background image

32 Crystallographic Point 

Groups

background image

Point Groups

The 32 crystallographic point groups (point groups 
consistent with translational symmetry) can be 
constructed in one of two ways:
1. From 11 initial pure rotational point groups, 

inversion centers can be added to produce an 
additional 11 centrosymmetric point groups.  From 
the centrosymmetric point groups an additional 10 
symmetries can be discovered.

2. The Schoenflies approach is to start with the 5 

cyclic groups and add or substitute symmetry 
elements to produce new groups.

background image

Cyclic Point Groups

5

 

1

1C

 

2

C

 

3

3C

 

4

C

 

6

C

background image

Cyclic + Horizontal Mirror 

Groups

+5 = 10

 

h

C

m

1

 

h

C

m

2

2

 

h

C

m

3

3

 

h

C

m

4

4

 

h

C

m

6

6

background image

Cyclic + Vertical Mirror Groups

+4 = 14

 

v

C

m

1

 

v

C

mm

2

2

 

v

C

m

3

3

 

v

C

mm

4

4

 

v

C

mm

6

6

 

h

C

m

1

background image

Rotoreflection Groups

 

1

S

 

2

S

 

3

S

 

4

S

 

6

S

 

h

C

m

1

 

h

C

m

3

3

+3 = 17

background image

17 of 32?

Almost one-half of the 32 promised point groups 
are missing.  Where are they?

We have not considered the combination of 
rotations with other rotations in other directions.  
For instance can two 2-fold axes intersect at right 
angles and still obey group laws?

background image

The Missing 15

Combinations of Rotations

background image

Moving Points on a Sphere

background image

Moving Points on a Sphere

  =  "throw" of axis

i.e. 2-fold has 180° throw

Euler

2

sin

2

sin

2

cos

2

cos

2

cos

cos

AB

Investigate: 180°, 120°, 90°, 60°

background image

Possible Rotor Combinations

background image

Allowed Combinations of Pure 

Rotations

background image

Rotations + Perpendicular 2-folds

Dihedral (D

n

) Groups

 

2

222D

 

3

32D

 

4

422D

 

6

622D

+4 = 21

background image

Dihedral Groups + 

h

 

h

D

mmm

2

 

h

D

m

3

2

6

 

h

D

mm

m

4

4

 

h

D

mm

m

6

6

+4 = 25

background image

Dihedral Groups + 

d

d

D

m

2

2

4

 

d

D

m

3

3

?

4d

D

?

6d

D

m

2

8

m

2

12

+2 = 27

background image

Isometric Groups

Roto-Combination with no Unique 

Axis

background image

T Groups

 

T

23

 

h

T

m3

 

d

T

m

3

4

+3 = 30

background image

T Groups

background image

O Groups

 

O

432

 

h

O

m

m3

+2 = 32

background image

O Groups

background image
background image
background image

Flowchart for Determining Significant

Point Group Symmetry


Document Outline