background image

 

w w w . c h o m i k u j . p l / M a r W a g 9 8 7  

Mechanika płynów na kolosa.. 

1. Rownianie stanu rownowagi w plynie  
2. Wyjasnic paradoks hydrostatyczny.  
3. Wyjasni co to jest cisnienie barometryczne i podcisnienie 

GrII  
1)co to jest nadciśnienie podciśnienie ciśnienie bezwzględne  
 
2)podaj wzór Torriceliego i kiedy się go stosuje  
 
3)jak zmieni się liczba Reynoldsa jeżeli d1 zmniejszy się do d2 ( rura o szerszym przekroju na wlocie d1 a zwęża się 
na wylocie d2 )  
 
Gr I  
 
1)hipoteza newtonowska  
2)warunek równowagi płynu  
3)takie jak w grupie II 

 

 

 

dv – zmiana prędkości płynu 

dn – zmiana odległości od ścianki 

Zależność lepkości dynamicznej od temperatury 

background image

 

w w w . c h o m i k u j . p l / M a r W a g 9 8 7  

 

 

Powodem istnienia napięcia powierzchniowego 
jest obecność sił spójności między molekułami cieczy 
Siły spójności w cieczy – siły kohezji 

 

 

 

 

Ρ – gęstość płynu 

background image

 

w w w . c h o m i k u j . p l / M a r W a g 9 8 7  

P – ciśnienie 

x,y,z – wektory przemieszczenia 

q - Wektor siły objętościowej 

Prawo Pascala: 

Założenie: 
Nie występują siły objętościowe. 

Gdyby na płyn działały wyłącznie siły powierzchniowe, to ciśnienie 
miałoby jednakową wartość w każdym punkcie obszaru płynnego. 

Prawo równomiernego rozchodzenia się ciśnienia w płynie. 

Zmiana ciśnienia zrealizowana w dowolnym punkcie płynu w 
równowadze wywołuje analogiczną zmianę ciśnienia w każdym innym 
punkcie płynu 

Równowaga w cieczy - ciśnienie hydrostatyczne: 

p=p

a

+ρgh=p

a

+γh 

Ciśnienie hydrostatyczne równe jest ciśnieniu jakie wywiera ciężar 
słupa cieczy o jednostkowym polu przekroju poziomego i wysokości 
równej głębokości zanurzenia 
Ciśnienie na pewnej głębokości jest większe od ciśnienia na poziomie 
zwierciadła cieczy o ciśnienie hydrostatyczne 

Napór hydrostatyczny 

N=γ*z

s

*F 

Paradoks hydrostatyczny:  

Paradoks hydrostatyczny - paradoks związany z mechaniką płynów, polegający na tym, że ciśnienie na dnie naczynia 
nie zależy wprost od ciężaru cieczy zawartej w naczyniu a zależy od wysokości słupa cieczy nad dnem. Natomiast 
parcie cieczy na dno naczynia zależy od pola powierzchni dna, wysokości słupa cieczy i ciężaru właściwego cieczy. 
Wynika z tego, że parcie cieczy na dno w naczyniach o różnych kształtach będzie takie samo, jeżeli pole powierzchni 
dna każdego z tych naczyń i wysokość słupa cieczy w tych naczyniach będą równe. 

Wypór: 

 

 

P=G-W= γ

1

V

1

- γV 

P- ciężar pozorny.  

G- ciężar właściwy 

background image

 

w w w . c h o m i k u j . p l / M a r W a g 9 8 7  

W- Wypór 

γ, γ

1

 – średni ciężar wł. Cieczy i ciała 

V

1

,V – objętość ciała i cieczy wypartej 

Ciało pływa G- γ V=0 

 

Opis przepływu wg Lagrange’a 

Indywidualnie traktuje poszczególne elementy płynu, opisując ich 
położenie i zmianę stanu zachodzącą w czasie 
Stosuje się w przypadkach, gdy istotne jest określenie zmian 
parametrów przepływu wzdłuż toru elementu 

Wg Eulera 

Polega na badaniu ruchu kolejnych elementów płynu przepływających 
przez wybrany punkt przestrzeni 
Metoda Eulera – analiza lokalna przepływów 

Równanie ciągłości strugi dla stanu ustalonego, jednowymiarowego, nieściśliwego: 

Q

m

=v*F 

Równanie ciągłości strugi dla stanu ustalonego, jednowymiarowego, ściśliwego: 

Q

m

=ρ*v*F 

Q1=Q2. Natężenie przepływu nie zmienia się; gdy zmniejszy się ple przekroju wzrośnie szybkość płynu (spadnie 
ciśnienie płynu); gdy pole przekroju zwiększy się zmaleje prędkość płynu (wzrośnie ciśnienie) 

Prawo Bernoulliego 

W ustalonym przepływie cieczy idealnej w polu 

grawitacyjnym suma wysokości prędkości, wysokości 

ciśnienia i wysokości połoŜenia ma stałą wartość wzdłuŜ tej 

samej linii prądu. 

Równanie zachowanie energii (równanie Berluniego) 

 

h- wysokość osi przewodu nad przyjętym poziomem odniesienia 

v-średnia prędkość cieczy 

p – ciśnienie statyczne w rozpatrywanym punkcie przewodu 

należy również uwzględnić ∆h

strat

 które występuje zawsze w warunkach rzeczywistych 

H

1

=H

2

+∆h

strat

 

background image

 

w w w . c h o m i k u j . p l / M a r W a g 9 8 7  

 

Re=v*d/ν – jeżeli zwiększymy prędkość zwiększy się liczba Reynoldsa 

 

 

 

 

 

 

 

 

Wzór Torrcellego stosujemy przy rozważaniu wypływu cieczy 
z naczynia przez szczelinę o średnicy znacznie mniejszej od 
średnicy naczynia oraz gdy nie występuje różnica ciśnień 
pomiędzy wnętrzem zbiornika i otoczeniem. Poprzez ten 
wzór można określić szybkość wypływu cieczy przez 
szczelinę. 

 

 

Wzór Torricellego stosujemy dla otworów małych tzn. takich, że: 



 powierzchnia otworu jest mała w porównaniu z powierzchnią zwierciadła cieczy, 



 gdy wymiar pionowy otworu jest mały w porównaniu z głębokością zanurzenia 

 

Dwa przepływy nazywamy podobnymi, gdy dla każdej pary odpowiadających sobie punktów oraz w dowolnych 
odpowiadających sobie chwilach skale wielkości, charakteryzujących te przepływy, są stałe. 

 

background image

 

w w w . c h o m i k u j . p l / M a r W a g 9 8 7