background image

 

 

 

Project “The development of the didactic potential of Cracow University of Technology in the range of modern 

construction” is co-financed by the European Union within the confines of the European Social Fund  

and realized under surveillance of Ministry of Science and Higher Education. 

 

Exercise 5_2:  Reduce the system of parallel forces at the center of the system.  
 





m

A

kN

F

2

,

5

,

2

8

,

20

,

12

1

1

,   





m

A

kN

F

0

,

2

,

1

2

,

5

,

3

2

2

 ,    





m

A

kN

F

3

,

0

,

1

4

,

10

,

6

3

3

 

 
 
Remark: 
 The forces are parallel because their components are proportional. 

2

1

F

F

,     

2

3

F

F

 

 
Solution: 
 
1. Calculating the sum vector 

kN

F

F

F

S

2

,

5

,

3

3

2

1

 

 
2. Choosing the unit vector of the system 
 

2

,

5

,

3

10

2

1

10

2

2

,

5

,

3

2

2

kN

kN

F

F

e

 

 
3. Determining the coefficients 

 for each vector in the system. 

i

a

e

F

a

i

i

 

 

kN

kN

e

F

e

F

a

kN

kN

e

F

e

F

a

kN

F

F

F

F

e

F

a

10

4

10

2

2

2

10

8

10

2

4

4

10

2

2

3

3

2

1

1

2

2

2

2

2

2

                    

kN

a

i

10

2

 

 
4. The components of the position vectors  of the points of application of the forces are the same as the 
coordinates of these points 
 

m

OA

r

m

OA

r

m

OA

r

3

,

0

,

1

0

,

2

,

1

2

,

5

,

2

3

3

2

2

1

1

 

 
5. Calculating the position vector of the center of the force system 

 

 

m

m

kN

kNm

a

r

a

r

OO

i

i

i

2

,

22

,

7

2

4

,

44

,

14

10

2

3

,

0

,

1

4

0

,

2

,

1

2

2

,

5

,

2

8

10

 

6. Answer 
At the center of the system 

    the system is reduced to the resultant force 

m

O

2

,

22

,

7

kN

S

W

2

,

5

,

3