background image

Central European Journal of 

Biology

*  E-mail:monika.grzywacz@umlub.pl

Research Article

1

Department of Toxicology, Medical University of Lublin, 

 20-093 Lublin, Poland

2

Department of Pharmaceutical Botany, Medical University of Lublin, 

 20-093 Lublin, Poland

3

Department of Pharmaceutical Microbiology, Medical University of Lublin, 

 20-093 Lublin, Poland

4

Department of Virology and Immunology,

 Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, 

 20-033 Lublin, Poland

5

Department of Medical Biology, Institute of Agricultural Medicine, 

 20-950 Lublin, Poland

Monika Gawrońska-Grzywacz

1,

*, Tadeusz Krzaczek

2

, Renata Nowak

2

Renata Los

3

, Anna Malm

3

, Małgorzata Cyranka

4

, Wojciech Rzeski

4,5

Biological activity of new flavonoid 

from 

Hieracium pilosella

 L.  

1. Introduction

Medicinal plants are among the rich sources of beneficial 
compounds exhibiting a variety of biological activities. 
Polyphenolic  constituents,  especially  flavonoids,  are 
still of special interest for many scientists because 
they are known from antioxidant and free radical 
scavenging activities. Reactive oxygen species are 

involved in many processes damaging proteins, lipids 
and even nucleic acids. They play an important role 
in the etiology of various diseases, so the free radical 
scavengers isolated from plants may be preventive 
agents  against  cancer,  inflammation,  cardiovascular 
and neurodegenerative disorders [

1

,

2

]. The search of 

new antimicrobial and antiproliferative agents against 
human tumor cells among the wide variety of naturally 

397

Cent. Eur. J. Biol.• 6(3) • 2011 • 397-404 

DOI: 10.2478/s11535-011-0017-9 

Received 29 July 2010; Accepted 04 February 2011

Keywords:

 Hieracium pilosella L. • Asteraceae • Isoetin 4’-O-β-D-glucopyranoside • Antiradical activity • DPPH radical • Antibacterial activity

                       Pseudomonas aeruginosa • Antiproliferative activity • HT-29 cell culture • MTT method

Abstract:  

Hieracium pilosella  L.  (Asteraceae)  is  a  well-known  plant  used  in  ethno-medicine  as  its  inflorescences  are  particularly  rich  in 

beneficial polyphenolics. This research aimed to elucidate the structure of a new flavone glycoside isolated from the inflorescences 

of Hieracium pilosella and evaluate its antioxidant, antimicrobial and antiproliferative activities. The chromatographic methods were 

successfully  applied  to  isolate  the  new  flavonoid.  Its  structure  was  determined  by  subsequent  UV,  NMR  and  MS  experiments 

and identified as isoetin 4’-O-β-D-glucopyranoside. Free radical scavenging capacity was examined by measuring the scavenging 

activity of the new isoetin derivative on 2,2-diphenyl-1-picrylhydrazyl (DPPH). The compound was also screened for spectrum of 

antimicrobial activity using the agar well diffusion method. Minimum inhibitory concentration (MIC) for Pseudomonas aeruginosa 

ATCC 9027 was performed by the micro-dilution broth method. The antiproliferative effect of tested glycoside was assessed in two 

human tumor cell lines derived from lung (A549) and colon (HT-29) carcinoma and cell proliferation was determined by means of 

MTT method. The tested compound showed high antiradical activity, reducing the DPPH∙ with EC

50

 7.9 µM (3.7 µg/ml) and exhibited 

narrow antimicrobial spectrum among tested microorganisms. The compound was active against Pseudomonas aeruginosa ATCC 

9027 (MIC 125 µg/ml) which is prone to causing infections that are difficult to treat due to it developing extremely rapid antibiotic 

resistance. In the antiproliferative studies, cell proliferation of the colon (HT-29) carcinoma cell line was significantly decreased 

after exposure to the compound. The results indicate that isoetin 4’-O-β-D-glucopyranoside possesses antioxidant capacity and 

very promising antibacterial activity and could have uses as an effective antipseudomonal agent as well a antiproliferative agent.

© Versita Sp. z o.o. 

Unauthenticated

Download Date | 6/2/17 11:31 AM

background image

Biological activity of new flavonoid from 

Hieracium pilosella  L.  

occurring substances is also a very important part of 
scientific research.

Hieracium pilosella L.  (mouse-ear hawkweed, 

hawkweed)  is a common and very invasive weed 
belonging to the family Asteraceae. It is a perennial 
plant with a basal rosette of leaves which undersides 
are  covered  with  whitish  hairs.  The  flowering  stem  is 
generally up to 30 cm long. It carries solitary pale lemon-
yellow  coloured  flowerhead  with  the  outermost  ligules 
having a reddish underside. Mouse-ear hawkweed is 
a colony-forming plant. It is native to Eurasia but has 
been also introduced into North America and into New 
Zealand. The plant favours dry, sunny, sandy and less 
fertile areas [

3

]. In Poland mouse-ear hawkweed grows 

widely on dry meadows and sunny slopes of hills. 
Herba Pilosellae is well-known in European ethno-
medicine and used to treat inflammations of the urinary 
tract and also skin diseases because of its diuretic, 
astringent, antiseptic and antiphlogistic activity [

4

,

5

]. 

Hawkweed can be also employed in the phytotherapy 
of hypertension, obesity and cellulitis because of its 
strong diuretic properties [

6

,

7

]. This medicinal plant is 

not reported in the European Pharmacopoeia, however 
there is a monograph in the French Pharmacopoeia. The 
preparations of the herb of mouse-ear hawkweed are 
known  and used for centuries in Polish folk medicine 
to treat cystitis, nephritis, urolithiasis as well as cough 
and  respiratory  tract  inflammations  and  associated 
bleedings. Through external application the extracts of 
the plant are used to bathe septic wounds [

8

].

The antioxidant capacity of extracts of H. pilosella 

has  been  reported  by  Stanojević  et al. [

9

]. In recent 

years extracts of hawkweed were also examined for 
potential activities against bacteria, fungi and even 
viruses, e.g. HIV [

9

-

11

]. 

The  inflorescences  of  H. pilosella are especially 

rich  in  phenolics,  mainly  flavonoids  and  also  phenolic 
acids [

12

,

13

]. Many therapeutic values e.g. diuretic and 

antiseptic properties of the examined plant may be surely 
attributed to them. On the other hand hawkweed contains 
many phenolic compounds with phytotoxic properties 
which are responsible for its strong allelopathic potential. 
Until now eleven different glycosides of isoetin (hieracin, 
rare  5,7,2’,4’,5’-pentahydroxyflavone)  have  been 
identified in species mainly from the Asteraceae family, 
including representatives of Hieracium genus [

14

-

19

]. 

Two of them appeared to be good radical scavengers 
and another derivative (isoetin 5’-methyl ether) inhibited 
the proliferation of tumor cell cultures – human lung 
cancer cell line A549, human melanoma SK-Mel-2 and 
mouse melanoma B16F1 cell lines [

20

,

21

]. 

Our previous work resulted in the isolation and 

structure elucidation of nine flavonoid compounds from 

the aerial parts of Hieracium pilosella L. [

12

]. In course 

of the continuing studies on the phenolic constituens of 
this plant, here we report the separation, identification 
and bioactivity of a new glycoside of isoetin obtained 
from the methanol extract of hawkweed’s inflorescences.

2. Experimental Procedures

2.1 Plant material

The  inflorescences  of  Hieracium pilosella L., as 
authenticated by Prof. T. Krzaczek, Department 
of Pharmaceutical Botany of Medical University of 
Lublin,  were  collected  in  Ćmiłów  near  Lublin  (south-
eastern Poland) in June 2007. A voucher specimen 
of the collected plant (No. 1976) was deposited in the 
herbarium of the Department of Pharmaceutical Botany, 
Faculty of Pharmacy, Medical University of Lublin, 
Poland. 

2.2 Extraction and isolation 

The air-dried plant material (1 kg) was exhaustively 
extracted with boiling 80% methanol. The obtained extract 
was concentrated under reduced pressure providing a 
residue (254.15 g) to preliminary column chromatography 
(CC). CC was completed on polyamide with methanol 
– water gradient solvent system (0-100%, v/v) and 149 
fractions (100 ml each) were collected. The fraction 
which showed potent antiradical effect (in DPPH method) 
was fractioned by CC on polyamide with ethyl acetate 
– methanol – water (18:5:2, v/v) mobile phase and 130 
fractions (100 ml each) were collected. Next, fractions 
1-11 were mixed after TLC control and preparative paper 
chromatography on Whatman 3CHR sheets, 460 x 460 
mm (upward technique development) with TBA (t-butanol 
– acetic acid – water, 3:1:1 v/v) as mobile phase was 
applied to yield a new glycoside (28 mg). 

2.3  Instrumentation and spectroscopic 

conditions

Melting point (m.p.) was determined on Boetius 
heating-stage microscope (Franz Küstner Nachf. 
KG, Dresden HMK, Germany) and was uncorrected. 
The UV spectra were recorded on a Hitachi U-2001 
UV-spectrophotometer (Hitachi Ltd., Tokyo, Japan) 
using standard procedures [

22

]. The 

1

H NMR, 

13

NMR, HMBC spectra were registered in DMSO-d

6

 on 

spectroscope Bruker Avance DRX500 (500.13 MHz 
for 

1

H NMR and 125.75 MHz for 

13

C NMR). Negative 

and positive Liquid Secondary-Ion Mass Spectrometry 
(LSI MS, Cs+, 13 keV) were performed in glycerine on 
a Finnigan MAT 95 (Finnigan MAT GmbH, Bremen, 
Germany)  spectrometer.  The  obtained  flavonoid  was 

398

Unauthenticated

Download Date | 6/2/17 11:31 AM

background image

M. Gawrońska-Grzywacz 

et al.

analyzed by RP-HPLC to verify the purity. The HPLC 
system (Knauer, Berlin, Germany) consisting of a HPLC 
Pump K-1001, Solvent Organizer K-1500, UV-VIS 
Detector Fast Scanning Spectrophotometer K-2600, 
Degasser K-5004, Column Thermostat, 20 ml sample 
injector (Rheodyne, Cotati, CA, USA), column Hypersil 
ODS (particle size 5 µm, 200 mm x 4.6 mm I.D., Merck, 
Germany) and gradient elution with acetonitrile - water 
(5:45, v/v, 30 min), the flow rate 1ml/min and detection 
at 254 nm and 360 nm were used.

Analytical TLC (co-chromatography with authentic 

standard, LGC Promochem, ChromaDex, Inc. USA) of 
a sugar liberated after acid hydrolysis of a new flavonoid 
was performed on cellulose plates (Merck, Germany) 
using pyridine – ethyl acetate – acetic acid – water 
(5:5:1:3, v/v/v/v) as mobile phase and also on silica 
gel 60 F

254

 plates (Merck, Germany) using n-propanol 

– ethyl acetate – water (7:2:1, v/v/v). Aniline phthalate 
spray reagent revealed the nature of the sugar.

2.4 Antioxidant assay 

The free radical scavenging activity of the isolated 
compound was estimated according to the procedure 
described by Brand-Williams, Cuvelier & Berset (1995) 
with  some  modifications  [

23

,

24

]. Ethanol of analytical 

grade (POCH, Poland), 1,1-diphenyl-2-picrylhydrazyl 
radical - DPPH

(Aldrich, Steinheim, Germany), quercetin 

and trolox (both from Sigma, Steinheim, Germany) 
were used in the assay. Briefly, the tested compound, 
at concentrations ranging from 25 to 250 µg/ml (50 µl 
in ethanol), was mixed with 1.95 ml DPPH

.

 solution

(6 x 10

-5

 M in ethanol). The absorbance was measured at 

517 nm after incubating the mixture at room temperature 
for 30  min in the dark. The antiradical activity was 
expressed as EC

50

 (antiradical dose required to cause 

a 50% inhibition), which was calculated by the following 
formula: [(A

blank

  −  A

sample

)/A

sample

]  ×  100, where A

blank

 is 

the absorbance of the DPPH radical solution and A

sample

 

is the absorbance of the DPPH radical solution after 
the addition of the sample [

24

]. EC

50

 was obtained by 

linear regression analysis of the dose-response curve, 
plotted between % inhibition and concentration (µg/
ml). A Hitachi U-2001 UV-spectrophotometer (Hitachi 
Ltd., Tokyo, Japan) was used. Trolox and quercetin - 
standards known for strong antioxidant activity, were 
used  as  positive  control.  A  minimum  of  five  different 
concentrations for compound were tested in triplicate 
analyses. 

2.5 Antimicrobial assay 

Agar well diffusion method was used to screen for 
spectrum  of  antimicrobial  activity  of  a  new  flavone 
glycoside. Twelve reference microbial strains were used, 

six Gram-positive bacteria (Staphylococcus epidermidis 
ATCC 12228, Staphylococcus aureus ATCC 25923, 
Staphylococcus aureus ATCC 6538, Bacillus cereus 
ATCC 10876, Bacillus subtilis ATCC 6633, Micrococcus 
luteus
 ATCC 10240), four Gram-negative bacteria 
(Escherichia coli ATCC 25922, Klebsiella pneumoniae 
ATCC 13883, Pseudomonas aeruginosa ATCC 9027, 
Proteus mirabilis ATCC 12453) and two yeasts (Candida 
albicans
 ATCC 10231, Candida parapsilosis ATCC 
22091). The surface of Mueller-Hinton agar and Mueller-
Hinton agar supplemented with 2% glucose were 
inoculated with bacterial or yeast inocula (0.5 McFarland 
standard scale - approximately 150 x 10

CFU/ml),

respectively. Next, 40 µl of tested compound (dissolved 
in DMSO - 1 mg/ml) was dropped into wells (d=6 mm) 
on the agar media. The agar plates were preincubated 
at room temperature for 1 h, next they were incubated 
at 37

o

C for 24 h and 25

o

C for 48 h for bacteria and 

yeasts, respectively. After the incubation period, the 
zones of growth inhibition were measured and recorded 
(subtracting the diameter of the well) and average values 
were calculated. The well containing DMSO without test 
compound was used as negative control. Gentamicin 
and  fluconazole  were  used  in  order  to  control  the 
sensitivity of the bacteria and fungi tested, respectively.

Minimum inhibitory concentration (MIC) of the new 

flavonoid was examined for P. aeruginosa ATCC 9027 by 
the micro-dilution broth method, using two-fold dilutions 
of compound in Mueller-Hinton broth (MHB) prepared 
in 96-well polystyrene plates. Final concentrations of 
the compound ranged from 15.6 to 500 µg/ml. Bacterial 
inoculum was added to all wells to obtain final optical 
density corresponding to 5 x 10

CFU/ml. After incubation 

at 35

o

C for 24 h, the MIC was assessed visually as 

the  lowest  flavonoid  concentration  showing  complete 
bacterial growth inhibition. Appropriate DMSO, growth 
and sterile controls were carried out. 

2.6 Antiproliferative assay

The cell lines: human caucasian lung carcinoma (A549) 
and human colon adenocarcinoma (HT 29) were obtained 
from the European Collection of Cell Cultures (Centre 
for Applied Microbiology and Research, Salisbury, UK). 
The following culture media, purchased from Sigma 
(Sigma Chemicals, St. Louis, MO, USA), were applied: 
1:1 mixture of DMEM and Nutrient mixture F-12 Ham 
(HT-29), 3:1 mixture of DEMEM and Nutrient mixture 
Ham’s F-12 (A549). All media were supplemented 
with 10% foetal bovine serum (FBS, Sigma), penicillin 
(100  U/ml) (Sigma) and streptomycin (100  µg/ml) 
(Sigma). The cultures were kept at 37

o

C in a humidified 

atmosphere of 95% air and 5% CO

2

. Cell proliferation 

was assessed by means of MTT method as previously 

399

Unauthenticated

Download Date | 6/2/17 11:31 AM

background image

Biological activity of new flavonoid from 

Hieracium pilosella  L.  

described [

25

]. Tumor cells were placed on 96-well 

microplates (Nunc, Roskilde, Denmark) at a density of 
1 x 10

4

 (A549) and 3 x 10

4

 (HT-29). Next day, the culture 

medium was removed and the cells were exposed to 
serial dilutions of tested compound in a fresh medium. 
Cell proliferation was assessed after 96 h by using 
the MTT method (Cell proliferation kit I, Boehringer 
Mannheim, Germany) in which the yellow tetrazolium salt 
(MTT) is metabolized by viable cells to purple formazan 
crystals. Tumor cells were incubated for 3 h with MTT 
solution (5 mg/ml). Formazan crystals were solubilised 
overnight in SDS buffer (10% SDS in 0.01 N HCl), and 
the  product  was  quantified  spectrophotometrically  by 
measuring absorbance at 570 nm wavelength using 
an E-max Microplate Reader (Molecular Devices 
Corporation, Menlo Park, CA, USA). 

2.7 Statistical analysis

The reported value for each sample was calculated 
as the mean of three measurements. Correlation 
coefficients  (R)  and  coefficients  of  determination  (R

2

were calculated using Microsoft Excel 2000. Results of 
antiproliferative studies are expressed as percentage of 
control and mean values ± SEM of 5-6 trials.

3. Results and Discussion 

3.1 Structure elucidation 

 The structure of the isolated compound was established 
by physical, chemical and spectroscopic methods. The 
compound had a melting point of 260-261ºC (yellow-
orange powder, crystallized from methanol). Mass 
spectra showed quasimolecular ion peaks [M + H]

+

 at 

m/z 465 and [M – H]

-

 at m/z 463 and also other important 

ions at m/z 303 [aglycone + H]

and 301 [aglycone – H]

-

Acid hydrolysis (2M HCl at 100°C for 1 h) yielded glucose 
identified by TLC and aglycone - isoetin, determined by 
comparing the obtained UV and 

1

H NMR data with that 

in the literature [

2

,

17

].

The following data for isolated compound 

were  obtained:  UV  λ

 max

 MeOH 

nm: 262, 368; 

(+ NaOMe): 267, 336, 424; (+ AlCl

3

): 271, 293, 324, 404; 

(+ AlCl

3

 + HCl): 270, 292, 323, 402; (+ NaOAc): 263, 371; 

(+ NaOAc + H

3

BO

3

): 268, 309, 368. The comparison of 

the neutral spectra of isoetin glycosides [

16

,

18

] showed 

the glycosylation in the B-ring led to a hypsochromic shift 
to shorter wavelengths in band I in relation to aglycone 
spectrum suggesting a flavone which is glycosylated in 
the B-ring. In the spectrum after the addition of NaOAc, 
the hypsochromic shift in relation to aglycone spectrum 
was observed and pointed out the B-ring glycosylation 
as well

 

[

17

,

18

]. There was neither a bathochromic effect 

in the NaOAc/H

3

BO

3

 spectrum nor a hypsochromic effect 

in the AlCl

3

/HCl spectrum (towards the AlCl

3

 spectrum) 

because free 4’,5’ (ortho)-dihydroxy groups were lacking 
[

22

]. These above-mentioned effects were obviously 

present in aglycone spectra. Addition of NaOMe gave 
a bathochromic shift due to a free 2’-OH group [

18

]. 

Furthermore, the 

1

H NMR spectrum showed doublets at 

δ 6.17 (H-6) with J=1.7 Hz and 6.43 (H-8) with J=1.8 Hz, 
singlets at δ 7.05 (H-3), 6.79 (H-3’) and 7.32 (H-6’). By 
means of 

1

H-

13

C HMBC three further singlet signals at δ 

12.99, 10.81, 10.35 and 8.48 were assigned to protons 
from the following hydroxyl groups: 5-OH, 7-OH, 2’-OH 
and 5’-OH. The compound showed the pyranose form 
and β-configuration of glucose (the signal at δ 4.78, d
J=6.5 Hz, H-1”). In addition, only the H-3’ signal was 
apparently shifted downfield compared with one in the 
aglycone spectrum suggesting this proton located at 
the  ortho position of the glycosylated hydroxyl group 
and the HMBC analysis proved that 2’-OH group was 
surely free. These observations were further supported 
by HMBC correlation between δ 4.78 (H-1”) and δ 148.9 
(C-4’). All the NMR data are given in Table 

1

In the results of obtained data, the isolated compound 

was  identified  as  isoetin    4’-O-β-D-glucopyranoside,  a 
new  derivative  of  this  rare  flavone  (Figure 

1

). This is 

the  first  report  of  finding  this  compound  in  the  nature 
and in the examined species. Therefore, the presence 
of flavonoids in this plant is in accord with its traditional 
uses as a diuretic and anti-inflammatory drug [

4

,

5

,

7

].

3.2 Biological activities

The free radical scavengers in plants have received a 
great amount of attention as being primary preventive 
ingredients against various diseases such as cancer, 
inflammation  or  cardiovascular  disorders  [

1

]. Recent 

studies have proved that the antioxidant properties (to 
remove free radicals)

 

of medicinal plants are due to 

their phenolic compounds, such as flavonoids, phenolic 
acids, and tannins [

26

]. The DPPH (1,1-diphenyl-2-

picrylhydrazyl) method is one of the most frequently 
used for testing the antiradical activity of plant extracts 
and compounds [

1

,

24

].

Figure 1. 

The structure of isoetin 4’-O-β-D-glucopyranoside.

 

O

 

H

 

O

 

O

 

O

 

H

 

O

 

O

 

O

 

H

 

O

 

H

 

O

 

H

 

O

 

H

 

O

 

H

 

O

 

H

 

10 

3

 

 

 

5’ 

2’ 

4’ 

1’’ 

400

Unauthenticated

Download Date | 6/2/17 11:31 AM

background image

M. Gawrońska-Grzywacz 

et al.

There is only one report in the literature about the 

high radical scavenging effect of methanol extract 
of  H.  pilosella [

9

]. In our preliminary TLC DPPH 

experiments  of  flavonoids  isolated  from  H.  pilosella 
(not shown), the tested compound exhibited a 
high activity. Thus, antioxidant capacity of isoetin 
4’-O-β-D-glucopyranoside  was  evaluated  through 
colorimetric scavenging activity assay against DPPH 
radical with trolox and quercetin as positive controls 
(EC

50

 3.2 µg/ml, 1.34 µg/ml and 12.9 µM, 3.98 µM, 

respectively). This new isoetin glycoside showed 
high scavenging activity with an EC

50

 value of 7.9 µM

(3.7 µg/ml) and exhibited a much stronger scavenging 
activity  than  the  recently  identified

 

and so far the 

only tested 2’,7-substituted isoetin glycosides from 
Taraxacum  mongolicum [

20

]. Its anti-oxidative activity 

is comparable to trolox and only three times weaker 
than quercetin,  a strong antioxidant (Table 

2

). Other 

investigators reported similar results for quercetin and 
trolox and weaker for the above mentioned derivatives 

Table 1. 

The 

1

H and 

13

C NMR data of isoetin 4’-O-β-D-glucopyranoside in DMSO-d

6

 

a,b

.

a

 δ values in ppm, J values in Hz 

b

 Assignments were established by HMBC experiment

Compound

M

W

Correlation equation

R

2

EC

50

[µg/ml]

EC

50

[µM]

Isoetin 4’-O-β-D-glucopyranoside (IG)

464

y=5925.7x+28.17

0.9986

3.7±0.35

7.9±0.68

Trolox (T)

250.3

y=14792x+ 2.3168

0.9968

3.2±0.2

12.9±0.76

Quercetin (Q)

338.3

y=30641.2x+8.7886

0.9987

1.34±0.05

3.98±0.32

Table 2. 

The scavenging effect of isoetin 4’-O-β-D-glucopyranoside on DPPH radical 

a

.

a

 Mean value ± SD, n=3; EC

50

 IG/EC

50

 T=1.16; EC

50

IG/ EC

50

Q=2.74

Position

δ C

δ H

1

H-

13

C correlations (HMBC)

2

161.4

H-3, H-6’

3

107.8

7.05 (1H, s) 

4

181.8

H-3

5

161.1

5-OH, H-6

6

98.6

6.17 (1H, d, J=1.7)

5-OH, H-8

7

164.1

H-6, H-8

8

93.7

6.43 (1H, d, J=1.8)

H-6

9

157.3

H-8

10

103.6

H-3, H-6, H-8, 5-OH

1’

110.0

H-3, H-3’, H-6’, 2’-OH

2’

150.9

H-3’, H-6’

3’

104.6

6.79 (1H, s)

4’

148.9

H-3’, H-6’, 5’-OH, H-1”

5’

139.6

H-3’, H-6’, 5’-OH

6’

113.7

7.32 (1H, s)

5’-OH

1”

101.2

4.78 (1H, d, J=6.5)

2”

73.1

3”

75.9

3.26-3.40 (1H, m)

4”

69.2

5”

77.1

6”

60.3

3.72 (1H, dd, J=11.4, 4.8, H-6a”) 

3.57 (1H, m, H-6b”)

5-OH

12.99 (1H, s)

7-OH

10.81 (1H, br s) 

2’-OH

10.35 (1H, br s)

5’-OH

8.48 (1H, s)

401

Unauthenticated

Download Date | 6/2/17 11:31 AM

background image

Biological activity of new flavonoid from 

Hieracium pilosella  L.  

of isoetin [

20

]. The potency of a molecule for scavenging 

free radicals

 

is due to the number of hydrogens available 

for donation by the hydroxyl groups. Flavonoids bearing 
free hydroxyl groups are known to be good radical 
scavengers, an assumption that is particularly true for 
the flavonoid B-ring. The presence of a catechol moiety 
in this ring is the main factor [

26

]. However, stronger 

antioxidant activity of isoetin 4’-O-β-D-glucopyranoside 
than 2’,7-substituted isoetin glycosides isolated from 
T.  mongolicum  may  indicate  the  significance  of  free 
2’-hydroxyl group in antioxidant capacity of isoetin 
derivatives. The glycosyl groups also do not contribute 
effectively to radical scavenging [

27

]. The differences 

in the structure may explain the stronger antioxidant 
activity of this new isoetin glycoside than other recently 
described isoetin derivatives [

19

,

20

].

A variety of techniques have been reported for 

determining the antimicrobial activity of plant materials. 
The most frequently used techniques include the 
agar well diffusion method and the dilution method 
based on incorporation of plant samples in the media 
prior to inoculation. These methods and the panel 
of standard bacterial and yeast strains are routinely 
used as a preliminary check and help to select 
efficient  plant  materials.  In  the  current  study,  isoetin  
4’-O-β-D-glucopyranoside  was  first  screened  for 
spectrum of antimicrobial activity using the agar well 
diffusion method. At the compound concentration used 
(1 mg/ml) no activity against yeasts was found, while 
out of 10 bacterial strains tested only P. aeruginosa 
was sensitive to the compound with an inhibition zone 

of 7 mm diameter. The minimum concentration capable 
of preventing microbial growth (MIC) was examined in 
more details using the micro-dilution broth method [

28

]. 

P. aeruginosa growth was inhibited at MIC=125 µg/ml.
According  to  our  results  the  tested  new  flavonoid 
exhibited narrow antibacterial spectrum, including only 
P. aeruginosa  ATCC 9027, among used microorganisms. 
However, it is interesting to note that non-fermentative, 
Gram-negative rods belonging to this species are 
important nosocomial pathogens with an ability to 
spread on medical devices, hospital environment and 
even in disinfectants. These microorganisms cause 
high morbidity and mortality in the services of oncology, 
haematology, surgery or burn and intensive care units 
[

29

]. The infections due to P. aeruginosa are often 

difficult  to  treat  because  of  its  intrinsic  resistance  to 
many conventional antimicrobial agents. The bacteria 
from this group also have the ability to develop antibiotic 
resistance extremely rapidly, especially among clinical 
isolates [

30

]. Isoetin 4’-O-β-D-glucopyranoside  inhibits 

growth of this microorganism with MIC=125 µg/ml. 
Further research is needed in order to determine the 
activity  of  this  new  flavone  glycoside  against  a  panel 
of strains, including clinical isolates of P. aeruginosa
In addition, on the basis of our investigations it may be 
concluded that this new isoetin glycoside is the main 
constituent responsible for the antipseudomonal activity 
of plant extracts examined in earlier studies [

9

,

10

].

The antiproliferative effect of isoetin 4’-O-β-D-

glucopyranoside was assessed in two human tumor 
cell lines derived from lung (A549) and colon (HT-29) 

Figure 2. 

Effect of isoetin 4’-O-β-D-glucopyranoside on proliferation of (A) human lung carcinoma cells (A549), (B) human colon adenocarcinoma 

cells (HT-29) measured by means of MTT assay. *at least P<0.05 vs. control (c), one-way ANOVA,

 

post test: Tukey.

402

Unauthenticated

Download Date | 6/2/17 11:31 AM

background image

M. Gawrońska-Grzywacz 

et al.

References

[1]  Lakić  N.S.,  Mimica-Dukić  N.M.,  Isak  J.M.,  Božin 

B.N., Antioxidant properties of Galium verum L. 
(Rubiaceae) extracts, Cent. Eur. J. Biol., 2010, 5, 
331-337

[2]  Harborne J.B., The Flavonoids: Advances in 

research since 1986, Chapman & Hall, London, 
1999

[3]  Bishop G.F., Davy A.J., Biological flora of the British 

Isles.  Hieracium  pilosella  L.  (Pilosella  officinarum 
F. Schultz & Schultz-Bip.), J. Ecol., 1994, 82, 195-
210

[4]  Beaux D., Fleurentin J., Mortier F., Effect of extracts 

of Ortosiphon stamineus Benth, Hieracium pilosella 
L., Sambucus nigra L. and Arctostaphylos uva-ursi 
(L.) spreng. in Rats, Phytother. Res., 1999, 13, 
222-225

[5]  Bolle P., Bello U., Faccendini P., Martinoli L., Tita 

B., Hieracium pilosella L.: pharmacological effect of 
ethanol extract, Pharmacol. Res., 1993, 27, 29-30

[6]  Goetz P., Wuyts D., Phytothérapie et nutrithérapie 

de l’hypertension artérielle (Phytotherapy and 
nutritherapy of hypertension), Phytothérapie, 2008, 
6, 247-252, (in French)

[7]  Moro C.O., Basile G., Obesity and medicinal plants, 

Fitoterapia, 2000, 71, S73-S82

[8]  Dombrowicz E., Świątek L., Kopycki W., Phenolic 

acids in Inflorescentia Helichrysi and Herba Hieracii 
pilosellae, Pharmazie, 1992, 47, 469-470

[9]  Stanojević L.P., Stanković M.Z., Nikolić V.D., Nikolić 

L.B., Anti-oxidative and antimicrobial activities of 
Hieracium pilosella L. extracts, J. Serb. Chem. 
Soc., 2008, 73, 531-540

[10]  Barbour E.K., Sharif M.A., Sagherian V.K., Habre 

A.N., Talhouk R.S., Talhouk S.N., Screening 
of selected plants of Lebanon for antimicrobial 
activity, J. Ethnopharmacol., 2004, 93, 1-7

[11]  Bedoya L.M., Sanchez-Palomino S., Abad M.J., 

Bermejo P., Alcami J., Anti-HIV activity of medicinal 
plant extracts, J. Ethnopharmacol., 2001, 77, 113-
116

[12]  Gawrońska-Grzywacz  M.,  Krzaczek  T.,  Flavonoids 

and coumarins from Hieracium pilosella L. 
(Asteraceae), Acta Soc. Bot. Pol., 2009, 78, 189-195

[13]  Gawrońska-Grzywacz  M.,  Krzaczek  T.,  Free  and 

bound phenolic acids in inflorescences and rhizomes 

with roots of Hieracium pilosella L. (Asteraceae), 
Acta Soc. Bot. Pol., 2006, 75, 215-218

[14]  Zidorn C., Gottschlich G., Stuppner H., 

Chemosystematic investigations on phenolics from 
flowerheads of Central European taxa of Hieracium 
sensu lato (Asteraceae), Plant Syst. Evol., 2002, 
231, 39-58

[15]  Gluchoff-Fiasson K., Favre-Bonvin J., Fiasson J.L., 

Glycosides and acylated glycosides of isoetin from 
European species of Hypochoeris, Phytochemistry, 
1991, 30, 1673-1675

[16]  Harborne J.B., Revised structures for three isoetin 

glycosides, yellow flower pigments in Heywoodiella 
oligocephala, Phytochemistry, 1991, 30, 1677-
1678

[17]  Marco J.A., Barbera O., Rodriguez S., Domingo 

C., Adell J., Flavonoids and other phenolics from 
Artemisia hispanica, Phytochemistry, 1988, 27, 
3155-3159

[18]  Pauli G.F., Junior P., Phenolic glycosides from 

Adonis aleppica, Phytochemistry, 1995, 38, 1245-
1250

[19]  Shi S., Zhang Y., Zhao Y., Huang K., Preparative 

isolation  and  purification  of  three  flavonoid 
glycosides from Taraxacum mongolicum by high-
speed counter-current chromatography, J. Sep. 
Sci., 2008, 31, 683-688

[20]  Shi S., Zhao Y., Zhou H., Zhang Y., Jiang X., 

Huang  K.,  Identification  of  antioxidants  from 
Taraxacum mongolicum by high-performance liquid 
chromatography-diode array detection-radical-
scavenging detection-electrospray ionization mass 
spectrometry and nuclear magnetic resonance 
experiments, J. Chromatogr. A, 2008, 1209, 145-
152

[21]  Rahman M.A.A., Moon S.S., Isoetin 5’-Methyl 

Ether, A Cytotoxic Flavone from Trichosanthes 
kirilowii, Bull. Korean Chem. Soc., 2007, 28, 1261-
1264

[22]  Mabry T.J., Markham K.R., Thomas M.B., The 

Systematic  Identification  of  Flavonoids,  Springer-
Verlag, Berlin-Heidelberg-New York, 1970

[23]  Brand-Williams W., Cuvelier M.E., Berset C., Use 

of free radical method to evaluate antioxidant 
activity, Lebensm. Wiss. Technol., 1995, 28, 25-30

carcinomas. Cells were exposed to either culture medium 
(control) or tested flavonoid compound (1-100 µM) for 96 
hours. Proliferation of A549 cells was not affected by up 
to 25 µM, however at the highest concentrations (50 and 

100  µM)  a  significant  stimulatory  effect  was  observed 
(Figure 

2

A). In the case of HT-29 cell culture, the 

proliferation  was  significantly  decreased  (10-100  µM) 
in a non-dose dependent manner (Figure 

2

B).

403

Unauthenticated

Download Date | 6/2/17 11:31 AM

background image

Biological activity of new flavonoid from 

Hieracium pilosella  L.  

[24]  Nowak R., Gawlik-Dziki U., Polyphenols of Rosa 

L. leaves extracts and their radical scavenging 
activity, Z. Naturforsch. C.,

 

2007, 62, 32-38

[25]  Juszczak M., Matysiak J., Brzana W., Niewiadomy 

A., Rzeski W., Evaluation of antiproliferative 
activity of 2-(monohalogenphenylamino)-
5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles, 
Arzneimittelforschung, 2008, 58, 353-357

[26]  Harborne J.B., Williams C.A., Advances in flavonoid 

research since 1992, Phytochemistry, 2000, 55, 
481-504

[27]  Rice-Evans C.A., Miller N.J., Paganga G., 

Structure-antioxidant activity relationships of 
flavonoids  and  phenolic  acids,  Free  Radic.  Biol. 
Med., 1996, 20, 933-956

[28]  Lambert R.J.W., Pearson J., Susceptibility 

testing: accurate and reproducible minimum 

inhibitory concentration (MIC) and non-inhibitory 
concentration (NIC) values, J. Appl. Microbiol., 
2008, 8, 784-790

[29]  Fluit A.C., Verhoef J., Schmitz F.J., Antimicrobial 

resistance in European isolates of Pseudomonas 
aeruginosa, European SENTRY Participants, 
Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19, 370-
374

[30]  Karlowsky J.A., Draghi D.C., Jones M.E., 

Thornsberry C., Friedland I.R., Saham D.F., 
Surveillance for antimicrobial susceptibility 
among clinical isolates of Pseudomonas 
aeruginosa and Acinetobacter baumanii from 
hospitalized patients in the United States, 1998 
to 2001, Antimicrob. Agents Chemother., 2003, 
47, 1681-1688

404

Unauthenticated

Download Date | 6/2/17 11:31 AM