background image

Krzysztof ZAREMBA

1

, Andrzej PAWLAK

2

Bialystok Technical University (1), Central Institute for Labour Protection - National Research Institute (2) 

 
 

Parameters of model luminaire with high power LED diodes 

 
 

Abstract. Specially manufactured reflectors with limited height were applied in the designed luminaire model. Thanks to that approach, a reduced 
luminous flux distribution was achieved along with more appropriate luminous intensity curve, with simultaneous high efficiency reaching 92%. 
Application of 30 white and 5 red diodes in the same luminaire provided the resulting optical radiation with the colour temperature of 3702K and 
colour rendering index of 81. 
 
Streszczenie. W modelowej oprawie zastosowano specjalnie zaprojektowane i wykonane odbłyśniki o niewielkiej wysokości. Dzięki temu 
osiągnięto ograniczony rozsył strumienia świetlnego, krzywą  światłości przystosowaną do równomiernego  oświetlenia powierzchni roboczej i 
jednocześnie wysoką sprawność oprawy wynoszącą  aż 92%. Jednoczesne zastosowanie 30 diod barwy białej i 5 diod barwy czerwonej 
spowodowało uzyskanie światła o temperaturze barwowej 3702K i wskaźniku oddawania barw 81. (Parametry modelowej oprawy z diodami LED 
o dużej mocy) 
 
Keywords: high power LED diode, general lighting, colour rendering index, colour temperature. 
Słowa kluczowe: diody LED o dużej mocy, oświetlenie ogólne, wskaźnik oddawania barw, temperatura barwowa. 
 
 

1. Introduction 
 

In the case of high power LED diodes, it is possible to 

assume that their luminous intensity distribution curves are 
very similar with the cosine luminous intensity distribution 
curve of the Lambertian surface. They should not be 
however applied directly in general lighting luminaires [1]. 
Obtaining the constant illuminance value on the working 
surface, which is directly connected with the highest 
possible degree of the lighting uniformity, requires 
application of a luminaire with the special luminous intensity 
curve [2]. Such luminous intensity distribution can not be 
obtained in a typical general lighting reflector luminaire with 
the 

α

ob

 cut-off angle ranging from 55° to 65°. A uniform 

lighting luminaire must be constructed in such a way, that 
the central part of the luminous flux emitted by the diode is 
dissipated by an additional reflector module or a lens. That 
additionally complicates the construction of such a luminaire 
and increases its final price. 
 

 

 
Fig. 1. Geometric layout of the designed luminaire with alternated 
luminous intensity curve 

 

In accordance with the standard EN 12464-1:2004 – 
Lighting of Indoor Work Places, the uniformity of target area 
lighting (calculated as a quotient of the minimum and 
average value of the illuminance observed on the given 
target area) for continuous work should be estimated at 
least 0.7. That is exactly the reason why we decided to 
examine the lighting uniformity for luminaires, where the 
central part of the luminous intensity distribution curve, 
characterized with the 

α

ox

 angle (Fig. 1), is identical with the 

luminous intensity distribution curve of the light source and 
then has a constant value of the illuminance. Under the 
assumption that the reflection coefficient for the reflector 
module was defined at 0.82, the minimal normative lighting 

uniformity ratio, defined at 0.7 is achieved for the 

α

ob

 cut-off 

angles lower or equal to 60,4°. Thus, it is possible to design 
a single-reflector luminaire module, providing lighting 
uniformity ratio better than 0.7. A luminaire with the direct 

α

ob 

cut-off angle estimated at 60° can theoretically provide 

the lighting uniformity ratio of 0.713, while the said ratio 
increases to 0,852 with the 

α

ob 

cut-off angle of 55°. 

However, predicting a practical decrease in the estimated 
lighting uniformity ratio, the luminaire with the 

α

ob 

cut-off 

angle of 55° was selected for construction. It is 
characterized with the 

α

ox

 angle estimated at 37,6° and the 

luminous intensity I

ox

 = 252,2 cd/klm. 

 
2. Construction of the luminaire model 
 

The shape of the luminaire reflector was estimated for 

the  I

o

α

  luminous intensity distribution curve using the flux 

method (Fig. 2) [2]. The used method for estimation of the 
shape of the reflector module does not compensate for the 
real size of the light source. Thus, the applicability analysis 
for the derived profiles was conducted in systems with the 
finite size of the light source. Its results confirm the 
applicability of reflectors, designed for the light source with 
negligible size, in the lighting systems with the real light 
source of finite size. Visible alternations in the luminous 
intensity distribution curves are noticeable only when the 
size proportion between the light source and the reflector 
module reaches the ratio 1:5. 
 

 

 

 
Fig. 2. Calculated shape for the rotationally symmetrical reflector 
with the direct irradiation angle 

α

ob

 equal to 55° 

 

Construction of the model of the examined luminaire, 

equipped with the LED diodes type LXHL-LW3C with the 
diameter of 5.6 mm, featured a reflector module with the 
output diameter of 60 mm (Fig. 2). The LXHL-LW3C diode, 
emitting white light, is characterized with the standard 
operating current of 700 mA with the operating voltage of 
3.7 V, thus dissipating 2.6 W. Under such operating 
conditions, the diode emits a luminous flux of 66 lm (with the 
minimum value of 60 lm). The diode can also be powered 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 83 NR 5/2007

 

50 

background image

with the current of 1000 mA and voltage of 3.9 V, 
dissipating 3.9 W and emitting a luminous flux of 80 lm. The 
LXHL-LW3C diode, just like most of the currently 
manufactured devices of his type, emits the daylight type of 
visible radiation. Such diodes produce significant amount of 
blue and green - yellow light, thus their colour temperature 
is quite high, since it is typically estimated at 5500 K. The 
manufacturer allows for a very wide colour temperature 
distribution, ranging between 4500 K and 10000 K. 
Additionally, the manufacturer does not also provide any 
estimation of the colour rendering index, stating only that it 
is good. Based on the catalogue – provided spectral 
distribution for the LXHL-LW3C diode, its colour 
temperature was estimated at 6177 K while the overall 
colour rendering index was established at 67. The colour 
temperature of 6177 K is too high for the majority of 
applications, however, taking into the account the 
admissible wide colour temperature distribution provided for 
by the manufacturer, it becomes obvious that the target 
luminaire should be equipped with a mechanism allowing to 
adjust the colour temperature at will [3]. The impact of 
applying red LXHL-LD3C diode in order to alter the colour 
temperature of white diodes, was examined in detail. Fig. 3 
present the relation between the colour temperature T

c

 and 

colour rendering index (CRI) for the resulting mixture of 
optical radiation from a single red diode and a varied portion 
n

W

 of radiation originating from white diodes. Increase in the 

number  n

W

 of white diodes is closely correlated with the 

increase in the colour temperature and colour rendering 
index of the resulting light. The designed luminaire 
contained thus a single, red LXHL-LD3C diode for every 5 
white emitting LXHL-LW3C diodes. The optical radiation 
emitted by such mixture of diodes is characterized by the 
overall colour temperature of 2709 K and the colour 
rendering index estimated at 67, which is equal to the ones 
of the white LED diodes alone. Selection of such proportion 
of diode types was also advantageous in terms of power 
budget, since most of the available power supply sources 
are characterized with the maximum output voltage of 24 V, 
which corresponds to 6 diodes connected in series in a 
single branch. 

 

 

 

 

 

 

Fig. 3. Calculated colour temperature T

c

 and colour rendering index 

CRI for radiation mix originating from a single red and n

W

 white 

diodes 

 
Utilization of such diode proportion can also produce the 

output white light with the colour temperature higher than 
2709 K and colour rendering index reaching 79 providing 

that a regulation circuit is employed in the luminaire, 
allowing to decrease the relative quantity of the luminous 
flux 

Φ

Rr

 originating from red diodes. (Fig. 4). 

 

 

 

 

Fig. 4. Calculated colour temperature T

c

 and colour rendering index 

CRI for radiation mix originating from a single red diode with the 
relative quantity of luminous flux 

Φ

Rr

 and 5 white diodes 

 

 

 

 

 

Photo 1. Overall construction of the model luminaire with 36 LED 
diodes: (a) – with no attached reflectors, (b) – with attached 
reflectors 

 

The target model luminaire was to contain 30 LXHL-

LW3C type LED white light diodes and 6 LXHL-LD3C type 
LED red light diodes (Photo 1 – red diodes are located on 
the diagonal of the luminaire). Each diode was mounted on 
a separate, electrically insulated radiator (Photo 1.a). In the 
result of the conducted analysis using the Philips 
Xitanium™ 80W/3.15-24V/3150mA power supply system, 
assumptions concerning the system power source were 
modified. Instead of original two parallel power supplies, 
only one was applied. It was decided that at the research 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 83 NR 5/2007

 

51

background image

stage, assuring stable and safe operating conditions for the 
diodes is much more important than obtaining their 
maximum lighting parameter ratings. Closer analysis of the 
power supply system indicated that under failure conditions 
(e.g. disconnecting one of the parallel branches), the whole 
current provided by the power supply would flow through the 
remaining branches, meaning that with a 3 branch design, 
most of the diodes would be damaged. Thus, a single power 
supply system was connected to 6 parallel diode branches. 
It must be noted, that while the average current value in 
branches was estimated at 0,537 A, the maximum observed 
difference was measured at 0,09 A, providing the relative 
value of approximately 20%. 

 

2. Conclusions  
  The measured luminous intensity curves for 36 LED 
diodes and the model luminaire were depicted in Fig. 5. The 
constructed luminaire is characterized by low luminance 
value and limited luminous flux distribution. The obtained 
luminous intensity distribution curve is characterized by 
significantly lower maximum luminous intensity value when 
compared with the theoretically estimated one, which 
originates from the manufacturing technology for model 
reflectors, the surface of which has slightly diffusive 
properties. Despite this fact, the model luminaire achieves 
significantly improved lighting uniformity when compared 
with the application of individual diodes alone. The luminous 
flux of all 36 diodes was measured at 1954 lm (on average, 
54,3 lm/diode). The model luminaire has very high 
efficiency, reaching 92%, which is 15÷20% higher when 
compared with other luminaires with similar parameters but 
different light sources. The designed luminaire is relatively 
low, which is a design target on its own. It could be further 
reduced providing that lower profile radiators are used. The 
measured colour temperature of the designed luminaire was 
estimated at 3702K, which is higher than the theoretically 
expected value. The measured colour rendering index was 
estimated at 81. It is therefore conclusive that the designed 

model luminaire with high power LED diodes may be 
successfully applied for general lighting purposes. 
 

 

 

Fig. 5. Luminous intensity curve: 36 LED diodes (black dotted 

line), luminaire model (black solid line) and calculated theoretically 
(grey solid line) 

 

REFERENCES 

[1]  U c h i d a   Y . ;   T a g u c h i   T . :  Lighting theory and luminous 

characteristics of white light-emitting diodes, Optical 
Engineering.
 Dec. 2005; 44(12): 124003-1-9 

[2]  Z a r e m b a   K . : A Synthetic Method of Designing Rotational 

Reflectors, 13

th

 European Simulation Multiconference 1999, 

Modelling and Simulation: A Tool for the Next Millenium, 
ESM’99, Warsaw,
 June 1-4 1999, Poland, Volume II, p.307-309 

[3]  B r o w n  D . ;  N i c o l  D . ;  F e r g u s o n  I . : Investigation of the 

spectral properties of LED-based MR16 bulbs for general 
illumination, Optical Engineering. Nov. 2005; 44(11): 111310-1-

 

Autors: Krzysztof Zaremba, Ph.D. (E.Eng), Białystok Technical 
University, Chair of Optical Radiation, ul. Wiejska 45D, 15-351 
Białystok, Poland; phone 48 85 746 94 47, zaremba@pb.edu.pl; 
Andrzej Pawlak, M.Sc. (E.Eng.), Central Institute for Labour 
Protection - National Research Institute, ul. Czerniakowska 16, 00-
701 Warszawa, Poland; phone 48 22 623-46-75, fax 48 22 623-
3695, anpaw@ciop.pl; 

 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 83 NR 5/2007

 

52