

(0.542) 

(0.513) 

(1.009) 

Non-Violent Video Game Elasticity 

-0.013 

-0.013 

-0.010 

0.000 

Violent Video Game Elasticity 

-0.011 

-0.010 

-0.028 

-0.019 

 

 

 

 

 

Excluding Christmas Season 

 

 

 

 

  

OLS 

2SLS 

 

Violent 

Crimes 

All 

Crimes 

Violent 

Crimes 

All 

Crimes 

Sum Non-Violent Video Games 
Coefficients 

-0.036 

0.303 

0.481 

0.946 

(0.242) 

(0.482) 

(0.525) 

(0.908) 

Sum Violent Video Games 
Coefficients 

-0.741**  -1.909**  -2.669**  -3.645** 

(0.262) 

(0.532) 

(0.639) 

(1.106) 

Non-Violent Video Game Elasticity 

-0.002 

0.007 

0.027 

0.022 

Violent Video Game Elasticity 

-0.007 

-0.008 

-0.027 

-0.015 

Estimates for the sum of coefficients on lagged terms. Standard errors are in 
parentheses. ** p<0.01, * p<0.05, + p<0.10. The implied elasticity of crime with 
respect to video game sales is calculated at sample means. 

 

 

 

background image

 

36

 

 

Table 6 

First Stage Regressions of Video Game Sales lagged 1 week  

on Average Video Game Characteristics 

 

Non-Violent Games 

Violent Games 

 

Coef. 

Std. Err. 

Coef. 

Std. Err. 

Violent Average Quality lagged 1 week 

212.49* 

(98.75) 

143.66* 

(59.87) 

Violent Average Quality lagged 2 weeks 

-82.18 

(121.28)  -111.07 

(73.53) 

Violent Average Quality lagged 3 weeks 

172.99 

(120.24) 

-23.96 

(72.90) 

Violent Average Quality lagged 4 weeks 

-147.29 

(93.48) 

-89.33 

(56.67) 

Non-Violent Average Quality lagged 1 week 

327.51** 

(99.93) 

40.09 

(60.58) 

Non-Violent Average Quality lagged 2 weeks 

-165.86 

(121.80) 

-40.31 

(73.84) 

Non-Violent Average Quality lagged 3 weeks 

-13.84 

(119.69) 

-3.54 

(72.56) 

Non-Violent Average Quality lagged 4 weeks 

-44.93 

(95.48) 

-7.15 

(57.89) 

Violent Average Age lagged 1 week 

0.55 

(5.66) 

-14.61** 

(3.43) 

Violent Average Age lagged 2 weeks 

1.24 

(6.75) 

7.67+ 

(4.09) 

Violent Average Age lagged 3 weeks 

-12.80+ 

(6.85) 

-1.72 

(4.15) 

Violent Average Age lagged 4 weeks 

5.51 

(5.61) 

3.80 

(3.40) 

Non-Violent Average Age lagged 1 week 

-30.63** 

(9.07) 

6.69 

(5.50) 

Non-Violent Average Age lagged 2 weeks 

21.01* 

(9.73) 

2.45 

(5.90) 

Non-Violent Average Age lagged 3 weeks 

14.16 

(10.02) 

2.57 

(6.07) 

Non-Violent Average Age lagged 4 weeks 

19.20+ 

(9.77) 

11.32+ 

(5.92) 

Sample includes 204 weekly observations. Specification includes 52 weekly dummy variables 
and an annual time trend. Standard errors are in parentheses. ** p<0.01, * p<0.05, + p<0.1 

 

 

background image

 

37

 

 

Table 7 

Summary Results for Under-Identification in First Stage Regressions 

Variable 

Shea Partial R

2

 

Partial R

2

 

F( 16, 135) 

Non-Violent Game Sales lagged 1 week 

0.321 

0.305 

3.71** 

Non-Violent Game Sales lagged 2 weeks 

0.316 

0.312 

3.82** 

Non-Violent Game Sales lagged 3 weeks 

0.316 

0.305 

3.70** 

Non-Violent Game Sales lagged 4 weeks 

0.259 

0.284 

3.34** 

Violent Game Sales lagged 1 week 

0.180 

0.274 

3.18** 

Violent Game Sales lagged 2 weeks 

0.210 

0.247 

2.77** 

Violent Game Sales lagged 3 weeks 

0.225 

0.286 

3.38** 

Violent Game Sales lagged 4 weeks 

0.187 

0.224 

2.43** 

This table summarizes the explanatory power of the instrument set for each of the 
instrumented variables. ** p<0.01 

 

 

background image

 

38

 

 

 

Table 8 

Two Stage Least Squares (2SLS) Results of Video Game Sales on Crime 

 

Violent 

Crimes 

All 

Crimes 

Non-Violent Video Game 
    Sales Lagged 1 week 

-0.292 

-0.478 

(0.209) 

(0.410) 

Non-Violent Video Game 
    Sales Lagged 2 weeks 

-0.251 

-0.570 

(0.212) 

(0.417) 

Non-Violent Video Game 
    Sales Lagged 3 weeks 

0.394+ 

0.903* 

(0.213) 

(0.418) 

Non-Violent Video Game 
    Sales Lagged 4 weeks 

0.020 

0.130 

(0.234) 

(0.460) 

 

 

 

Violent Video Game Sales 
  Lagged 1 week 

0.196 

0.494 

(0.488) 

(0.958) 

Violent Video Game Sales 
    Lagged 2 weeks 

-0.291 

-0.453 

(0.474) 

(0.932) 

Violent Video Game Sales 
    Lagged 3 weeks 

-0.572 

-0.768 

(0.457) 

(0.899) 

Violent Video Game Sales 
    Lagged 4 weeks 

-1.684** 

-3.137** 

(0.479) 

(0.942) 

 

 

 

Year 

195.233 

-492.913 

 

(181.398) 

(356.404) 

Week Dummies 

Sign. 

Sign. 

 

 

 

Sargon’s statistic: χ

2

(8) 

9.661 

10.488 

 

[0.29] 

[0.232] 

R-squared 

0.813 

0.894 

Sample includes 204 weekly observations. Specification 
includes 52 weekly dummy variables. Standard errors are 
in parentheses. ** p<0.01, * p<0.05, + p<0.1 

 

 

 

background image

 

39

 

 

Table 9 

Robustness Check of Crimes on Youth Population of County 

 

Violent Crimes 

All Crimes 

 

Low Youth 

High Youth 

Low Youth 

High Youth 

Non-Violent Video Game Sales 
    Lagged 1 week 

-0.179 

-0.119 

-0.186 

-0.338 

(0.123) 

(0.087) 

(0.169) 

(0.251) 

Non-Violent Video Game Sales 
    Lagged 2 weeks 

-0.175 

-0.098 

-0.241 

-0.420 

(0.125) 

(0.088) 

(0.171) 

(0.256) 

Non-Violent Video Game Sales 
    Lagged 3 weeks 

0.220+ 

0.135 

0.356* 

0.407 

(0.125) 

(0.088) 

(0.172) 

(0.256) 

Non-Violent Video Game Sales 
    Lagged 4 weeks 

0.057 

-0.062 

-0.019 

0.074 

(0.138) 

(0.097) 

(0.189) 

(0.282) 

 

 

 

 

 

Violent Video Game Sales 
    Lagged 1 week 

0.192 

0.020 

0.226 

0.300 

(0.288) 

(0.202) 

(0.394) 

(0.588) 

Violent Video Game Sales  
    Lagged 2 weeks 

-0.051 

-0.218 

-0.410 

0.003 

(0.280) 

(0.197) 

(0.383) 

(0.571) 

Violent Video Game Sales  
    Lagged 3 weeks 

-0.356 

-0.148 

-0.275 

-0.413 

(0.270) 

(0.190) 

(0.370) 

(0.551) 

Violent Video Game Sales  
    Lagged 4 weeks 

-0.891** 

-0.721** 

-1.452** 

-1.829** 

(0.283) 

(0.199) 

(0.387) 

(0.578) 

2SLS Estimator. Specification includes 52 weekly dummy variables and an annual trend. 
Standard errors are in parentheses. 

Sum Non-Violent Video Games 
    Coefficients 

-0.077 

-0.144 

-0.090 

-0.277 

(0.256) 

(0.180) 

(0.351) 

(0.524) 

Sum Violent Video Games 
    Coefficients 

-1.105** 

-1.067** 

-1.911** 

-1.938** 

(0.303) 

(0.213) 

(0.415) 

(0.619) 

Estimates for the sum of coefficients on lagged terms. Standard errors are in parentheses. 

Non-Violent Video Game Elasticity 

-0.010 

-0.031 

-0.008 

-0.014 

Violent Video Game Elasticity 

-0.023 

-0.037 

-0.026 

-0.016 

Implied elasticity of crime with respect to video game sales. Calculated at sample means.  
** p<0.01, * p<0.05, + p<0.1 

 

 

 

background image

 

40

 

 

Table 10 

Robustness Check of Crimes on Campuses and off Campuses 

 

Violent Crimes 

All Crimes 

 

Off Campus 

On Campus 

Off Campus 

On Campus 

Non-Violent Video Game Sales 
    Lagged 1 week 

-0.260 

-0.032 

-0.414 

-0.065 

(0.193) 

(0.025) 

(0.382) 

(0.047) 

Non-Violent Video Game Sales 
    Lagged 2 weeks 

-0.237 

-0.014 

-0.524 

-0.046 

(0.196) 

(0.026) 

(0.388) 

(0.048) 

Non-Violent Video Game Sales 
    Lagged 3 weeks 

0.342+ 

0.052* 

0.827* 

0.076 

(0.196) 

(0.026) 

(0.389) 

(0.048) 

Non-Violent Video Game Sales 
    Lagged 4 weeks 

0.013 

0.007 

0.158 

-0.029 

(0.216) 

(0.028) 

(0.428) 

(0.053) 

 

 

 

 

 

Violent Video Game Sales 
    Lagged 1 week 

0.172 

0.024 

0.430 

0.064 

(0.450) 

(0.059) 

(0.892) 

(0.110) 

Violent Video Game Sales  
    Lagged 2 weeks 

-0.272 

-0.019 

-0.385 

-0.069 

(0.438) 

(0.057) 

(0.867) 

(0.107) 

Violent Video Game Sales  
    Lagged 3 weeks 

-0.525 

-0.047 

-0.741 

-0.028 

(0.422) 

(0.055) 

(0.837) 

(0.103) 

Violent Video Game Sales  
    Lagged 4 weeks 

-1.559** 

-0.125* 

-2.890** 

-0.248* 

(0.442) 

(0.058) 

(0.877) 

(0.108) 

2SLS Estimator. Specification includes 52 weekly dummy variables and an annual trend. 
Standard errors are in parentheses. 

Sum Non-Violent Video Games 
    Coefficients 

-0.142 

0.013 

0. 048 

-0.064 

(0.401) 

(0.052) 

(0.795) 

(0.098) 

Sum Violent Video Games 
    Coefficients 

-2.184** 

-0.167** 

-3.584** 

-0.280* 

(0.474) 

(0.062) 

(0.939) 

(0.116) 

Estimates for the sum of coefficients on lagged terms. Standard errors are in parentheses. 

Non-Violent Video Game Elasticity 

-0.011 

0.024 

0.001 

-0.053 

Violent Video Game Elasticity 

-0.027 

-0.049 

-0.018 

-0.038 

Implied elasticity of crime with respect to video game sales. Calculated at sample means. ** 
p<0.01, * p<0.05, + p<0.1 

 

 
 

 

background image

 

41

 

 

Endnotes 

                                                           

*

 We wish to thank Stephen Frasure for excellent research assistance. We received helpful comments from Irene 

Bertschek, Pierre Mohnens, the 9

th

 ZEW ICT Conference, Paris ICT Conference 2011, UT Arlington, Munich ICT 

Conference 2012, Middlesex University and UNC Charlotte. 

2

 In 2010, California passed a law making it a punishable offense for a distributor to sell a banned violent video to a 

minor. The US Supreme Court struck down this law in June, 2011.  

3

 There is disagreement within the psychological literature about the interpretation of psychological laboratory 

studies of video game violence (Ferguson & Kilburn, 2008).

 

4

 http://www.vgchartz.com 

5

 http://www.esrb.org 

6

 http://www.gamespot.com 

7

 A variant of the Becker and Murphy (1988)’s rational addiction model may approximate GAM. The key insight for 

GAM is that consumption of a good in one particular not only affects current utility directly, but through a capital 
stock accumulation mechanism, it also affects future utility indirectly.

 

8

 The website, How Long to Beat, 

http://www.howlongtobeat.com

, provides user-submitted statistics on completion 

times. The 2011 blockbuster, The Elder Scrolls V: Skyrim, lists completion times between 100 and 330 hours. The 
2008 hit, Grand Theft Auto IV, lists 12 to 162 hours, with the lower bound 12 hours recorded for a “speed trial” 
effort to complete the game as fast as possible. 

9

 Our empirical methodology is in large part based on DellaVigna and Dahl’s (2009) study of the effect of movie 

violence on crime. 

10

 VGChartz uses a variety of sources to collect data. These include manufacturer shipments, data from tracking 

firms, retailer and end user polls, and “statistical trend fitting.” While VGChartz reports by global region, e.g. US, 
Japan, Europe, Middle East, Africa and Asia, disaggregated sales within a region is not available.

 

11

 http://www.theesa.com – The reported numbers from ESA also include games for personal computers which 

amount to about 10 percent of the market each year and are intentionally not included in VGChartz.  

13

 Unreported regressions comparing games that are either “intensely violent” or “violent” versus all other games 

generally yield much less precisely estimated parameters. 

14

 Unreported results for the other lag structures are similar. 

15

 Anderson (2004) notes the lack of longitudinal studies of effects of violent video games on aggression and calls for 

more studies aimed at investigating the long-term effects. The best evidence we have at present from laboratory 
studies is primarily short-run, making our study more suitable for comparison.

 

16

 This is based on a total of over 1.2 million violent crimes reported in the FBI’s “Crime in the United States” 

http://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2010/crime-in-the-u.s.-2010/tables/10tbl01.xls. 

17

 This is based on 6.2 million annual property crimes reported in the FBI’s “Crime in the United States” 

http://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2010/crime-in-the-u.s.-2010/tables/10tbl01.xls.