background image

C101566-B Page 1 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

Steerprop  

Propulsor 

Installation  

Manual 

This is a general installation manual for Steerprop propulsors. The 

more specified data is shown at drawings and other instructions. 

 
 
 
 
 
 
Revision history: 
 

REV. DATE  MODIFIER DESCRIPTION 

0 1.6.2005 

Aani  New 

A 4.8.2005 

AaNi  Signal 

directions 

B 26.1.2006 

Aani 

Signal 

directions 

C  

 

 

D  

 

 

E  

 

 

F  

 

 

 

 

 

 

 

background image

C101566-B Page 2 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

1

 

SAFETY INSTRUCTIONS, WARNINGS, ENVIRONMENT .......................................................... 6

 

1.1

 

W

ARNINGS

....................................................................................................................................... 6

 

1.1.1

 

Rotating elements and shafts ....................................................................................................... 6

 

1.1.2

 

Hydraulic and lubrication ........................................................................................................... 6

 

1.2

 

S

AFETY

............................................................................................................................................. 6

 

1.2.1

 

General ........................................................................................................................................ 6

 

1.2.2

 

Installation ................................................................................................................................... 6

 

1.2.3

 

Electric Work ............................................................................................................................... 6

 

1.2.4

 

Control circuits ............................................................................................................................ 6

 

1.2.5

 

Electric motors............................................................................................................................. 7

 

1.2.6

 

Alternating current circuits ......................................................................................................... 7

 

1.2.7

 

Low voltage.................................................................................................................................. 7

 

1.3

 

E

ARTHING AND EARTH FAULT PROTECTION

.................................................................................... 7

 

1.3.1

 

Control units ................................................................................................................................ 7

 

1.3.2

 

Control panels ............................................................................................................................. 8

 

1.3.3

 

Propulsor ..................................................................................................................................... 8

 

1.4

 

E

NVIRONMENT PROTECTION

............................................................................................................ 8

 

1.4.1

 

Machine demolition ..................................................................................................................... 8

 

1.4.2

 

Ecology information .................................................................................................................... 8

 

1.4.3

 

Instructions for suitable waste treatment..................................................................................... 8

 

2

 

CODES AND ABBREVIATIONS USED IN THIS MANUAL .......................................................... 9

 

3

 

PROPULSOR NUMBERING ..............................................................................................................10

 

4

 

STORAGE..............................................................................................................................................11

 

4.1

 

P

ACKING AND PROTECTION

.............................................................................................................11

 

4.1.1

 

Propulsor ....................................................................................................................................11

 

4.1.2

 

Planetary gears...........................................................................................................................11

 

4.1.3

 

Heat exchangers .........................................................................................................................11

 

4.1.4

 

Control system and propulsors electronic components ..............................................................11

 

4.1.5

 

Supervision under storage time ..................................................................................................12

 

4.2

 

E

ND OF STORAGE

.............................................................................................................................12

 

5

 

TRANSPORT.........................................................................................................................................13

 

5.1

 

P

ROPULSOR

.....................................................................................................................................13

 

5.2

 

H

YDRAULICS AND LUBRICATION MODULES

....................................................................................13

 

5.3

 

I

NTERMEDIATE SHAFTING

...............................................................................................................13

 

5.4

 

B

IGGER CONTROL UNITS

.................................................................................................................14

 

5.5

 

S

MALLER UNITS OR MODULES

.........................................................................................................14

 

6

 

BOTTOM WELL CASING MOUNTING ..........................................................................................15

 

6.1

 

P

RINCIPAL ARRANGEMENT OF BOTTOM WELL CASING MOUNTING

.................................................15

 

6.1.1

 

Rectangular casing .....................................................................................................................15

 

6.1.2

 

Circular casing ...........................................................................................................................15

 

6.2

 

W

ELDING PROCESS

..........................................................................................................................16

 

6.2.1

 

Description of items ....................................................................................................................16

 

6.2.2

 

Welding order .............................................................................................................................16

 

6.3

 

W

ELDING OF MOUNTING PLATES

....................................................................................................17

 

6.4

 

W

ELDING OF CASING FLANGE SUPPORTING PLATES

.......................................................................18

 

6.5

 

W

ELD DETAILS

................................................................................................................................19

 

6.5.1

 

Fillet weld ...................................................................................................................................19

 

6.5.2

 

Butt weld .....................................................................................................................................19

 

background image

C101566-B Page 3 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

7

 

INTERMEDIATE SHAFT ...................................................................................................................20

 

7.1

 

C

ARDAN SHAFT

...............................................................................................................................20

 

7.1.1

 

Installation ..................................................................................................................................20

 

7.1.2

 

Disassembly ................................................................................................................................21

 

7.1.3

 

Flange boltings ...........................................................................................................................22

 

7.1.4

 

Companion flanges .....................................................................................................................22

 

7.2

 

I

NTERMEDIATE SHAFT BEARINGS TYPE 

SKF

 

SNL ..........................................................................23

 

7.2.1

 

Mounting.....................................................................................................................................23

 

7.3

 

M

OUNTING 

SNL

 

30

 AND 

SNL

 

31

 HOUSINGS WITH LABYRINTH SEALS

...........................................24

 

7.4

 

B

ULKHEAD SEAL

.............................................................................................................................26

 

8

 

PROPULSOR METAL PART PAINTING INSTRUCTIONS .........................................................27

 

8.1

 

S

URFACE PRELIMINARY TREATMENT

..............................................................................................27

 

8.2

 

P

ROPULSORS UPPER ASSEMBLY 

(

SURFACES INSIDE SHIP

) ...............................................................27

 

8.2.1

 

Primed surfaces preliminary treatment ......................................................................................27

 

8.3

 

P

ROPULSORS LOWER ASSEMBLY 

(

SUBMERGED SURFACES

) ............................................................28

 

8.3.1

 

Primed surfaces preliminary treatment ......................................................................................28

 

8.4

 

A

NTIFOULING PAINTING

..................................................................................................................28

 

8.5

 

S

ERVICE AND MAINTENANCE PAINTING

..........................................................................................28

 

8.6

 

C

ORROSION CONTROL

.....................................................................................................................28

 

9

 

ADHESSIVES AND SEALANTS ........................................................................................................29

 

9.1

 

T

HREAD LOCKS

...............................................................................................................................29

 

9.1.1

 

Screw locking..............................................................................................................................29

 

9.1.2

 

Locking plugs and hydraulic couplings ......................................................................................29

 

9.1.3

 

Mechanical angle indicators ......................................................................................................29

 

9.1.4

 

Proximity sensors........................................................................................................................29

 

9.2

 

F

LANGE SEALANTS

..........................................................................................................................29

 

10

 

PIPING ...................................................................................................................................................30

 

10.1

 

I

NSTALLATION AND PIPING

.............................................................................................................30

 

11

 

PROPULSOR SEAL OIL TANK INSTALLATION .........................................................................31

 

11.1

 

P

ROPULSOR SEAL SYSTEM

...............................................................................................................31

 

11.2

 

S

EAL OIL TANK

................................................................................................................................31

 

11.3

 

N

ON

-

PRESSURIZED SYSTEM

............................................................................................................32

 

11.4

 

P

RESSURIZED SYSTEM

.....................................................................................................................33

 

12

 

OIL FILLING ........................................................................................................................................34

 

12.1.1

 

OIL PURITY GRADE .............................................................................................................34

 

12.1.2

 

OIL FILLING .........................................................................................................................34

 

12.1.3

 

FILLING AND BLEEDING THE PROPELLER SHAFT SEALING ......................................34

 

12.2

 

O

IL DRAINING AND PUMPING OUT

...................................................................................................34

 

12.3

 

C

HECKING OIL QUANTITY

...............................................................................................................35

 

13

 

HYDRAULIC SYSTEMS .....................................................................................................................36

 

13.1

 

G

ENERAL

.........................................................................................................................................36

 

13.1.1

 

Long service life and functional reliability of hydraulic systems and their components are 

dependent on correct handling ................................................................................................................36

 

13.2

 

A

SSEMBLY

.......................................................................................................................................36

 

13.2.1

 

Assembly preparation.............................................................................................................36

 

13.2.2

 

Carrying out assembly............................................................................................................37

 

13.2.3

 

Lines and connections ............................................................................................................37

 

13.2.4

 

Filters .....................................................................................................................................38

 

background image

C101566-B Page 4 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

13.2.5

 

Hydraulic fluids......................................................................................................................38

 

13.3

 

C

OMMISSIONING

.............................................................................................................................38

 

13.3.1

 

Preparations for a trial run....................................................................................................38

 

13.3.2

 

Start-up...................................................................................................................................39

 

13.3.3

 

Trial run .................................................................................................................................39

 

13.3.4

 

The most common faults occuring during commissioning .....................................................42

 

13.3.5

 

Special operations after commissioning with the filters.........................................................43

 

13.3.6

 

Special operations after commissioning with the oil levels....................................................43

 

14

 

PROPULSOR COOLING SYSTEM INSTALLATION ...................................................................44

 

14.1

 

C

ONSTRUCTIONAL DIRECTIONS  IN A PIPING DESIGN

. .....................................................................44

 

14.2

 

I

NSTALLATION AND START

-

UP

........................................................................................................44

 

14.2.1

 

Receipt ....................................................................................................................................44

 

14.2.2

 

Installation..............................................................................................................................45

 

14.2.3

 

Start-up...................................................................................................................................45

 

15

 

ELECTRIC INSTALLATION .............................................................................................................47

 

15.1

 

S

IGNAL DIRECTIONS

........................................................................................................................47

 

15.2

 

V

OLTAGE SUPPLY

............................................................................................................................48

 

15.2.1

 

Control voltage supply ...........................................................................................................48

 

15.2.2

 

AC supply ...............................................................................................................................48

 

15.2.3

 

24 VDC supply for electric and control .................................................................................48

 

15.2.4

 

24 VDC supply for instruments (alarm transducers etc.).......................................................49

 

15.3

 

L

OCATIONS

......................................................................................................................................49

 

15.3.1

 

Control space .........................................................................................................................49

 

15.3.2

 

Machinery space.....................................................................................................................49

 

15.3.3

 

Outdoor space ........................................................................................................................49

 

15.4

 

EMC

 COMPATIBILITY FOR CONTROL EQUIPMENTS

.........................................................................49

 

15.5

 

E

NVIRONMENT

................................................................................................................................49

 

15.5.1

 

Relative humidity ....................................................................................................................49

 

15.5.2

 

Salt contaminity ......................................................................................................................50

 

15.5.3

 

Oil...........................................................................................................................................50

 

15.5.4

 

Acceleration............................................................................................................................50

 

15.5.5

 

Vibrations ...............................................................................................................................50

 

16

 

CABLING...............................................................................................................................................51

 

16.1

 

C

ABLE TYPES AND NUMBERS

..........................................................................................................51

 

16.2

 

24

 

VDC

 CABLE POWER TABLE

........................................................................................................52

 

16.3

 

AWG

 DIMENSIONS

..........................................................................................................................53

 

16.4

 

D

ESIGN AND CABLING WORK

..........................................................................................................54

 

16.4.1

 

Power cables ..........................................................................................................................54

 

16.4.2

 

Frequency converter and brake resistor cabling ...................................................................55

 

16.4.3

 

Control cables ........................................................................................................................56

 

16.4.4

 

Control cable with twisted pairs and screen ..........................................................................56

 

16.4.5

 

Data cables.............................................................................................................................57

 

16.4.6

 

CAN bus cables ......................................................................................................................58

 

16.4.7

 

Distance of different type of cables ........................................................................................59

 

16.5

 

I

NSTALLATION AND CONNECTIONS

.................................................................................................59

 

16.5.1

 

Protection piping work ...........................................................................................................59

 

16.5.2

 

Wiring and terminals..............................................................................................................60

 

16.5.3

 

Plugs.......................................................................................................................................60

 

16.5.4

 

Cable glands...........................................................................................................................60

 

17

 

ELECTRIC UNIT INSTALLATION ..................................................................................................61

 

17.1

 

R

EMOTE CONTROL PANELS

.............................................................................................................61

 

background image

C101566-B Page 5 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

17.2

 

C

ONTROL UNITS

..............................................................................................................................62

 

17.2.1

 

Cooling ...................................................................................................................................62

 

17.2.2

 

Vibration absorber .................................................................................................................62

 

17.2.3

 

Cleanliness and purity............................................................................................................62

 

17.2.4

 

Condensed water ....................................................................................................................63

 

17.2.5

 

Control unit cabling ...............................................................................................................63

 

17.3

 

F

REQUENCY CONVERTER

................................................................................................................64

 

17.3.1

 

Ground connections ...............................................................................................................64

 

17.3.2

 

Vibration dampers ..................................................................................................................65

 

17.4

 

P

ROPULSOR CABLING

......................................................................................................................65

 

17.5

 

H

YDRAULIC POWER PACK CABLING

................................................................................................66

 

17.6

 

P

OTENTIOMETERS AND SENSITIVE COMPONENTS

...........................................................................66

 

 

background image

C101566-B Page 6 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

1 S

AFETY INSTRUCTIONS

,

 WARNINGS

,

 ENVIRONMENT

 

1.1 W

ARNINGS

 

1.1.1 R

OTATING ELEMENTS AND SHAFTS

 

‰ 

When you work, you should use suitable protection and safety wears and 
barriers to prevent the danger of  injury or death. 

1.1.2  H

YDRAULIC AND LUBRICATION

 

‰ 

Use proper personal protection equipment and clothes 

‰ 

Follow all safety measurements 

‰ 

Stop first the driving motor and/or engine 

‰ 

Prevent then the starting of driving motors or engines 

‰ 

Check that there is no high pressure present 

‰ 

The oil can be hot 

‰ 

Use only proper quality tools 

‰ 

Protect the environment 

‰ 

Due to safety considerations pipe fittings, connections and components 
must not be loosened as long as the system is pressurized. 

1.2 S

AFETY

 

1.2.1 G

ENERAL

 

These instructions are meant for professional use. Operation, service and maintenance 
personal should be well-trained professionals. 

1.2.2 I

NSTALLATION

 

‰ 

The propulsor system is meant for fixed installations only.

 

1.2.3  E

LECTRIC 

W

ORK

 

‰ 

Do electric work only, when the supply isolation devices at main 
switchboard are locked open. 

‰ 

Do not make temporary connections 

‰ 

Before connecting the electric supply, check that all devices are clean and 
dry. 

‰ 

Open the protection devices and voltage switches of the control system 
before you connect supply voltage.

 

1.2.4  C

ONTROL CIRCUITS

 

‰ 

Do not touch the IC-circuits on the circuit boards. Static voltage discharge 
may damage the components.

 

‰ 

You should use carefully transmitters and other instruments, because their 
signal circuits can destroy at wrong connection 

‰ 

The potentiometers at control lever are very sensitive instruments. Be very 
careful, when you test and connect them. 

background image

C101566-B Page 7 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

Static charges can damage electronic devices. Discharge the electrical 
charge from your body before opening and configuring the device. To do 
so, touch a grounded surface, e.g. the metal housing of the switch cabinet.

 

1.2.5  E

LECTRIC MOTORS

 

‰ 

Before starting the motor, check that the motor is mounted properly and 
ensure that the machine connected to the motor allows the motor to be 
started.

 

‰ 

Set the maximum motor speed (frequency) according to the motor and the 
machine connected to it.

 

‰ 

Before reversing the motor shaft rotation direction make sure that this can 
be done safely.

 

‰ 

Make sure that no power correction capacitors are connected to the motor 
cable.

 

‰ 

Make sure that the motor terminals are not connected to mains potential.

 

1.2.6  A

LTERNATING CURRENT CIRCUITS

 

‰ 

Do not perform any measurements when the frequency converter is 
connected to the mains.

 

‰ 

After disconnecting the frequency converter from the mains, wait until the 
fan stops and the indicators on the keypad go out (if no keypad is attached 
see the indicators on the cover). Wait 5 more minutes before doing any 
work on Converter connections. Do not even open the cover before this 
time has expired.

 

‰ 

Do not perform any voltage withstand tests on any part of Converter. There 
is a certain procedure according to which the tests shall be performed. 
Ignoring this procedure may result in damaged product.

 

‰ 

Prior to measurements on the motor or the motor cable, disconnect the 
motor cable from the frequency converter.

 

‰ 

Before connecting the frequency converter to mains make sure that the 
Converter front and cable covers are closed. 

‰ 

The components of the power unit of the frequency converter are live when 
converter is connected to mains potential. Coming into contact with this 
voltage is extremely dangerous and may cause death or severe injury. 
The control unit is isolated from the potential.

 

‰ 

The motor terminals U, V, W and the DC-link/brake resistor terminals –/+ 
and disc brake terminals are live when converter is connected to mains, 
even if the motor is not running.

 

‰ 

The frequency converter has a large capacitive leakage current. 

1.2.7 L

OW VOLTAGE

 

‰ 

The control I/O-terminals are isolated from the mains potential. However, 
the relay outputs and other I/O-terminals may have a dangerous control 
voltage present even when converter is disconnected from mains. 

1.3 E

ARTHING AND EARTH FAULT PROTECTION

 

1.3.1 C

ONTROL UNITS

 

‰ 

The frequency converter must always be earthed with an earthing 
conductor connected to the earthing terminal.

 

background image

C101566-B Page 8 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

The control units must always be earthed with an earthing conductor 
connected to the earthing terminal. 

‰ 

The earth fault protection inside the frequency converter protects only the 
converter itself against earth faults in the motor or the motor cable.

 

‰ 

Due to the high capacitive currents present in the frequency converter, fault 
current protective switches may not function properly. If fault current 
protective switches are used they must be tested with the drive with earth 
fault currents that are possible to arise in fault situations. 

‰ 

The mounting rail must be connected to ground potential. This is the only 
way to guarantee that the integrated surge voltage protection functions and 
that the shield of the bus conductor makes contact effectively. 

1.3.2 C

ONTROL PANELS

 

‰ 

The control panels must always be earthed with an earthing conductor 
connected to the earthing terminal. 

1.3.3 P

ROPULSOR

 

‰ 

The housings of electric steering and lubrication pumps should be 
connected with an earthing conductor connected to the earthing terminal. 

‰ 

The propulsor should be connected with an 25 mm2 earthing conductor 
connected to the earthing terminal. 

1.4 E

NVIRONMENT PROTECTION

 

1.4.1 M

ACHINE DEMOLITION

 

If the machine must be scrapped, it, should become non-operational: 

‰ 

Disassemble the various parts. 

‰ 

Disconnect any motor unit. 

But first after having completely emptied all the oil from propulsor unit and its auxiliaires 
unit. 

1.4.2 E

COLOGY INFORMATION

 

The disposal of unit packaging materials, replaced parts, components or  the unit and 
lubricants must comply with environmental restrictions, without polluting the soil, water 
or air. The party receiving the materials is responsible for carrying out the operation in 
conformity with the current standards in force in the country in which the machine is 
used. 

1.4.3 I

NSTRUCTIONS FOR SUITABLE WASTE TREATMENT

 

‰ 

Iron, aluminium, copper materials: these are recyclable materials which 
must be sent a to a special authorized collection center. 

‰ 

Plastic and rubber materials: these materials must be delivered to a dump 
or to special recycling centers. 

‰ 

Used oils: deliver to a special authorized collection and recycling centers 

background image

C101566-B Page 9 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

C

ODES AND ABBREVIATIONS USED IN THIS MANUAL

 

CODE DESCRIPTION 

CODE 

DESCRIPTION 

ACU 

AC/DC Converter Unit 

SAI 

Steerprop Angle Indicator 

AIU 

Alarm Indication Unit 

SAP  Steerprop Azimuth Propulsor 

ALARM  Alarm system 

SCB  Steerprop Propulsor Connection Box 

AP 

Autopilot 

SCL 

Steerprop Control Lever 

APC 

Autopilot Command Unit 

SCU  Steerprop Control Unit 

APD 

Autopilot Distribution Unit 

SJC 

Steerprop Joystick Computer 

BCP 

Back-up Control Panel 

SJD 

Steerprop Joystick Display 

BFU 

Brake and Fan Control Unit 

SJP 

Steerprop Joystick Panel 

BLD 

Control System Block Diagram  SOT  Seal Oil Tank 

BRU 

Brake Resistor Unit 

SRI 

Steerprop Rpm Indicator 

BT 

Bow Thruster 

STB 

SOT Connection Box 

CPU 

Clutch Pump Unit 

STU  Steerprop Transmitter Unit 

CSU Clutch 

Pump 

Starter 

TG Telegraph 

DP 

Dynamic Positioning Systen 

VDR  Voyage Data Recorder 

ECDIS 

Electric map system 

WCP  Wheelhouse Control Panel 

ECP 

Engine Control Room Panel 

WH 

Wheelhouse 

ENGINE  Diesel motor 

WSP  Wing Steering Panel 

EPSS 

Electric Power Supply 
Switchboard 

 

 

ER 

Engine Room control 

 

 

ESU Electric 

Steering 

Unit 

   

GA 

General Arrangement Drawing   

 

GPS 

Global Positioning System 

 

 

GYRO Gyrocompass 

 

 

HCB 

Hydraulic Connection Box 

 

 

HPU Hydraulic 

Power 

Unit 

   

HSU 

Hydraulic Starter Unit 

 

 

JC Joystick 

Control 

System    

LCR Local 

Control 

Switch 

   

LLG 

Lubrication Lower Gear Unit 

 

 

LOR 

Lubrication Oil Reservoir 

 

 

LPU 

Lubrication Pump Unit 

 

 

LSU Lubrication 

Starter 

   

LUG 

Lubrication Upper Gear Unit 

 

 

MC Mission 

Computer 

   

PFU 

Pump Motor Fan Control Unit 

 

 

PM Propeller 

Motor 

   

PR Propulsor 

Room 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

background image

C101566-B Page 10 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

3 P

ROPULSOR NUMBERING

 

The exact coding in the actual project is shown in the General Arrangement (GA) and 
in the control system block diagram (BLD). 

 

 

 

 

 

The propulsor and control unit numbering is always 
shown at CONTROL SYSTEM BLOCK DIAGRAM.  

 
There are following general principles: 

 

¾ 

PROPULSOR NUMBERING 

‰ 

Propulsor numbering starts from Bow Port Side 

and ends to Stern Starboard 

¾ 

CONTROL STATION NUMBERING 

‰ 

Remote control panel numbering starts from Fore 
Center station and the next is fore Port Side 

station. 

¾ 

CONTROL PANEL WCP NUMBERING 

‰ 

First number is according propulsor 

‰ 

Second number is according control station 

¾ 

WING TYPE CONTROL PANEL WSP 
NUMBERING 

The controls of all propulsor are mounted into same 
panel. 

‰ 

The number is according control station  

¾ 

CONTROL UNITS NUMBERING 

‰ 

The numbering follows the numbers of the 
propulsors 

 

background image

C101566-B Page 11 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

4 S

TORAGE

 

4.1 P

ACKING AND PROTECTION

 

4.1.1 P

ROPULSOR

 

A unused unit is kept inside.  

If the storage period is longer than three moths, the unit is filled with oil. A unit filled 
with oil is kept in a upright position. 

4.1.2 P

LANETARY GEARS

 

For extended storage of more than 6 months, the rotating seals will no longer be 
efficient. It is recommended to check them periodically by turning the internal gears by 
and rotating the input shaft. For a negative multi-disk brake, release the brake by using 
a hydraulic pump or similar device It is recommended to replace the gaskets when the 
machine is started. 

4.1.3 H

EAT EXCHANGERS

 

4.1.3.1 S

TANDARD CONSERVATION 

(

CONTROLLED CONDITIONS

All heat exchangers supplied by Bloksma are treated with a rust preventive layer (on 
both shell- and tubeside). This layer will protect the heat exchanger when it is stored at 
controlled conditions, i.e. inside, in a dry room at constant temperature . When these 
conditions are met, the heat exchanger can be stored without special treatment for a 
longer period (up till 24 months). The rust preventive layer can be removed with a 
mineral solvent (petroleum). 

4.1.3.2 A

DVISE FOR CONSERVATION 

(

UNCONTROLLED CONDITIONS

When the above mentioned storage conditions are not met, you will have to fill the heat 
exchanger with an inert gas and all openings have to be closed airtight (additionally 
silica gel can be added to absorb liquids). Alternatively, the heat exchanger can be 
treated with a rust preventive liquid of a type suited for long term conservation. When 
necessary contact a specialised company. Take the materials of the heat exchanger 
(see specification sheet) into consideration. Be aware that in uncontrolled storage 
conditions large amounts of water can accumulate in the heat exchanger as a result of 
condensation. 

4.1.4 C

ONTROL SYSTEM AND PROPULSORS ELECTRONIC COMPONENTS

 

All gears should be greased (Transmitter unit STU). 

Place for storing electronic equipments have to have walls and cover. Equipment 
should be placed 1 m above the floor to avoid moisture from the floor to get to 
equipment. The place should be dry and warm enough (> 10 

°C) but not too warm (< 

70 

°C). Also the temperature should be steady.  

In the store with electronic equipment should not be any corrosive material (batteries 
with acid). 

background image

C101566-B Page 12 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

4.1.4.1 P

ACKAGES

 

‰ 

Some packing material should be used, for example board chips. But in 
some cases it is important that the chips can’t go inside for example control 
levers and panels.  

‰ 

Control panels and equipments have to cover first with condense protecting 
packing board or similar. Also packing should be steady enough and not 
corrosive. 

‰ 

Inside every electronic unit and packing containing electronic equipment 
should be moisture absorber to keep components dry. The absorber 
material should be kept in order by changing it regularly. 

‰ 

Plastic should not touch straight to any metal and cause any condense and 
prevent moisture reduction from packages. 

‰ 

If necessary, you should provide and use special packages meant for 
electronic components. 

‰ 

All holes of electronic units should be blocked to avoid dirt and moisture 
getting inside the unit.  

‰ 

Packing should be made so that electronic units and components can’t 
move inside packing.  

‰ 

Moving and unnecessary opening of packing should be avoided. If packing 
is opened it should be closed properly if storing continues. 

4.1.5 S

UPERVISION UNDER STORAGE TIME

 

Frequent checking of store should be done. 

4.2 E

ND OF STORAGE

 

4.2.1.1 C

HECKING

 

When you take the units from storage, you should check: 

‰ 

That there is no damaged devices or components 

‰ 

All part and components are left 

‰ 

That there do not appear corrosion or condensed corrosion 

‰ 

That lubrication or hydraulic systems do not have rubbish or water 

4.2.1.2 C

LEANING

 

After storing the equipment should be checked that they are not damaged and they are 
containing all needed components. Any dust, salt, etc. should be cleaned away with 
cleaning cloth, which is not getting fluffy. 

Also it is important to make sure that equipments are dry and clean before the supply 
voltage is connected! 

background image

C101566-B Page 13 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

5 T

RANSPORT

 

 

T

O

 

PREVENT

 

INJURIES

 

OF

 

PERSONS

 

AND

 

DAMAGE

 

TO

 

THE

 

PARTS

 

ALWAYS

 

MAKE

 

SURE

 

THAT

 

THE

 

PARTS

 

ARE

 

SAFELY

 

TRANSPORTED

 

AND

 

STORED

.

 

5.1 P

ROPULSOR

 

The propulsor is equipped with lifting eyes. During lifting operation you should be 
careful, that you not damage projecting parts.  

During transportation the propulsor should fasten and protect properly using 
appropriate points. During transportation you should be careful. 

If the unit does not have lifting eyes, you should lift and transport the unit on suitable 
bed. 

5.2 H

YDRAULICS AND LUBRICATION MODULES

 

The lifting is to be done with lifting linen. 

Use strong nylon ropes or lifting belts. When using steel cords, protect the edges.  

5.3 I

NTERMEDIATE SHAFTING

 

Use strong nylon ropes or lifting belts. When using steel cords, protect the edges.  

Cardan shafts should be transported in a horizontal position (see illustration). For non-
horizontal transportation additional precautions must be taken to prevent the splined 
parts from separating.  

 

D

ANGER OF INJURY

Please consider the following precautions: 

 

 

When lifting or putting down the shaft, 
the moving parts (flange yoke and 
journal cross) may tilt and lead to 
injuries.  
Keep hands away from the joint!  
Danger of crushed hands! 

 

Do not store or handle the shaft with 
any stress or load on the spline 
protection (1) or the seal (2). 

 

‰ 

Avoid bumps and knocks during transport and storage. 

background image

C101566-B Page 14 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

Use appropriate frames or racks for storage, so that the flange yokes are 
not loaded. 

‰ 

Use chocks or blocks to prevent cardan shaft from rolling. 

‰ 

Secure shaft against falling over if it is stored in a vertical position. 

‰ 

Keep cardan shafts in a dry place. 

5.4 B

IGGER CONTROL UNITS

 

All electronic equipment should be transported with care. Lifting should be done only 
from marked places or from the bottom of packing. 

L

IFTING LUGS

 

 

For the lifting of the bigger units there are special Lifting lugs / eyes. 

A

SSEMBLY BRACKETS

 

Never use assembly brackets for lifting. Lifting destroys them..  

There is not allowed to use to control unit the assembly brackets for lifting of the control 
units. 

5.5 S

MALLER UNITS OR MODULES

 

All equipment should be transported with care. Lifting should be done only from marked 
places or from the bottom of packing. 

Smaller do not have any special lifting eyes. Their lifting should be with palette or equal 
or with manpower. 

background image

C101566-B Page 15 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

 

6 B

OTTOM WELL CASING MOUNTING

 

6.1 P

RINCIPAL ARRANGEMENT OF BOTTOM WELL CASING MOUNTING

 

6.1.1 R

ECTANGULAR CASING

 

R1 Longitudinal 

stiffener 

R2 Bottom 

frame 

6.1.2 C

IRCULAR CASING

 

 

background image

C101566-B Page 16 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

6.2 W

ELDING PROCESS

 

6.2.1 D

ESCRIPTION OF ITEMS

 

ITEM DESCRIPTION 

A Dimension 

‰ 

Circular casing diameter 

‰ 

Rectangular casing inner side length 

‰ 

Measured at several positions 

W1 Stiffener 

flange 

W2 Stiffener 

web 

‰ 

Mounting plate lap joint to stiffener web plate must be welded edge-by-edge in 
sequential order as shown. 

‰ 

Weld throat thickness is determined by strength analysis (normally 25...40 % of plate 
thickness). 

W3 Bottom 

well 

casing 

W4 

Mounting plate (same thickness as stiffener web plate) 

‰ 

All mounting plates must be welded to hull stiffeners before starting to weld to bottom 
well casing. 

‰ 

Firstly casing is tack welded to all mounting plates, 

‰ 

After that casing flange flatness and dimension A are checked.  

‰ 

If tolerances are not exceeded, root runs are welded to each joint. 

‰ 

The flatness and dimension A are checked again.  

‰ 

If tolerances are not exceeded, the remaining runs are welded. 

‰ 

After welding is completed, flatness and dimension A are measured and documented. 

W5 

As small as possible so, that welding can be done properly 

W6 Bottom 

plate 

W7 

Working allowance to be cut off after welding 

W8 

NOTE: Full penetration weld. 

W9 

Flange supporting plate 

W10 

Machined surface must be protected during welding 

W11 

Flange supporting plate lap joint to stiffener flange must be welded edge-by-edge in 
sequential order as shown. 

‰ 

Flange flatness and dimension A must be checked after root run has been welded. 

‰ 

After welding is completed, flatness and dimension A are measured and documented. 

W12 

NOTE: No root cap allowed. Supporting plate is pushed against casing flange and tack 
welded at edge 5. 

6.2.2 W

ELDING ORDER

 

Sequential welding order is described with numbers 1-2-3-4-5-6-7. 

background image

C101566-B Page 17 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

6.3 W

ELDING OF MOUNTING PLATES

 

 

background image

C101566-B Page 18 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

6.4 W

ELDING OF CASING FLANGE SUPPORTING PLATES

 

N

OTE

Flange supporting plates are normally not required. The need of supporting plates are 
determined by strength analysis 

N

OTE 

All mounting plates must be welded before welding of flange supporting plates. 

 

 

background image

C101566-B Page 19 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

6.5 W

ELD DETAILS

 

If weld throat thickness exceeds 4 mm, multi-run welds must be used to minimize heat 
generation and thus welding distortions. 

‰ 

Root run max. throat thickness 3 mm 

‰ 

Max. throat thickness of filling runs 4 mm 

6.5.1 F

ILLET WELD

 

 

F1  

F2  

6.5.2 B

UTT WELD

 

 

B1 Filling 

runs 

B2 Root 

run 

 

background image

C101566-B Page 20 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

7 I

NTERMEDIATE SHAFT

 

The intermediate shaft arrangement, dimensions and assembly instruction are given 
GENERAL ARRANGEMENT (GA) drawing. 

7.1 C

ARDAN SHAFT

 

See more and updated information from www.gwb-essen.de 

GWB cardan shafts are delivered as complete units ready for installation. The shafts 
are greased for operation. They are balanced and painted in accordance with the 
technical information sheets. 

The balance state of a cardan shaft must on no account be altered. An inadmissable 
out-of-balance of a shaft may result in uneven running and premature wear of the joints 
and the bearings of the units to which the cardan shaft is connected.  

 In extreme cases the cardan shaft could break and shaft components could be thrown 
at speed from the vehicle or machine. 

 

D

ANGER

 

OF

 

INJURY

! P

ROVIDE

 

A

 

SAFETY

 

GUARD

 

DEVICE

7.1.1 I

NSTALLATION

 

In order to guarantee the properties of the cardan shaft as described in the information 
brochure they must not be altered from its as-delivered state. 

 

W

HENEVER

 

PEOPLE

 

OR

 

MATERIAL

 

MIGHT

 

BE

 

ENDANGERED

 

BY

 

ROTATING

 

CARDAN

 

SHAFTS

THE

 

USER

 

MUST

 

PROVIDE

 

FOR

 

THE

 

CORRESPONDING

 

SAFETY

 

DEVICES

Suitable safety devices (e.g. catch bows, solid safety guards) must be provided to 
prevent the parts of the shaft from being thrown around. 

 

D

ANGER

 

TO

 

LIFE

Cardan shafts are elastic and flexural bodies. Their flexural vibration and their critical 
bending speed must be calculated. The maximum permissible operating speed must 
be sufficiently below the critical bending speed of the first order. 

For the smooth running and safety of the shaft the n x ß value (speed x deflection 
angle) of the relevant shaft size must not be exceeded. 
The faces and the centering diameter of the shaft flanges and companion flanges must 
be free of dust, grease or paint to guarantee a safe connection. 

Be careful when handling the cardan shaft. Freely moving flange yokes may cause 
INJURIES! 

 

 

Check position of the yokes (1) of the 
shaft. Observe the arrow markings (2). 
They must be in alignment. The splines 
are fitted and must not be exchanged or 
distorted. 
 

 

background image

C101566-B Page 21 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

Before installation remove the transport retainer device, if present. In case of doubt 
please contact the supplier. 

Check the radial and radial runout as well as the spigot fit of the mounted flanges and 
the connected units. 

Do not turn the joints of the cardan shafts with assembly levers because this may 
damage the grease nipples or relief values. 

Use nuts and bolts of the prescribed quality (strength). 

Only use nuts and bolts in accordance with the supplier's specification. 

The bolts should be evenly tightened crosswise with a torque wrench. 

When using cardan shafts without length compensation, one of the connecting units 
must be flexible in order to be fitted over the flange pilot. Variations in lenght which 
may be caused by temperature changes must be allowed for by a suitable connecting 
bearing. 

If cardan shafts with length compensation are used, the companion flanges must be 
firmly fitted on the shafts of the connected units. 

Cardan shafts that have been stored for more than 6 month must be relubricated 
before use.  

 

 

For spray-painting the cardan shaft, make sure 
that the sliding range of the seal (length 
compensation La) is covered. 
 

 

For spray-painting the shaft we recommend our paint standards (Please ask for them).  

Protect rilsan coated splines (sleeve muff or sleeve yoke) against heat solvents 
mechanical damage 

When cleaning cardan shafts, do not use aggressive chemical detergents or 
pressurized water or steam jets because the seals may be damaged and dirt or water 
may penetrate. 

Cardan shafts can be used in a temperature range between -25°C (-13°F) and +80°C 
(+176°F), up to +120°C (+248°F) but only for limited periods and not on a frequent 
basis. Please contact us if the operating temperature deviates from these values. 

7.1.2 D

ISASSEMBLY

 

Before disassembly protect the cardan shaft from spline separation. 

 

S

ECURE THE CARDAN SHAFT AGAINST FALLING DOWN BEFORE PULLING IT OFF 

THE COMPANION FLANGE

.

 THE FLANGE YOKE MAY TILT

D

ANGER OF INJURY

!  

Observe the directions for transport, storage and installation of cardan shafts. 

 

background image

C101566-B Page 22 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

7.1.3 F

LANGE BOLTINGS

 

 

 

The flange bolting set can be supplied by GWB on request. 
The bolt length given in the tables (with assembly papers) are 
only suitable if the dimension 2 x G corresponding to the 
double the flange thickness G is not exceeded (see data 
sheets). If longer bolts are used, check whether the bolts can 
still be inserted from the joint side. 
 

We recommended a bolting set consisting of: 

‰ 

Hexagon bolt with short threat similar to DIN 931/10.9 (shaft length greater 
than flange thickness) 

‰ 

Self-locking nut, similar to DIN 980/934-10. 

 

The bolts allow fitting 

a) partially from the joint side, i.e. the recessed diameter c does not prevent the bolt 
from turning; 
b) from the companion flange side. We recommend designing the recessed diameter c

1

 

as locate the bolt head. 
See tables for insertion of bolts. 
All bolts must be tightened with the specified torque. The tightening torques T

a

 given in 

the table are based on a 90% (80% hirth-serration) utilization of the elastic limit and 
apply to slightly oiled bolts. 
Do not use molycote paste or any other grease on the bolts and nuts. In case of 
corrosion protected bolts and nuts (eg. Dacromet 500). Please contact us. 
Max. permissible tolerance of DIN 25202 class B. 

7.1.4 C

OMPANION FLANGES

 

 

 

In general, cardan shafts are connected to the driven units 
by companion flanges. The companion flange material 
must have a tensile strength of 750 N/mm². 
The accurate running of a cardan shaft requires certain 
tolerances for the axial and radial run-out. 
 

 

The dimensions of the companion flanges correspond with those of the same size of 
cardan shafts, except for the centring depth F

A

 and the fit C

A

 the depth of the keyway t

A

 

and the width b

A

. They can be taken from the following tables. 

For better bolt locking we recommend designing the relief of the companion flange as a 
bolt head surface and inserting the bolt from the companion flange side. In this case 
the distance Z

min

 must be met between the flange and the adjacent housing. 

If it is not possible to insert the bolts from the companion flange side, we recommend 
the use of stud bolts. 

background image

C101566-B Page 23 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

7.2 I

NTERMEDIATE SHAFT BEARINGS TYPE 

SKF

 

SNL 

See the more accurate and updated information from 

www.skf.com

. This instruction is 

a short version of SKF 5101 E- publication. 

7.2.1 M

OUNTING

 

SNL housings together with SKF bearings are robust and operationally reliable bearing 
arrangements, which have long lives. However, if they are to achieve their full potential 
and not fail prematurely, they must be properly mounted. Incorrect procedures or 
unsuitable tools can influence life negatively. 

When mounting the housings it should be remembered that the housings are 
asymmetrical internally and therefore the bearings are not always mounted in the 
centre of the housing. 

Vertical markings on the housing base end faces indicates the location of the centre of 
the bearing seating. 

7.2.1.1 M

OUNTING THE BEARING

 

The bearings can be mounted either on a tapered seating – normally for SNL housings 
in the form of an adapter sleeve – or on a cylindrical seating. When a bearing is 
correctly mounted on a sleeve there will be interference fits between the inner ring, 
sleeve and shaft. The degree of interference is determined by how far the bearing is 
driven up on the sleeve and either the internal clearance reduction or the axial drive-up 
distance can be used as a measure. The clearance reduction in spherical roller 
bearings can be measured using a feeler gauge, or the SKF drive-up method can be 
used. Information will be sent on request. 

For CARB bearings either the clearance reduction or the axial drive-up distance should 
be measured. When using a feeler gauge to measure clearance reduction it is 
important that the inner and outer rings of the bearing are not displaced with respect to 
each other. The SKF drive-up method can also be applied. 

Adapter sleeves with the designation OH ..  

H in the product tables indicate that the sleeves are provided with the necessary ducts 
to enable the bearings to be mounted using the oil injection method. Oil is supplied to 
the nut side of the sleeve. 

Bearings with cylindrical bore are normally mounted with an interference fit on the 
shaft. Appropriate shaft tolerances should be selected (SKF General Catalogue). The 
recommendations applying to spherical roller bearings also apply to CARB bearings. 

Details of mounting tools as well as the SKF drive-up method can be found on the SKF 
CD-ROM MP282 which will 

be sent on request. 

7.2.1.2 S

UPPORT SURFACE FOR HOUSING BASE

 

To guarantee long bearing service life it is recommended that the support surface for 
the housing is finished to R

12,5 µm. The flatness (planicity) tolerance should be to 

IT7. For moderate demands IT8 may be satisfactory.

 

background image

C101566-B Page 24 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

7.2.1.3 D

OWEL PINS

 

SNL housings are designed for loads acting vertically to the housing base support. If 
they are to be subjected to moderate or heavy loads acting parallel to the base support, 
a stop should be provided, or the housing should be pinned to its support.  

7.3 M

OUNTING 

SNL

 

30

 AND 

SNL

 

31

 HOUSINGS WITH LABYRINTH 

SEALS

 

 

 

 

Before starting installation work, the following 
instructions should be carefully read. 
1. 

Ensure that the environment is clean. Check 

the dimensional and form accuracy of the shaft 
seating. 
2. 

Check that the surface roughness of the 

support surface R

12,5 µm. The flatness 

(planicity) tolerance should be to IT7. For 

moderate demands IT8 may be satisfactory. 
3. 

If the bearing is mounted on an adapter 

sleeve, determine the position of the housing. 
The grease nipple 
arranged at one side of the housing cap (for 

improved lubrication) should always be at the 
side opposite to the sleeve nut. It is necessary 

to consider the complete housing as the base 
and cap will only fit together as supplied. 
4. 

Position the housing on the support surface. 

Fit the attachment bolts but do not tighten 

them. 
5. 

Mount the first labyrinth seal on the shaft in 

the correct position. 
6. 

Mount the bearing on the shaft – either 

directly on a stepped shaft or using an adapter 
sleeve. Completely fill the bearing with grease. 

The housing base should be filled with grease 
up to the markings in each corner inside the 

base. 
7. 

Mount the second labyrinth ring on the shaft 

in the correct position. If the housing is to be 
used at a shaft end, the second labyrinth ring is 
omitted and an end cover inserted in the 

housing base instead. 
8. 

Lay the shaft with bearing and labyrinth 

ring(s) in the housing base.

 

9. 

Put the locating ring(s) (when needed) at 

each side of the bearing. 
NB. Locating rings are only used for locating 

background image

C101566-B Page 25 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

 

 

bearing arrangements, except for CARB 
bearings which, although always non-locating, 
must always be mounted with locating rings. 
10. 

Carefully align the housing base. Vertical 

markings on the housing base ends and side 

faces showing the bearing seating centre can 
facilitate this. Then lightly tighten the 

attachment bolts. 
11. 

The housing cap should be placed over 

the base and the cap bolts (to join cap and 

base) tightened to the torque 
specified in GA
The cap and base of one housing are not 

interchangeable with those of other housings. 
The cap and base should be checked to see 

that they bear the same consecutive number. 
12. 

Fully tighten the attachment bolts in the 

housing base. Recommended tightening 
torques are given in GA. 
13. 

Finally insert the hollow O-ring cords of 

synthetic rubber in the grooves in the labyrinth 
rings. This can be done 
using a screwdriver while turning the shaft.

 

 

 

background image

C101566-B Page 26 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

7.4 B

ULKHEAD SEAL

 

 

The sealing is self lubricating, but the sealing 
tightening flange nuts should be kept in right 
tightness as said below: 

Check, that nuts are in right tightness. The 
tightness is: 

‰ 

Tightened with fingers and ½ turns.  

‰ 

No locking adhesive 

background image

C101566-B Page 27 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

8 P

ROPULSOR METAL PART PAINTING INSTRUCTIONS

 

8.1 S

URFACE PRELIMINARY TREATMENT

 

All foreign matter with harmful affect to preliminary treatment and painting is to be 
removed. All water based salts are to be removed with a dirt- and grease-removing 
agent according to SFS-EN ISO 12944. The surfaces are pre treated according to 
material, as follows: 

Steel surfaces: Mill scale and corrosion is removed by blasting to tolerance Sa2½ 
(SFS-ISO 8501-1). The roughening of sheet metal increases the paint bonding to the 
surface. 

Priming:  

‰ 

TEKNOPLAST PRIMER 3 white .....................................................1 x 60 

µm 

8.2 P

ROPULSORS UPPER ASSEMBLY 

(

SURFACES INSIDE SHIP

8.2.1 P

RIMED SURFACES PRELIMINARY TREATMENT

 

All foreign matter that has a harmful affect with painting  (for example grease and salts) 
is to be removed. The surfaces should be clean and dry. Old paint layers that have 
exceeded the maximum coating time should be roughened. Damaged places are to be 
primed according to the surface and maintenance painting requirements. 

The schedule and place for priming is to be selected so that the surface is not 
contaminated or wet before further treatment (SFS-EN ISO 12944, part 4). 

Painting: 

‰ 

TEKNOPLAST PRIMER 3 gray ......................................................1 x 80 

µm 

‰ 

TEKNOPLAST HS 150 RAL 6019 ..................................................1 x 80 

µm 

 

Total thickness of coat: 

‰ 

TEKNOPLAST PRIMER 3 white .......................................................... 60 

µm 

‰ 

TEKNOPLAST PRIMER 3 gray ........................................................... 80 

µm 

‰ 

TEKNOPLAST HS 150 RAL 6019 ....................................................... 80 

µm 

‰ 

Total ..........................................................................................          220 

µm 

background image

C101566-B Page 28 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

8.3 P

ROPULSORS LOWER ASSEMBLY 

(

SUBMERGED SURFACES

8.3.1 P

RIMED SURFACES PRELIMINARY TREATMENT

 

All foreign matter that has a harmful affect with painting  (for example grease and salts) 
is to be removed. The surfaces should be clean and dry. Old paint layers that have 
exceeded the maximum coating time should be roughened. Damaged places are to be 
primed according to the surface and maintenance painting requirements. 

The schedule and place for priming is to be selected so that the surface is not 
contaminated or wet before further treatment (SFS-EN ISO 12944, part 4). 

Painting: 

‰ 

INERTA 165 TM 102.....................................................................1 x 300 

µm 

Total thickness of coat: 

‰ 

TEKNOPLAST PRIMER 3 ................................................................... 60 

µm 

‰ 

INERTA 165 TM 102.......................................................................... 300 

µm 

‰ 

Total ................................................................................................... 360 

µm 

8.4 A

NTIFOULING PAINTING

 

Over coating of an INERTA 165 epoxy based paint layer has to be done in 24 hours. A 
paint coat older than this must be roughened before further coats of paint are applied. If 
painted with antifouling paint the procedure used is to be according to the antifouling 
paint supplier. 

8.5 S

ERVICE AND MAINTENANCE PAINTING

 

Service and maintenance painting have to do so that the total coat is built up like 
instructed above. 

Damaged places are to cleaned and roughened carefully.  All foreign matter that has a 
harmful affect with painting  (for example grease and salts) is to be removed. The 
surfaces should be clean and dry. The border between old new painting area should 
grind smooth. No sharp edges. 

8.6 C

ORROSION CONTROL

 

‰ 

Cathode protection..............................................zinc or aluminum  cathodes 

 

It is not allowed to paint those cathodes. 

There are cathodes: 

‰ 

Propulsor body 

‰ 

Nozzle 

‰ 

Bottom well 

‰ 

Propeller shaft seal (there is available a replacement kit) 

‰ 

Inside rope guard 

background image

C101566-B Page 29 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

9 A

DHESSIVES AND SEALANTS

 

9.1 T

HREAD LOCKS

 

9.1.1 S

CREW LOCKING

 

Loctite 243 general-purpose adhesive is used to lock screws, with the following 
exceptions: 

‰ 

Stud bolt metal ends, Loctite 270 or 2701. 

‰ 

Adjusting screws, Loctite 222. 

‰ 

The screws of the outer ring of the slewing ring are leaved without locking 
adhesive. 

‰ 

The lower assembly’s and slewing assembly’s cap nuts are locked with wire 
by welding. 

9.1.2 L

OCKING PLUGS AND HYDRAULIC COUPLINGS

 

‰ 

Thread size R ¾” or smaller Loctite 542 

‰ 

Thread size R 1” or larger Loctite 577 

9.1.3 M

ECHANICAL ANGLE INDICATORS

 

‰ 

Lock the dial and scale screws with Loctite 542 

9.1.4 P

ROXIMITY SENSORS

 

‰ 

Lock the threads with Loctite 542 

9.2 F

LANGE SEALANTS

 

‰ 

Loctite 5910 is used as flange sealant.

 

background image

C101566-B Page 30 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

10 P

IPING

 

10.1 I

NSTALLATION AND PIPING

 

You should follow the good approach of the servicing and assembly of hydraulic 
systems. 

You should take care of purity and cleanliness of piping and components and use right 
materials and tools. 

The final tightness of the system is achieved during the normal operation, when the 
impact of the warn oil, vessel vibrations and play are become even. 

background image

C101566-B Page 31 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

11 P

ROPULSOR SEAL OIL TANK INSTALLATION

 

11.1 P

ROPULSOR SEAL SYSTEM

 

The propeller shaft seal has a separate lubrication system equipped with a separate 
seal oil tank. 

11.2 S

EAL OIL TANK

 

The system consists of a  head tank with low and high level alarm for monitoring 
steering tube and propeller shaft seal condition. 

The seal oil tank is situated above the waterline and air pressure is adjusted so that the 
oil pressure in the blocking chamber is 0.3 bar higher than the water pressure outside 
the seal and the oil pressure inside the propulsion unit. 

background image

C101566-B Page 32 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

11.3 N

ON

-

PRESSURIZED SYSTEM

 

 

 

background image

C101566-B Page 33 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

11.4 P

RESSURIZED SYSTEM

 

 

 

background image

C101566-B Page 34 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

12 O

IL FILLING

 

12.1.1 OIL

 

PURITY

 

GRADE 

The purity grade of the used oil should be at least according to standard 17/14 ISO 
4406. The oils from suppliers do not normally fulfill the required purity grade. To avoid 
the impurities from barrel or tank to get into the unit the oil is pumped, when filling the 
propulsor, through a 10-micron fine filter. The propulsors filling connection/valve is 
located at the fwd part of the upper assembly. 

12.1.2 OIL

 

FILLING 

The propulsor and sealing oil tank have to be filled with oil before the propulsor or ship 
is lowered in water.  In addition, the piping from the sealing oil tank to the propulsors 
seal is filled and bleeding carefully before lowering to water.  

12.1.3 FILLING

 

AND

 

BLEEDING

 

THE

 

PROPELLER

 

SHAFT

 

SEALING 

The filler and purge caps are located on the seal frame. The locations of the caps are 
shown on the seals drawing you can find in a separate manual concerning the propeller 
shafts seals maintenance instructions.  

The rope guards are removed when filling seals or when bleeding. 

12.2 O

IL DRAINING AND PUMPING OUT

 

 

OIL

 

DRAINING 

FOR DRAINING, THE PROPULSOR IS TURNED TO Z-
POSITION (THE PROPELLER SHAFT IS ALIGNED WITH 
THE DRIVE SHAFT, PROPELLER BACKWARDS.  

‰ 

At the shipyard, the plug at the bottom of the lower assembly carries out 
the oil draining. There is a valve in the plug that prevents the oil from 
leaking out, when the plug is removed. For draining the oil, an adapter 
M000222A opens the valve when screwed into z-position. A hose is 
connected to the pipe so the oil drains into a waste oil container. 

‰ 

The oil can be drained also when the ship is not at the shipyard with a 
circulation / draining pipe situated inside the unit.  

PUMPING

 

THE

 

OIL

 

OUT 

‰ 

For emptying the unit the suction of the external pump (ship equipment) 
will be connected to the filling / emptying connection (1 1/2" BSPP female) 
with ball valve.  

‰ 

Oil is pumped until it starts sucking air. Then the oil level is low enough to 
open the flange where the ball valve is attached and there is a pipe, which 

goes to the lowest point of the propulsor visible.  

‰ 

Steerprop toolset includes an adapter M000222A, which can be screwed 
to that connection and attached to the suction hose. Pumping can be 
continued until the propulsor is empty of oil. 

 

 

background image

C101566-B Page 35 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

12.3 C

HECKING OIL QUANTITY

 

 

For checking oil quantity there are sight gauges on the oil control unit at the aft 
part of the upper assembly to indicate minimum level and maximum level. The oil 
quantity is checked when the propulsor is not running and oil is cold. When 
checking the oil level you need to consider: 

‰ 

When the unit is running the oil level is lower and is not shown in sight 
gauges. The lower level switch is monitoring the oil level. 

‰ 

When unit is warm from operation but not running, the oil level is above the 
maximum level because of thermal expansion. 

 

 

background image

C101566-B Page 36 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

13 H

YDRAULIC SYSTEMS

 

13.1 G

ENERAL

 

13.1.1 L

ONG SERVICE LIFE AND FUNCTIONAL RELIABILITY OF HYDRAULIC SYSTEMS 

AND THEIR COMPONENTS ARE DEPENDENT ON CORRECT HANDLING

 

Long service life and functional reliability of hydraulic systems come from all parts of 
the system. All components, equipment and pipes should be delivered clean and well 
protected against all dirt that prevails at workshops and sites. 

‰ 

All ports of hydraulic power units, valves, cylinders and hydraulic motors 
should be properly plugged. 

‰ 

Plugs, caps or blind flanges should not be removed until absolutiy 
necessary. 

‰ 

All pipes delivered to site must be free from scale, rust and pickling residue. 

Ensure fault-free operation by taking note of: 

‰ 

The special installation and operating instructions for the system 

‰ 

In individual cases the special instructions 

‰ 

The technical data contained in the catalogue sheet 

‰ 

When selecting pipes, hoses and fittings / flanges, the correct pressure 
rating has to be selected (wall thickness, material). Only cold drawn 
seamless tube is to be used. 

‰ 

Do not use hemp and putty as sealing materials, as these can lead to 
contamination and thus to malfunctions! 

13.2 A

SSEMBLY

 

13.2.1 A

SSEMBLY PREPARATION

 

Ensure that the system is dean 

13.2.1.1 F

OR THE ENVIRONMENT

 

‰ 

Power units, pipe connections, components (e.g. pickling may be 
necessary if a hot process has been carried out, e.g. welding, hot bending, 
etc.), are to be kept dean, e.g. cleaned 

13.2.1.2 F

OR THE PRESSURE FLUIDS

 

‰ 

Watch out for contamination, dampness; contamination from the 
environment must not be allowed to enter the tanks! 

‰ 

Fill oil tanks only via a filter  preferably via system filters or portable filter 
stations with fine filters. 

‰ 

Protective internal paint coatings, if used, must be resistant to the pressure 
fluid to be used! 

13.2.1.3 F

OR STOCK PARTS

 

‰ 

Storage of parts which have not been filled or treated with anti-corrosion 
fluid can lead to the build-up of resin. Dissolve the resin and renew the 
lubricating film. 

‰ 

Check to see that all of the parts required for assembly are available! 

background image

C101566-B Page 37 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

Take note of any transport damage! 

13.2.1.4 F

OR PUMPS

 

‰ 

On pumps taken from stock, resin may have formed.  

‰ 

This must be removed by means of solvents. Then, the lubricating film must 
be renewed. No special measures have to be taken for fire-resistant fluids. 

13.2.2 C

ARRYING OUT ASSEMBLY

 

‰ 

Make use of lifting facilities and transport equipment! 

‰ 

Do not use force. to minimise shearing forces and tension on pipelines and 
components. The valve mounting surfaces must be flat. The fixing bolts 
have to be evenly tightened to the stated torque. 

‰ 

Take care to ensure that the pipes are adequately fixed (pipe clamps)! 

‰ 

In order to avoid external leakage, take note of the installation instructions 
of the pipe fittings manufacturer. We recommend the use of fittings with 
flexible seals. 

‰ 

Make sure hose lines are correctly laid! Rubbing and abutting of the lines 
must be avoided. 

‰ 

Availability of the correct pressure fluids 

13.2.2.1 S

ELECTED ACCORDING TO SYSTEM REQUIREMENTS

,

 PLEASE NOTE

‰ 

Viscosity of the hydraulic fluid 

‰ 

Operating temperature range 

‰ 

Type of seals we don the components fitted 

13.2.2.2 P

UMPS

 

‰ 

Stress-free installation 

‰ 

In the case of prime movers, ensure that foundations are level 

13.2.3 L

INES AND CONNECTIONS

 

13.2.3.1 S

UCTION LINES

 

‰ 

Design and assemble suction lines according to the manufacturer’s 
instructions. 

‰ 

Suction vacuum pressure or feed pressure are within the limits specified by 
the manufacturer; filters and valves possibly installed must be taken into 
account. 

‰ 

Take care that the suction lines are leak-free 

‰ 

The flow velocity in the suction line should not exceed 0.5 m/s. 

‰ 

The pipe ends should be cut at an angle of less than 45 degrees and 
installed at a distance of at least 2.5 x the pipe diameter from the tank floor 
in order to prevent the aspiration of deposits from the tank floor. 

13.2.3.2 D

RAIN LINES

 

‰ 

Use a sufficient nominal width in order to keep the backpressure in the 
housing within the permissible limits. 

‰ 

When installing the line make sure that the housing is completely filled with 
fluid, while taking care that a siphoning effect is avoided. 

‰ 

Pressureless return to the tank 

‰ 

Sufficient cooling and settling of the hydraulic fluid is achieved by directing 
the hydraulic fluid to the tank wall. 

background image

C101566-B Page 38 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

Ensure a sufficient distance to temperature switches. 

13.2.3.3 I

NSTALLATION INSTRUCTIONS

 

‰ 

All lines have to be submerged at least 2.5 x the pipe diameter below the 
lowest permissible fluid level, however, at least 100 mm in order to prevent 
foaming. 

‰ 

Install the drain line higher than the suction line and take precautions that 
the returned oil cannot be directly re-aspired. 

‰ 

The ends of the suction, return and drain lines must therefore be installed 
with a distance of at least 200 mm from each other. 

‰ 

We recommend seamless precision steel pipes to DIN 2391 and releasable 
pipe connections. 

13.2.4 F

ILTERS

 

‰ 

Whenever possible, use return line or pressure filters. 

‰ 

Use suction filters only in conjunction with vacuum pressure switches / 
clogging indicators. 

‰ 

Depending on the pump type the required filter rating is 25 um to 40 um. 

‰ 

Recommendation: 10 

µm filters prolong the service life under high load 

conditions. 

13.2.5 H

YDRAULIC FLUIDS

 

13.2.5.1 M

INERAL OILS

 

‰ 

When using HL oils without wear-reducing additives, vane pumps (V3, V4, 
PV7, PVV, PVQ) may only be operated at reduced pressure. 

‰ 

Oils containing polar additives (slide way oils) must not be used for pumps 
with plain bearings, as the additives separate at 70 C and thus impair 
cooling and lubrication of the bearings. 

13.3 C

OMMISSIONING

 

When assembly has been carried out correctly, it is possible to proceed with 
commissioning and functional testing. 

13.3.1 P

REPARATIONS FOR A TRIAL RUN

 

‰ 

Tank cleaned? 

‰ 

Pipelines deaned and correctly fitted? 

‰ 

Fittings, flanges, tightened? 

‰ 

Pipelines and components correctly connected in line with installation 
drawings or circuit diagram? ........................................................................... 

‰ 

Is the accumulator filled with nitrogen? Nitrogen is to be filled until the pre-
charge pressure -- as stated in the circuit diagram, is reached. (On the fluid 
side the system has to be at zero pressure’) It is recommended that the gas 
pre-charge pressure is noted on the accumulator (e.g. sell-adhesive label) 
and in the hydraulic circuit so that a compartory check may be made later if 
required.  

 

A

TTENTION

! O

NLY

 

USE

 

NITROGEN

 

AS

 

THE

 

PRE

-

CHARGE

 

GAS

! T

HE

 

ACCUMULATOR

 

MUST

 

COMPLY

 

WITH

 

THE

 

SAFETY

 

REGULATIONS

 

WHICH

 

APPLY

 

AT

 

THE

 

PLACE

 

OF

 

FINAL

 

USE

 

‰ 

Are the drive motor and pump correctly assembled and aligned? 

background image

C101566-B Page 39 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

Is the drive motor correctly connected? 

‰ 

Does the filter comply with the required filter rating 

‰ 

Is the filter fitted in the correct direction of flow? 

‰ 

Has the specified pressure fluid been filled up to the maximum oil level? 

 

A

S

 

THE

 

PRESSURE

 

FLUID

 

OFTEN

 

DOES

 

NOT

 

MEET

 

THE

 

REQUIRED

 

CLEANLINESS

FILLING

 

MUST

 

TAKE

 

PLACE

 

VIA

 

A

 

FILTER

. T

HE

 

ABSOLUTE

 

FILTER

 

RATING

 

OF

 

THE

 

FILLING

 

FILTER

 

SHOULD

 

BE

 

AT

 

LEAST

 

THAT

 

OF

 

THE

 

FILTER

 

WHICH

 

IS

 

FITTED

 

IN

 

THE

 

SYSTEM

13.3.1.1 E

LECTRICAL OPEN AND CLOSED

-

LOOP CONTROL ELEMENTS

 

‰ 

Observe voltage and current values 

13.3.1.2 D

IRECTION OF ROTATION OF DRIVE

/

DRIVEN SHAFTS

 

‰ 

Observe directional arrow 

‰ 

Testing of a unit filled with hydraulic fluid: 

‰ 

Switching the unit briefly on and off prevents damage in the case of the 
wrong direction of rotation. 

13.3.1.3 F

ILLING

 

‰ 

Pump types V3, V4, PV7, PVV, PVQ are self-priming, the houses need not 
to be filled. Internal gear pumps have to be filled prior to commissioning! 
For all other pumps, verify whether the housing must be filled. 

13.3.2 S

TART

-

UP

 

‰ 

Observe specific component instructions. 

‰ 

Set all valves, especially on the suction and supply side, to the free-flow 
position. 

‰ 

Switch the motor briefly on and off several times in order to facilitate 
bleeding. Only operate the pump under full load when it operates properly 
and smoothly. 

‰ 

During initial start-up, bleed the pressure line to allow complete filling of the 
pump. 

‰ 

Exceptions to this are pumps with automatic bleed valve. 

‰ 

When the system starts up, the fluid level in the tank must not fall below the 
minimum suction level. 

13.3.2.1 P

RESSURE LIMITATION 

/

 PRESSURE CONTROL

 

‰ 

Always select the lowest settings for commissioning. 

‰ 

Carefully increase the pressure to the required values, but do not set to 
unnecessarily high values. 

‰ 

If required, secure settings against unwanted adjustment. 

13.3.2.2 T

EMPERATURE

 

‰ 

Check the fluid temperature under normal operating conditions. 

13.3.3 T

RIAL RUN

 

13.3.3.1 P

REPARATION FOR STARTING

 

‰ 

For safety reasons only personnel from the machine manufacturer and 
possibly maintenance and operating personnel should be present. 

background image

C101566-B Page 40 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

All pressure relief valves, pressure reducing valves and pump pressure 
controllers are to be set to zero. The exception to this are TÜV set valves. 

‰ 

Are the isolator valves fully open! 

‰ 

Switch on briefly and check so see that the drive motors direction of rotation 
matches that of the pump. 

‰ 

Check the position of the directional valves and, if necessary move them 
into the required switched position. 

‰ 

Set the control valves to by pass. 

‰ 

Open the pump suction valves. If necessary, dependent on the design, fill 
the pump housing with pressure fluid, to avoid the bearings and rotary 
group components from running dry 

‰ 

If there is a pilot oil supply pump this should also be commissioned. 

‰ 

Start the pump, move it out of its zero position and listen for any noises. 

‰ 

Swivel the pump out a little. (approx. five (5) degrees)  As far as possible 
using the built-on controller otherwise operate with the full flow With 
combustion engines they are to be run at the idle speed. 

13.3.3.2 S

YSTEM BLEEDING

 

‰ 

Bleed the system 

‰ 

Carefully loosen fittings (at high points in the system) or bleed screws. 
When the escaping fluid is free of bubbles then the filling process is 
complete. Re-tighten the fittings. 

13.3.3.3 S

YSTEM FLUSHING

 

‰ 

Before commissioning of hydraulic systems, it is necessary to flush out all 
contamination in order to achieve long service life and trouble free function. 
Cleanliness levels are specified by product manufacturer and should be 
adheared to. 

‰ 

To carried out the flushing, using the system pumps, is generally 
inadequate, as the flow velocities will be too low. Rushing procedures 
require a proper flushing unit to obtain the correct velocities, temperatures 
and pressures specifications. 

‰ 

Closed and semi-closed hydraulic systems must always be flushed with a 
flushing unit.  

P

REPARATION THE SYSTEM FOR FLUSHING

 

‰ 

Before beginning with the flushing procedure, it is important to remember 
that pumps, valves and actuators are bypassed using pipes, hoses or 
flushing plates where possible. 

‰ 

Effective flushing is achieved if a turbulent flow is created. In straight and 
smooth pipe the flow becomes turbulent if the Re > 4000 (Reynolds 
number) 

‰ 

High flushing velocities and low viscosities increase the effect of flushing. 
Recommended flushing temperature for mineral oils is 60 C. Minimum 
viscosity however is determined by the flushing pumps. The flow velocity 
should be at least twice the speed of normal operational speeds. 

B

EFORE FLUSHING

‰ 

Ensure the flushing unit is cleaned before starting. Flushing fluid must be 
pumped trough a filter (5-10 ìm (3 ìm, âx = 100) into the tank of the flushing 
unit and the function of all indicators must be verified (dogging indicators, 
oil level switches and thermostats ) before start up. Filter elements 

background image

C101566-B Page 41 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

required, in accordance with oil cleanliness level which is to be obtained, 
must be inserted into the flushing unit. 

‰ 

The piping system must be vented before starting of the flushing procedure. 

F

LUSHING

 

‰ 

Heat the fluid to the required temperature (viscosity). 

‰ 

With servo systems the servo valves are to be removed and replaced by 
flushing plates or directional valves of the same nominal size. The actuators 
are to be short circuited. During flushing the pressure fluid within the 
hydraulic system should reach a temperature that is at least as high as the 
subsequent operating temperature. The filter elements are to be replaced 
as required. 

‰ 

Flush the system, if possible by short circuiting the actuators, until the filters 
remain dean; Check the filters! 

‰ 

As a flushing time the following can be applied or until the required 
cleaness class has been reached. 

‰ 

While flushing is in progress keep a dose watch on the dogging indicators 
of the filters so that the elements can be changed at the right lime. 

‰ 

It is adviseable to reverse the direction of the flow after about an hour of 
flushing, If changing of the flow direction is (in practice) impossible then 
flushing must continue for at least 3-4 hours longer. When the clogging 
indicators do not react after an hour, fluid samples should be taken to verify 
particle count microscope examination for contamination with oppticle 
particle counter). When it is possible to use an automatic particle counter 
during the flushing process and the cleanliness of the returning fluid is 
immediately known, then, when the required level of the cleanliness has 
been achieved, flushing should be terminated. 

‰ 

If the used flushing fluid is not the required hydraulic fluid for the system. 
The fluid must be drained completely from the hydraulic system.( Ensuring 
the correct fluid is filtered before being placed into the system) 

A

FTER FLUSHING

 

‰ 

At the end all bypass pipings, hoses and flushing plates must be removed. 
The hydraulic system must be restored to its former condition. Keeping 
cleanliness in mind. 

‰ 

Check the system functions without load, if possible control by hand; Cold 
test the electro hydraulic controls. 

‰ 

After the operating temperature has been reached, test the system under 
load; slowly increase the pressure. 

‰ 

Check monitoring and measuring devices! 

‰ 

Check the housing temperature of the hydraulic pumps and motors 

‰ 

Listen for noises! 

‰ 

Check the oil level, if necessary top up! 

‰ 

Check the settings of the pressure relief valves by loading or braking the 
system. 

‰ 

Check for leaks 

‰ 

Switch-off the drive 

‰ 

Tighten all fittings even if there is no evidence of leakage. 

 

A

TTENTION

! O

NLY

 

TIGHTEN

 

WHEN

 

THE

 

SYSTEM

 

IS

 

NOT

 

UNDER

 

PRESSURE

‰ 

Is the pipe fixing adequate even under changing pressure loads? 

‰ 

Are the fixing points correct? 

‰ 

Are the hoses so laid that they do not rub, also under pressure? 

‰ 

Check the pressure fluid level 

background image

C101566-B Page 42 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

Full functional test of the system. Compare the measured values with the 
permissible or required data (pressure. speed, setting further control 
components.) 

‰ 

Jerky movements indicate amongst other things, the presence of air in the 
system. By briefly swivelling the pump in one or both directions with the 
actuator in the loaded or braked condition, it is possible to eliminate certain 
air pockets. The system is completely bled when all functions can be 
carried out jerk-free and smoothly and there is no foaming on the surface of 
the pressure fluid. In practice it has been found that foaming should have 
ceased one hour after start-up. 

‰ 

Check the temperature 

‰ 

Switch-off the drive 

‰ 

Remove filter elements, off-line and main filters and inspect for residues. 
Clean the filter elements or replace. Paper or glass fibre elements camot be 
cleaned. 

‰ 

If further contamination is found then additional flushing is required in order 
to prevent premature failure of the system components 

‰ 

All of the settings carried out should be documented in an acceptance 
certificate. 

D

OCUMENTS

 

All documentation from the flushing procedure must be put together Analysis of 
cleanliness, description of flushing procedure, list of equipments used, personnel in 
charge, etc. 

13.3.4 T

HE MOST COMMON FAULTS OCCURING DURING COMMISSIONING

 

In conjunction with maintenance. commissioning is very decisive for the service life and 
functional safety of the hydraulic system. That is why faults must, as far as possible. be 
minimised during commissioning. 

13.3.4.1 T

HE MOST COMMON FAULTS ARE

‰ 

The fluid reservoir has not been checked. 

‰ 

The operating fluid was filed unfiltered. 

‰ 

The installation was not checked before commissioning (subsequent 
conversion with loss of fluid!). 

‰ 

System components were not bled of air. 

‰ 

Pressure relief valves are set too close (slightly higher) to the working 
pressure (switching pressure differentials not taken into account). 

‰ 

Hydraulic pump pressure controllers are set higher or to the same pressure 
as the pressure relief valves. 

‰ 

The flushing time for servo systems was not adheared to. 

‰ 

Abnormal pump noises were not taken into account (cavitation, suction line 
not air tight, too much air in the pressure fluid). 

‰ 

Shear loads on cylinder rods not taken into account (installation error!). 

‰ 

Hydraulic cylinders were not bled (seal damage!) 

‰ 

Limit switches adjusted too dose. 

‰ 

The pressure switch switching hysteresis was not taken into account during 
setting up. 

‰ 

Hydraulic pump and hydraulic motor housings were not filled with pressure 
fluid before commissioning. 

‰ 

The set values were not documented. 

‰ 

The adjustment spindles were not secured or sealed. 

‰ 

Unnecessary personnel were present at the system during commissioning 

background image

C101566-B Page 43 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

13.3.5 S

PECIAL OPERATIONS AFTER COMMISSIONING WITH THE FILTERS

 

‰ 

During commissioning, in intervals of two to three hours and, if necessary 
clean. 

‰ 

During the first week daily and if necessary clean. 

13.3.6 S

PECIAL OPERATIONS AFTER COMMISSIONING WITH THE OIL LEVELS

 

‰ 

Continuously during commissioning 

‰ 

For a short period after commissioning 

background image

C101566-B Page 44 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

14 P

ROPULSOR COOLING SYSTEM INSTALLATION

 

14.1 C

ONSTRUCTIONAL DIRECTIONS  IN A PIPING DESIGN

Pay attention to the following points: 

‰ 

Level and square mounting possibility. 

‰ 

Bends in the piping have to be located at a distance of at least three times 
the nominal diameter of the pipe from the inlet of the heat exchanger. 

‰ 

When a vaporizing cryogenic medium is used, the heat exchanger has to 
be placed under an angle of 3° - 10°, in order for the vapor to be able to exit 
the heat exchanger, helped by natural circulation. 

‰ 

Check if vent and drain connections are present in both circuits of the heat 
exchanger (when not on the heat exchanger then make them in the piping). 

‰ 

Put a filter (with a permeability of 3 mm.) before the inlet of both circuits of 
the heat exchanger. 

‰ 

Stress- and vibration free mounting possibility of the connections and the 
supports (fit expansion bellows and/or silencer blocks when necessary). 

‰ 

Disassembling possibility of the tubebundle (and other parts like drain and 
vent plugs). 

‰ 

Expansion possibility of lockable liquid circuits. 

‰ 

Danger of freezing of liquid circuits. 

‰ 

The design data of the heat exchanger on the  the drawing. For instance 
the flows: deviating from them can cause unacceptable high or low 
velocities. A (temporary) lower flow is acceptable when caused by a control 
system and a conditioned circuit is involved. Avoid standstill (unless the 
heat exchanger is drained and flushed with fresh water). 

‰ 

When adding an inhibitor to one of the fluids in the heat exchanger, always 
check whether this inhibitor can be harmful for the materials of the heat 
exchanger (see specification sheet). 

‰ 

Make sure that in case of flow control (with conditioned circuits only) this is 
done gradually (no ‘on-off-control’). 

‰ 

Although this will almost never occur in practice, Bloksma reserves the right 
(according to TEMA RGP-RCB-2) to plug a maximum of 1% of the tubes. 

‰ 

Always check whether both fluids are compatible with the materials of the 
heat exchanger; Bloksma chooses the materials judging on the fluids 
specified by the customer, but is often not well informed about possible 
contaminations, higher or lower than normal degrees of acidity and other for 
the choice of materials important proprties. 

‰ 

Check whether the materials of the connecting piping are compatible with 
the materials of the heat exchanger (when the materials of the bundle are, 
from a corrosion point of view, weak in comparison with the materials of the 
piping, the bundle will corrode faster than expected). 

14.2 I

NSTALLATION AND START

-

UP

 

14.2.1 R

ECEIPT

 

At receipt check the packaging and the heat exchanger: 

‰ 

report any damage to supplier 

‰ 

compare the data on the nameplate, confirmation of the order and on the 
drawing 

background image

C101566-B Page 45 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

‰ 

check whether or not the correct instruction manual is present by 
comparing the article number on the cover sheet with the article number of 
the instruction manual on the confirmation of order 

‰ 

Always store the heat exchanger in a dry room, free of large temperature 
changes. When the heat exchanger is not being put into operation 
immediately after receipt, follow the storage instructions. 

14.2.2 I

NSTALLATION

 

Warning: Beware of any rust preventive layers (see “Instructions for conservation”) that 
might still be present in the heat exchanger before proceeding. 

‰ 

Remove all protective plugs and covers from the connecting flanges prior to 
installation of the heat exchanger. 

‰ 

A 1- or 3-pass model (tubeside) has to be mounted in such a way that shell- 
and tubeside will be in counterflow. 

‰ 

Check whether the positions of the vent and drain connections on the heat 
exchanger correspond with the mounting position of the heat exchanger. 

‰ 

In models with body side wire connections, check to see if the couplings 
with which the lines are fastened do not touch the bundle. 

‰ 

Mount the heat exchanger level and square on a flat surface in order for the 
pipe connections to be made without forcing. 

‰ 

Do not weld anything to the heat exchanger. 

‰ 

Mount one support in a fixed position, while the other one is mounted in 
such a way that it is able to slide in the direction of the longitudinal axis of 
the heat exchanger. The heat exchanger will thus be able to expand under 
thermal stress. 

‰ 

Before connecting piping to the heat exchanger flanges, make sure that the 
gasket surface is clean and free from scratches and other defects. Always 
use new gaskets, of the correct type and tighten the bolts crosswise. 

‰ 

Take care when lifting the heat exchanger. Use at least two hoops around 
the shell of the heat exchanger for lifting purposes. 

‰ 

Check for the presence and correct positions of drain/vent connections in 
both circuits. 

‰ 

Install the heat exchanger and the piping in such a manner that there is still 
enough room to disassemble (part of) the heat exchanger (tubebundle, 
drain plugs, etc.). 

14.2.3 S

TART

-

UP

 

Do not exceed the design temperatures and design pressures as stated on the 
nameplate and specification sheet. Avoid abrupt temperature fluctuations; these can 
cause leaking of tube-to tubesheet or other connections. 

‰ 

Make sure that the cold medium circulation is established first, followed by 
the gradual introduction of the hot medium. 

‰ 

Vent both circuits. 

‰ 

Vent both circuits again when the operating temperatures and pressures 
are reached. 

‰ 

Check for leakage. 

 

Do not deviate from the flows as stated on the specification sheet. Higher or lower 
velocities can cause erosion or corrosion respectively. Avoid standstill: at non-
conditioned circuits this may cause corrosion. In case of standstill follow the 
instructions for shut down periods. If the heat exchanger is equipped with anodic 
protection (see specification sheet) you will have to inspect the anodes (or part that 

background image

C101566-B Page 46 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

functions as anode) when you are starting up the heat exchanger after a shut down 
period. 

background image

C101566-B Page 47 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

15 E

LECTRIC INSTALLATION

 

15.1 S

IGNAL DIRECTIONS

 

 

The 4…20 mA angle feedback transmitter values are increasing CCW. The zero (12 
mA) can be set externally. 

 

background image

C101566-B Page 48 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

15.2 V

OLTAGE SUPPLY

 

15.2.1 C

ONTROL VOLTAGE SUPPLY

 

 

The Steerprop control voltage supply is redundant and straightforward system. The 
main control system is supplied from single phase AC network and from a back-up 
battery. The indication and back-up control systems are supplied from battery. The 
battery should be separate from the engines starting batteries. 

15.2.2 AC

 SUPPLY

 

‰ 

Permanent frequency variations ..........................................± 5 % of nominal 

‰ 

Permanent voltage variations....................................... + 6/- 10 % of nominal 

‰ 

Frequency transients (5 s duration) ...................................± 10 % of nominal 

‰ 

Voltage transients (1,5 s duration) .....................................± 20 % of nominal 

15.2.3 24

 

VDC

 SUPPLY FOR ELECTRIC AND CONTROL 

 

15.2.3.1 P

OWER SUPPLY VARIATIONS FOR EQUIPMENT CONNECTED TO 

D.C.

 SYSTEMS

 

‰ 

Voltage tolerance continuous ............................................ 21.6 … 26.4 VDC 

‰ 

Voltage transients cyclic variation  .......................................± 5 % of nominal 

‰ 

Voltage ripple  ....................................................................± 10 % of nominal 

15.2.3.2 P

OWER SUPPLY VARIATIONS FOR EQUIPMENT CONNECTED TO BATTERY POWER 

SUPPLY

 

When using low voltage battery supply, the charging equipment, batteries and cables 
are to keep the voltage at equipment terminals within below defined tolerances of the 
nominal voltage during charging and discharging. The battery is not allowed to connect 
to engine starting systems. 

‰ 

Voltage tolerance .................................................................. 19.2 … 30 VDC 

‰ 

Voltage transients (up to 2 s duration)  ..............................± 20 % of nominal 

 

 

Provisions are to be made for preventing reverse current from the battery through the 
charging device. 

background image

C101566-B Page 49 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

15.2.4 24

 

VDC

 SUPPLY FOR INSTRUMENTS 

(

ALARM TRANSDUCERS ETC

.) 

15.2.4.1 P

OWER SUPPLY VARIATIONS FOR EQUIPMENT CONNECTED TO 

D.C.

 SYSTEMS

 

‰ 

Voltage tolerance continuous ............................................ 21.6 … 26.4 VDC 

‰ 

Voltage transients cyclic variation  .......................................± 5 % of nominal 

‰ 

Voltage ripple  ....................................................................± 10 % of nominal 

15.2.4.2 P

OWER SUPPLY VARIATIONS FOR EQUIPMENT CONNECTED TO BATTERY POWER 

SUPPLY

 

When using low voltage battery supply, the charging equipment, batteries and cables 
are to keep the voltage at equipment terminals within below defined tolerances of the 
nominal voltage during charging and discharging. The battery is not allowed to connect 
to engine starting systems. 

‰ 

Voltage tolerance .................................................................. 18 … 31.2 VDC 

‰ 

Voltage transients (up to 2 s duration)  ..............................± 25 % of nominal 

 

 

 

Provisions are to be made for preventing reverse current from the battery through the 
charging device. 

15.3 L

OCATIONS

 

15.3.1 C

ONTROL SPACE

 

‰ 

Protection class for electric components................................................ IP 22 

‰ 

Ambient temperatures ...............................................+5°C to +45°C (+50°C) 

15.3.2 M

ACHINERY SPACE

 

‰ 

Protection class for electric components................................................ IP 44 

‰ 

Ambient temperatures ............................................................ +5°C to +55°C 

15.3.3 O

UTDOOR SPACE

 

‰ 

* Protection class for electric components ............................................. IP 56 

‰ 

* Ambient temperatures  ........................................................ -25°C to +55°C 

15.4 EMC

 COMPATIBILITY FOR CONTROL EQUIPMENTS 

 

To the test of the type approved components and systems has been included the 
electromagnetic immunity and emission tests according relevant location of the 
component in the vessel. The basic demand for components used at Steerprop control 
system is CE-marking. 

Also one complete Steerprop control unit has been tested for design verification 
purposes. 

15.5 E

NVIRONMENT

 

15.5.1 R

ELATIVE HUMIDITY

 

Relative humidity up to 95% +/-5 % at all relevant temperatures. 

background image

C101566-B Page 50 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

15.5.2 S

ALT CONTAMINITY

 

Salt-contaminated atmosphere up to 1 mg salt per m³ of air, at all relevant 
temperatures and humidity conditions. 

15.5.3 O

IL

 

Mist and droplets of fuel and lubricating oil. Oily fingers. 

15.5.4 A

CCELERATION

 

Acceleration caused by the vessel's movement in waves. Peak acceleration ±1,0 g.  
Period 5 to 10 seconds. 

15.5.5 V

IBRATIONS

 

‰ 

Frequency range 3 to 100 Hz. 

‰ 

Amplitude 1 mm (peak value) below 13,2 Hz. 

‰ 

Acceleration amplitude 0,7 g above 13,2 Hz. 

background image

C101566-B Page 51 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16 C

ABLING 

 

The total system is completed in the vessel, where the cabling is the important factor in 
the EMC means. The cabling procedures are described in Steerprop manual. 

16.1 C

ABLE TYPES AND NUMBERS

 

Cable code consists of three sections A-B-CCC, where A is the number of the 
propulsor and B is cable type (table below) and CCC is three digit running number. 
Basically smaller cable numbers are always nearer to the propulsor. 

SECTION CODE 

DESCRIPTION 

Cable connected between propulsors 

Cable belongs to propulsor 1 

Cable belongs to propulsor 2 

B A 

Alarm 

cable 

AS 

Alarm cable, screened, equipped with compact low impedance shield 

B C 

Control 

cable 

CC 

CAN-BUS cable, cores twisted into pairs and pairs into layers and wrapped 

with foil. Cable is screened, equipped with compact low impedance shield. 

Characteristic impedance 120 Ohm. 

CP 

Control cable, cores twisted into pairs and pairs into layers and wrapped 
with foil.Cable is screened, equipped with compact low impedance shield. 

CS 

Control cable, screened, equipped with compact low impedance shield 

Data cable cores twisted into pairs and pairs into layers and wrapped with 
foil.Cable is screened, equipped with compact low impedance shield (mainly 

for RS 422 or equal). 

Indication cable, can also be BUS cable 

IC 

CAN-BUS cable, cores twisted into pairs and pairs into layers and wrapped 
with foil. Cable is screened, equipped with compact low impedance shield. 

Characteristic impedance 120 Ohm. 

B P 

Power 

cable 

PF 

Power cable, screened, equipped with compact low impedance shield. 

Frequency converter cable. Distance from control and alarm cables 500 
mm. 

PS 

Power cable, screened, equipped with compact low impedance shield 

C  

Running 

number 

 

background image

C101566-B Page 52 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16.2 24

 

VDC

 CABLE POWER TABLE

 

Steerprop cabling list includes for cable calculation power or current information or 
even needed cable diameter. Normally in 24 VDC circuits the current is so big, that it 
has some influence for cable diameter. The cross section of the cable can be 
calculated from known values of power and maximum voltage drop of cable.  

For example if the minimum supply for Steerprop Control Unit (SCU) is 24 VDC 10 % 
and the minimum voltage of device beyond the cable is 24 VDC 20 % then maximum 
voltage drop of cable is 2.4 V.  

The cable length is calculated at metres. 

Diameter /mm2 

 

Power 

0,5 1 1,5 

2,5 4  6  10  16  25  35   

165  329 494

823

1317 1975 3291 5266 8229 11520 m 

10 

82  165 247

411

658  987  1646 2633 4114 5760  m 

15 

55  110 165

274

439  658  1097 1755 2743 3840  m 

20 

41  82 

123

206

329 494 823 1317 

2057 

2880 m 

25 

33  66 99 

165

263 395 658 1053 

1646 

2304 m 

30 

27  55 82 

137

219 329 549 878 1371 

1920 m 

40 

21  41 62 

103

165 247 411 658 1029 

1440 m 

50 

16  33 49 82 132 197 329 527 823 1152 m 

60 

14  27 41 69 110 165 274 439 686 960 m 

70 

12  24 35 59  94  141 235 376 588 823 m 

80 

10  21 31 51  82  123 206 329 514 720 m 

90 

9  18 27 46  73  110 183 293 457 640 m 

100 

8  16 25 41  66  99  165 263 411 576 m 

125 

7  13 20 33  53  79  132 211 329 461 m 

150 

5  11 16 27  44  66  110 176 274 384 m 

175 

5  9 14 24  38  56  94  150 235 329 m 

200 

4  8 12 21  33  49  82  132 206 288 m 

225 

4  7 11 18  29  44  73  117 183 256 m 

250 

3  7 10 16  26  39  66  105 165 230 m 

275 

3  6 9 

15 24 36 60 96 150 

209 

300 

3  5 8 

14 22 33 55 88 137 

192 

350 

2  5 7 

12 19 28 47 75 118 

165 

400 

2  4 6 

10 16 25 41 66 103 

144 

450 

2  4 5 9  15  22  37  59  91 128 m 

500 

2  3 5 8  13  20  33  53  82 115 m 

 

background image

C101566-B Page 53 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16.3 AWG

 DIMENSIONS

 

AWG DIAMETER AREA 

RESISTANCE 

NRO MM 

MM2 

OHM/KM 

500 17,96  253 

0,07 

350 15,03  177 

0,10 

250 12,70  127 

0,14 

4/0 11,68  107,2 

0,18 

3/0 10,40  85,0 

0,23 

2/0 9,27 

67,5 

0,29 

1/0 8,25 

53,5 

0,37 

1 7,35  42,4 

0,47 

2 6,54  33,6 

0,57 

4 5,19  21,2 

0,91 

6 4,12  13,3 

1,44 

8 3,26  8,37 

2,36 

10 2,59  5,26 

3,64 

12 2,05  3,31 

5,41 

14 1,63  2,08 

8,79 

16 1,29  1,31 

14,7 

18 1,024  0,823 

23,0 

20 0,813  0,519 

34,5 

22 0,643  0,324 

54,8 

24 0,511  0,205 

89,2 

26 0,405  0,128 

146 

28 0,320  0,0804  232 
30 0,255  0,0507  350 
32 0,203  0,0324  578 
34 0,160  0,0200  899 
36 0,127  0,0127  1426 
38 0,102  0,00811  2255 
40 0,079  0,00487  3802 
42 0,064  0,00317  5842 
44 0,051  0,00203  9123 

 

background image

C101566-B Page 54 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16.4 D

ESIGN AND CABLING WORK

 

The cabling diagrams are purposed for design, selection and installation of the cables 
onboard.  

16.4.1 P

OWER CABLES

 

 

PS TYPE: 

‰ 

The shield is connected at supplying end to the 
ship’s hull. 

 

 

background image

C101566-B Page 55 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16.4.2 F

REQUENCY CONVERTER AND BRAKE RESISTOR CABLING

 

 

 

FREQUENCY CONVERTER 

The cable between frequency converter and 
motor should be equipped with compact 
low-impedance shield and intended for the 
specific mains voltage. 
Cable marking is  
3 + scr 
3 = number of wires 
Scr = low impedance screen 
More detailed instruction from inverter 
manufacturers instructions. 

BRAKE RESISTOR CABLING 

The connection cable to the brake resistor 
is to be screened / armoured. Always 
connect the screen / armouring in both 
ends. 

16.4.2.1 F

REQUENCY CONVERTER CABLE SELECTION

 

FREQUENCY CONVERTER 

SUPPLY 

SIZE 

CURRENT / A 

FUSE / A 

MAINS AND MOTOR CABLE, 

CU TYPE 

GROUND CONNECTOR 

10 

3*1.5 + 1.5 mm2 

2.5 mm2 

12 

16 

3*2.5 + 2.5 mm2 

2.5 mm2 

16 

12 

20 

3*4 + 4 mm2 

10 mm2 

22 

16 

25 

3*6 + 6 mm2 

10 mm2 

31 

22 

35 

3*10 + 10 mm2 

10 mm2 

38 

31 

50 

3*10 + 10 mm2 

35 mm2 

45 

38 

50 

3*10 + 10 mm2 

35 mm2 

61 

45 

63 

3*16 + 16 mm2 

35 mm2 

72 

61 

80 

3*16 + 16 mm2 

70 mm2 

87 

72 

100 

3*35 + 16 mm2 

70 mm2 

105 

87 

125 

3*50 + 25 mm2 

70 mm2 

140 

105 

160 

3*70 + 35 mm2 

95 mm2 

163 

140 

200 

3*95 + 50 mm2 

95 mm2 

 

16.4.2.2 F

EEDBACK CABLE FROM ELECTRIC MOTOR TO FREQUENCY CONVERTER

 

For encoder cables - the cables should be without splices - one piece from encoder to 
drive - shielded, pair twisted cable, shield earthed at both ends - every splice creates a 
source of possible interference. 

background image

C101566-B Page 56 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

16.4.3 C

ONTROL CABLES

 

 

 

Screened cable equipped with compact low-
impedance shield. The shield is connected at 
supplying end to the ground. 
Normally the control cable minimum 
dimensions are given by the society and 
sometimes they demand more, than actually 

needed.  
Our recommendation for analogue control 

cables is 0.75 mm2 due the connections.  
Cable marking example in the cable list: 

4 x 2 + scr 
4 = 4 pairs 
2 = pair 
scr = cable has low impedance screen 
So this cable has 4 x 2 = 8 wires 

 

16.4.4 C

ONTROL CABLE WITH TWISTED PAIRS AND SCREEN 

 

 

 

This cable type is used normally with 

analogue signals. The cable screens are 
connected at both ends to ground. The pair 

shielding is connected to the ground only at 
the supply end. Our recommendation for 

analogue control cables is 0.5 mm2 or 0.75 
mm2 (recommended) due the connections. 
Cable marking example in the cable list: 
4 x (2+1) + scr 
4 = 4 twisted pairs 
2 = pair 
+1 = pair shield with ground connector 
scr = cable has low impedance screen 

So this cable has 4 x 2 = 8 wires 

 

background image

C101566-B Page 57 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16.4.5 D

ATA CABLES

 

 

 

For serial data transmission is this cable 

type used. The cable screens are 
connected at both ends to ground. The pair 

shielding is connected to the ground only at 
the supply end. For RS422 cable should the 
nominal impedance be ca 110...150 Ohm. 
Our recommendation for data control cables 
is 0.5 mm2. 
Cable marking example in the cable list: 
4 x (2+1) + scr 
4 = 4 twisted pairs 

2 = pair 
+1 = pair shield with ground connector 

scr = cable has low impedance screen 
So this cable has 4 x 2 = 8 wires 

 

background image

C101566-B Page 58 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16.4.6 CAN

 BUS CABLES

 

 

 

 

CAN (Controller Area Network) was 

developed for the networking of 
automobiles, but in the meantime being 

used more and more in industrial 
application. CAN is internationally 
standardized according to ISO 11898. The 
maximum length for the Bit-rate  of 125 kBit 
is 500 m used in marine applications.  
¾ 

STRUCTURE RECOMMENDATION 

‰ 

Bare copper wire conductor 

‰ 

Cores twisted into pairs and pairs into 
layers 

‰ 

Wrapping of plastic foil 

‰ 

Screen braiding of copper wire 

‰ 

Outer sheath 

‰ 

Peak voltage 250 V 

‰ 

Testing voltage 1500 V 

‰ 

Characteristic impedance 100....150 

Ohm 

‰ 

Cable  resistance < 40 mOhm/m 

‰ 

Cable diameter 0.5...0.6 mm2 or 
AWG20. 

¾ 

CABLE CONNECTION 

Steerprop cabling does not have D-sub 

connectors. The cables should be 
connected to the normal connectors. The 
CAN bus cable contains normally 5 wires (if 
the voltage supply lines are going with the 
same cable). The CAN-L, CAN-H and GnD 
Wire start on one end of the total network, a  
terminator of 120 Ohm terminator resistor is 
connected between CAN-L and CAN-H. 

The CAN BUS cable is one line going 
through the system, normally without or 

short T connections. The star connection is 
not allowed. On the other end of the cable 

again a resistor of 120 Ohm connected 
between the CAN lines.  The CAN BUS 

cable has special demand of the 120 Ohm 
characteristic impedance. The voltage 
supply can be a normal control cable with 
screen. 

 

background image

C101566-B Page 59 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

16.4.6.1 A

PPLICABLE 

CAN

 BUS CABLES

 

MAKER CODE 

TYPE 

SPECIFICATION 

U.I.Lapp 2170 

266 

UNITRONIC 

BUS CAN 

1x2x0.5 

U.I.Lapp 2170 

267 

UNITRONIC 
BUS CAN 

2x2x0.5 

U.I.Lapp 2170 

269 

UNITRONIC 
BUS CAN 

1x2x0.75 

U.I.Lapp 2170 

270 

UNITRONIC 

BUS CAN 

2x2x0.75 

HelkamaBica  

DAMA-HF 

4x(2+1)x0.5 

 

 

 

 

 

 

 

 

 

16.4.7 D

ISTANCE OF DIFFERENT TYPE OF CABLES

 

Different type of cables should be assembled apart from each other to avoid 
electromagnetic interference (EMI). If different type of cables crosses each other there 
should be 90 angle between cables. 

CABLE TYPE 

FROM POWER CABLES 

FROM CONTROL CABLES 

FROM HIGHLY EMI 

GENERATING CABLES 

Power cable 

 

O,1 m 

O,5 m 

Control cable 

0,1 m 

 

0,5 m 

Highly EMI 
generating cable 

0,5 m 

O,5 m 

 

16.5 I

NSTALLATION AND CONNECTIONS

 

16.5.1 P

ROTECTION PIPING WORK

 

 

 

If protection pipes or similar are used for cables they 

should be assembled so that water and other liquid can 
come out from pipe. 

 

background image

C101566-B Page 60 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

16.5.2 W

IRING AND TERMINALS

 

Bend 
here

Hole 

 

The internal wiring is wired-up to terminal strip or 
equal. The terminal block for external cabling has 
equipped with spring clamp type connection 
elements, which are vibration tolerant construction.  
It is possible to connect up to four wires to one 

terminal except power terminals where are places 
for two wires per terminal.  

Connect only one wire per spring. To open the 
terminal use screwdriver and put it in square hole 

and bend it to open the terminal. When terminal is 
open put the wire in circle hole and release the 
spring by taking screwdriver away from terminal. 

16.5.3 P

LUGS

 

 

 

 

 

The Steerprop propulsor and its auxiliary 
systems like hydraulics are equipped 
with Harting type of plugs. 

 

16.5.4 C

ABLE GLANDS

 

 

There are no cable glands on electronic units except on 

terminal boxes of propulsor and hydraulic power unit for 
their internal wiring. 

 

background image

C101566-B Page 61 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

17 E

LECTRIC UNIT INSTALLATION

 

17.1 R

EMOTE CONTROL PANELS

 

 

¾ 

PROTECTION DURING INSTALLATION 

Panels should be protected during assembly 
work to avoid scratches and damages. Keep 
them always in right position (levers, meters, 

push buttons up). Do not use them as an 
assembly plate or place for tools. 
¾ 

CUTTING THE OPENINGS FOR 
CONTROL PANEL TO THE CONTROL 

CONSOLE 

The dimension drawings include the cut-out 

drawing. The panel should be protected under 
cutting the hole to the console or panel. You 
should be very careful, when you cut wooden 

material. There is a risk, that the sawdust can 
harm the operation of the control equipments. 
¾ 

CLEANING 

After assembly clean all sawdust, plastic dust, 

etc. away. Do not use air pressure for cleaning 
but some cleaning cloth, which is not getting 

fluffy. The pressurized air can take up those 
impurities inside of the control equipments. 
¾ 

GROUNDING 

The mounting rail must be connected to ground 
potential. This is the only way to guarantee that 
the integrated surge voltage protection 
functions and that the shield of the bus 
conductor makes contact effectively. 

 

background image

C101566-B Page 62 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

17.2 C

ONTROL UNITS

 

 

¾ 

ASSEMBLY DIRECTION 

Assembly direction (top and bottom) is shown 
on dimension / assembly drawing of unit. 
¾ 

SUPPORT FRAME 

When you design the support frame for control 
units, take care of that those frames are stabile 
and stiff enough to prevent extra vibrations and 
shocks. 
¾ 

WALL MOUNTING 

Use units wall brackets for mounting the unit on 

the wall. Do NOT drill any assembly holes 
through units back! In any cases all kind of 

drilling and similar work should be avoided 
inside the unit. If you should use the internal 
assembly holes of the control unit, do not drill 
through the control unit. Make the fastening 
holes to the bulkhead or equal first and fasten 

after that. All units are designed for wall 
assembly.  

 

 

¾ 

ASSEMBLY BRACKETS 

Never use assembly brackets for lifting. Lifting destroys them..  

 

17.2.1 C

OOLING

 

For cooling there should be some free space around the electronic units. Normally the 
dimension drawings of the motor controllers have also reservation for  cooling space 
around the controller. All heat producing equipments (diesel motors, boilers, etc.) 
should be at least 1 m away from units and not under the units. Their cooling air outlet 
should not blow against control unit. 

17.2.2 V

IBRATION ABSORBER

 

Vibration absorber should be used if electronic unit is mounted near to machinery or 
place where noticeable vibration might occur. Make sure that the mounting base for 
unit is steady enough. When you select the vibration absorber, you should be careful, 
that those vibration absorbers does not make the vibration amplitude bigger and 
destroy the devices. 

17.2.3 C

LEANLINESS AND PURITY

 

Keep always the control unit doors closed when you do not work with it to avoid 
impurities to go inside of the control unit. If somebody is working near of the causing 
impurities or equal, prevent these impurities go inside of the control units. All filters of 
units should be replaced about 3 months after the commissioning 

Try to avoid any oil mist to getting inside units. Keep the doors closed and/or put some 
protection around the units. 

background image

C101566-B Page 63 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

To keep the units clean the doors should be closed all the time when there is no work 
to do with units. When assembly and connection works have done, all trash should 
clean away from units. Use cleaning cloth, which is not getting fluffy. 

17.2.4 C

ONDENSED WATER

 

To avoid condense keep the doors closed during assembly work. Also the temperature 
should be steady and warm enough (>15 C). After assembly work when the control 
voltage can be connected it is good to keep the voltage on all the time if the condition is 
bad. Then the components stay at operating temperature and dry. 

17.2.5 C

ONTROL UNIT CABLING

 

¾ 

CABLE GLANDS 

There are NO cable glands on 
electronic units. Cable glands 
should be metal and correct size 
to get tight connection to cable. 
Also it is highly recommend to 
use EMC glands where the 
cable shield can be connected 
to ground through gland.  
¾ 

CABLING DIRECTION 

All electronic units are designed 

so that cables go to unit trough 
bottom. Cables should be 

supported near to unit. 

 

¾ 

GROUNDING 

The control units must always be grounded with an grounding conductor 
connected to the grounding terminal. 
¾ 

GROUNDING BOLT 

All units are equipped with bolt for grounding. The bolt is under the box as 
shown at picture. 

 

background image

C101566-B Page 64 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

17.3 F

REQUENCY CONVERTER

 

17.3.1 G

ROUND CONNECTIONS

 

 

‰ 

The frequency converter must always be grounded 
with an grounding conductor connected to the 

grounding terminal.

 

‰ 

The control units must always be grounded with an 

grounding conductor connected to the grounding 
terminal. 

‰ 

The earth fault protection inside the frequency 
converter protects only the converter itself against 
earth faults in the motor or the motor cable.

 

‰ 

Due to the high capacitive currents present in the 

frequency converter, fault current protective 
switches may not function properly. If fault current 

protective switches are used they must be tested 
with the drive with earth fault currents that are 

possible to arise in fault situations. 

‰ 

The mounting rail must be connected to ground 

potential. This is the only way to guarantee that the 
integrated surge voltage protection functions and 
that the shield of the bus conductor makes contact 
effectively. 

 

¾ 

GROUNDING BAR 

 

¾ 

GROUND CONNECTION, SMALLER UUNITS 

background image

C101566-B Page 65 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

 

¾ 

GROUND CONNECTOR, BIGGER UNITS 

 

 

17.3.2 V

IBRATION DAMPERS

 

We do not usually recommend the use of vibration dampers - they have a tendency to 
increase vibration at the resonance frequency. If you want ot use dampers, use as stiff 
a damper as possible - a rubber mat or equivalent. 

17.4 P

ROPULSOR CABLING

 

 

Propulsor internal cabling is made to 
connection box. For the external cabling 
there is three plug connectors 
¾ 

TRANSMITTER UNIT 

‰ 

for feedback cable is plug XP01 

‰ 

for indicator separate CAN-BUS 
cable is plug XP05  

¾ 

STEERPROP CONNECTION BOX 
SCB 

‰ 

for alarms and indications is plug 
XP02  

‰ 

for clutch control XP03 

¾ 

GROUNDING 

‰ 

The housings of electric steering and 
lubrication pumps should be 

connected with an grounding 
conductor connected to the 
grounding terminal. 

‰ 

The propulsor should be connected 
with an 25 mm2 grounding conductor 
connected to the grounding terminal. 

 

background image

C101566-B Page 66 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

17.5 H

YDRAULIC POWER PACK CABLING

 

 

‰ 

for controls and alarms is  plug XP04. 

 

17.6 P

OTENTIOMETERS AND SENSITIVE COMPONENTS

 

Potentiometers shouId be carefully handled by you bearing always in mind that 
potentiometer is a kind of precision instrument. 

Collision among products, drops onto desks or floor splashing of medicine and water 
disclosure of direct rays of the sun and etc. cause breakage of terminal part 
deformation of setting part, looseness of binding bands bend of shaft immersion inside 
of corruption, raise of housing temperature and etc., which will further incur the second 
and third failures and accidents. 

M

OUNTING

,

 

R

EMOVING OF 

P

OTENTIOMETERS

 

When wiring after mounted of the panel of potentiometer, we would kindly request you 
to take your care of the following matters  

into your account. 

‰ 

As for the potentiometers having a pilot part, it is necessary to drill the hole 
for the pilot, and mount it without any play. 

‰ 

As for the potentiometers having anti-rotation pin on the panel, it is 
necessary to drill the adequate hole for the pin and mount to put it in the 
hole. At that time as well as when removing, please do not load over- force 
on the housing in order   to avoid some causes of failure such as twisting of 
the housing, damage of the housing and an idling of the binding band. 

‰ 

 In case of the bushing mount type potentiometers, it is absolute necessary 
to keep the specified value of the fastening the mounting nut and do not 
load over-force on fastening. When fastening with overloaded force, it may 
cause a damage of screw thread and an increase of rotating torque. 

‰ 

When mounting the panel by screws, it is absolutely necessary to use the 
screws in accordance with those specified  in this catalogue, especially the 
length of screws. If the length of screws is longer, it may damage the 
resistive element  inside and if the shorter, it may damage the screw 
threads. 

‰ 

When mounting and/or removing a knob, gear, pulley and coupling on the 
shaft, please duly take care to avoid over  force (over 1 kg) on the shaft. 
Especially, when removing, if you use a hammer to make a hitting and 
striking, it may   cause a failure inside. 

background image

C101566-B Page 67 of 67

 

26.01.2006

 

 

 

© The information contained in this document is the sole property of Steerprop Ltd. any reproduction or disclosure in part or whole without written permission is prohibited. 

DOC-1017-1 

T

ERMINAL WIRING

 

When wiring to the terminals, please duly note the following matters: 

‰ 

Wiring to the terminals has enough length is reserve and if not, an 
excessive force to be caused by vibration, shock and etc. may lead a 
damage of terminals part and disconnect inside connections.  

‰ 

When soldering to the terminals, it is absolute necessary to use a soldering 
iron with below 60 W (iron part with below the temperature of 350 ºC) 
applying within 3 seconds in order to avoid the solder into the housing 
body. Moreover, when soldering,  the solder may spray and drip and 
therefore, please keep your face from such soldering process more than 
25cm. 

‰ 

In order to remove the flux of soldering, please do not washing the whole 
product and if a wash immerses into the housing, sliding noise and similar 
problems may appear, which may make failures.  

‰ 

The strength of terminals is below 1 kgf in directions of pushing, pulling and 
bending. 

C

HECKING

 

When checking the resistance value of the output terminal of the potentiometer, please 
do not use the analogue type ohm-meter but use the digital type ohm-meter.  

When the wiper position sets near the ends, the analogue type ohm-meter may be 
burnt out the resistive element and wiper. 

When checking the insulation resistance di-electric strength with high voltage, please 
duly note to do so in case of motor-potentiometer and components with a circuit board.  

The motor we use has a withstand voltage of 100V and with a terminal of “GND” has a 
setting the earth to the housing, of which facts please take into your account.