TECHNIKI WYTWARZANIA

OBRÓBKA NIEKONWENCJONALNA

0x01 graphic

Obróbka elektroerozyjna EDM

Obróbka elektroerozyjna polega na wykorzystaniu wyładowań elektrycznych w cieczy dielektrycznej między narzędziem a przedmiotem obrabianym w celu usunięcia naddatku. Narzędzie będące elektrodą roboczą (erodą) jest katodą, przedmiot obrabiany - anodą.

0x01 graphic

Ze względu na sposób wytwarzania impulsów prądowych prowadzących do wyładowań elektrycznych wyróżnia się dwie odmiany obróbki elektroerozyjnej:

0x01 graphic

Dobry dielektryk powinien mieć m.in. następujące cechy:

materiałów obrabianych i obsługi,

Elektrody są wykonane głównie z miedzi, mosiądzu lub grafitu, a cieczą dielektryczną jest na ogół nafta lub woda zdejonizowana. Obróbka erozyjna umożliwia kształtowanie części z materiałów uważanych za nieskrawalne i trudno skrawalne.

0x01 graphic

Obróbkę elektroerozyjną wykonuje się na obrabiarkach zwanych drążarkami elektroerozyjnymi. Obrabiarki te są wyposażone w specjalne układy elektryczne, w których kluczową rolę odgrywa generator impulsów. Istnieją dwa podstawowe typy generatorów różniące się sposobem generowania impulsów: relaksacyjne, tzn. zależne z obwodem RC lub RLC (obróbka elektroiskrowa), impulsowe, tj. niezależne (obróbka impulsowa). Częstość wyładowań elektrycznych (impulsów) w generatorach relaksacyjnych zależy od stanu dielektryka w szczelinie międzyelektrodowej. Generatory impulsowe pracują z częstotliwością niezależną od stanu dielektryka i grubości szczeliny.

Najszersze zastosowanie znalazły dwie odmiany drążarek: elektrodrążarki drutowe oraz elektrodrążarki wgłębne. Zasada pracy elektrodrążarki drutowej polega na tym, że elektrodą roboczą jest przewijający się drut mosiężny o średnicy d = 0,2÷0,25 mm, przemieszczający się z określonym posuwem po torze zadanym programem obróbki. Elekrtodrążarki wgłębne są przeznaczone do wykonywania złożonych powierzchni o podwójnych krzywiznach.

Erozja elektryczna jest zjawiskiem fizycznym, zachodzącym pod wpływem wyładowań elektrycznych w zewnętrznych warstwach elektrod. Zjawisko to powoduje usuwanie tych warstw (w postaci mikrocząstek materiału) w wyniku parowania, topienia oraz rozpuszczania swobodnego.

Obróbka elektrochemiczna ECM

Obróbka elektrochemiczna ECM polega na wykorzystaniu zjawiska rozpuszczania anodowego powierzchni przedmiotu obrabianego w procesie elektrolizy. Przedmiot obrabiany (anoda) jest połączony z biegunem dodatnim źródła prądu stałego. Elektroda robocza (katoda) jest narzędziem połączonym z biegunem ujemnym. Przestrzeń międzyelektrodowa stanowi szczelinę roboczą i jest wypełniona elektrolitem. Elektrolitem mogą być wodne roztwory, np.: NaCl, Na2SO4, NaNO3.

0x01 graphic

Narzędzie (elektroda robocza) ma nadany kształt, który jest odwzorowany na powierzchni przedmiotu obrabianego przez roztwarzanie elektrochemiczne jego materiału. Typowe operacje technologiczne wykonywane na obrabiarkach do obróbki elektrochemicznej, to: kształtowanie złożonych powierzchni matryc, form odlewniczych metalowych, kształtowanie łopatek turbin silników odrzutowych ze stopów trudno obrabialnych, drążenie otworów (szczególnie o niekołowych przekrojach) frezowanie lub toczenie elektrochemiczne powierzchni o złożonych kształtach w materiałach nieskrawalnych. Innym rodzajem obrabiarek elektrochemicznych są obrabiarki do elektrochemicznego usuwania zadziorów i wygładzania powierzchni, zaokrąglania krawędzi, np. w otworach olejowych wałów korbowych.

Najdokładniejsza jest obróbka elektrochemiczna impulsowa, która polega na roztwarzaniu materiału impulsami o optymalnym rozkładzie prądu w czasie impulsu, w nieruchomym elektrolicie. Istnieje jeszcze ponadto obórka elektrochemiczna stykowa i anodowo-mechaniczna.

Obróbka laserowa

Obróbka laserowa polega na skierowaniu wysoko skoncentrowanej wiązki światła laserowego o bardzo dużej gęstości mocy: 108÷1014 W/m2 na powierzchni materiału. (Działanie lasera polega na wzmocnieniu światła za pomocą wymuszonej emisji promieniowania). Energia wiązki laserowej, tj. fotonów, zamienia się na ciepło, które powoduje bardzo szybkie topnienie i natychmiastowe odparowanie obrabianego materiału. Do obróbki laserowej najczęściej stosuje się lasery molekularne CO2. Mogą być również stosowane lasery neodymowe i rubinowe. Fotony są wytwarzane w wyniku wzbudzenia atomów (wprowadzane na wyższy poziom energetyczny) lub cząstek, które następnie wracają do poziomu podstawowego, emitują porcję energii hν.

0x01 graphic

Obróbka laserowa charakteryzuję się:

Energia wiązki laserowej jest wykorzystywana do: cięcia, wycinania wg programu złożonych kształtów płaskich i usytuowanych przestrzennie z cienkich blach, wykonanych z materiałów trudno obrabialnych, drążenie bardzo małych otworów (np. w łopatkach turbin silników odrzutowych chłodzonych powietrzem), topienia materiałów, spawania, powierzchniowego uszlachetniania powierzchni, hartowania, grawerowania, opisu podziałek przyrządów pomiarowych (suwmiarek, głębokościomierzy itp.) oraz toczenia i frezowania laserowego.