background image

NEUTRON COLLISION THEORY 

 

M. Ragheb 
3/30/2006 

 

INTRODUCTION 

 

We wish to analyze the process by which neutrons scatter upon collision with the nuclei of 

different materials.  The intended use is in shielding, dosimetry, and criticality calculations.  The 
energy loss per collision would characterize the properties of different energy moderating 
materials such as graphite, light water, and heavy water. 

The kinematics of two-body collisions processes are best described using the Center of Mass 

system (CM), rather than the Laboratory (LAB) system of coordinates.  The reason is that 
scattering is isotropic in the CM frame, and it is easier described in it. 

We then introduce the concept of a microscopic and macroscopic neutron cross section and 

describe the use of compiled cross sections data to estimate collision rate densities and reaction 
rates. 
 

RELATIONSHIPS BETWEEN VELOCITIES AND ENERGIES IN CM 
AND LAB SYSTEMS 

 

The CM system is characterized by: 

1. 

The total momentum in the CM system is zero. 

2. 

The magnitudes of the CM velocities do not change in a collision.  Their velocity vectors 

are rotated through the CM scattering angle. 
3. 

Cross sections are calculated in the CM system, but are measured and used in the LAB 

system. 
4. 

The total energy in the CM system is always less than in the LAB system.  The energy 

difference is taken up by the center of mass’ motion itself. 

Let us consider: 

Mass of target nucleus = A 
Mass of neutron = 1 

Target nucleus is stationary, implying that 

0

V

L

=  

We can now deduce the relationships between velocities and energies in the CM and LAB 
systems. 

The collision coordinates in the LAB and CM system before and after a collision are shown 

in Figs.1 and 2, as well as the relationships between the scattering angles in the LAB and the CM 
frames. 

The Center of Mass velocity, is obtained by a momentum balance before and after a collision 

as:  
 

1

1

CM

L

L

(

A)v

v

A V

+

= ⋅ + ⋅

 

 

background image

 

 

 

 

By taking 

L

 = 0, we get: 

 

background image

1

1

CM

L

v

v

A

=

+

  

 

 

 

 

 

(1) 

 
The neutron velocity in the center of mass system using Eqn. 1 is: 
 

1

1

C

L

CM

L

L

v

v - v

v -

v

A

=

=

+

  

From which: 
 

1

C

A

v

L

v

A

=

+

   

 

 

 

 

 

(2) 

 

The target velocity in the Center of Mass system is from Eqn. 1: 

 

1

1

C

L

CM

L

V

V - v

v

A

=

= −

+

   

 

 

 

 

(3) 

 

where again we took 

L

 = 0. 

The total momentum in CM frame is by using Eqns. 2 and 3: 

 

1

1

1

1

C

C

L

L

A

A

v

A V

v   -     

v

A

A

+ ⋅

= ⋅

=

+

+

0  

 

The total kinetic energy in the LAB system is: 

 

2

2

1

1

1

2

2

L

L

L

2

1

2

L

E

v

AV

= ⋅ ⋅ +

 

   (4) 

 

where 

L

 was taken as zero. 

The total kinetic energy in the CM system is: 

 

2

2

1

1

1

2

2

C

C

C

E

v

AV

= ⋅ ⋅

+

 

 

Using Eqns.2 and 3 we get: 

 

2

2

2

2

2

2

2

1

1

1

2

1

2

1

1

1

2

1

C

L

L

A

A

L

E

v

v

(A

)

(A

)

A(A

)

v

(A

)

= ⋅ ⋅

+

+

+

+

=

+

 

 

background image

Thus: 
 

2

1

1

2

1

2

C

L

A

2

L

E

v

 

A

v

µ

= ⋅

=

+

 

 

 

 

 

(5) 

 
where: 
 

.1

   

1

A

A

µ

=

+

 
is the reduced mass. 

The relationship between the LAB and CM velocities from Eqns 4 and 5 is: 

 

1

C

L

A

L

E

E

A

µ

=

=

+

   

 

 

 

 

(6) 

 
Thus E

< E

L

, since the center of mass motion itself takes the energy difference. 

Applying conservation of momentum in the CM system before and after a collision 

yields: 
 

Before collision             After collision

1

1

        

C

C

C

C

'

'

v

AV           

AV

v        

+

=

+ ⋅

 

 

Rewriting this vector equation component-wise in the x and y directions: 

 

   

 

 

cos

cos

'

'

C

C

C

c

C

v

AV

-AV

v

c

 

θ

θ

=

+

 

   (7) 

 

c

0

sin

si

'

'

C

c

C

  - AV

v

n

θ

θ

=

+

 

 

 

 

 

(8) 

 

Equation 8 implies that: 

 

'
C

v

AV

=

'

C

C

 

 

 

 

 

 

 

(9) 

 

Substituting in Eqn. 7 we get: 

 

C

v

AV

=

 

 

 

 

 

 

 

(10) 

 

Then using Eqn. 3 we get: 

 

 

 

 

 

1

C

A

v

L

V

A

=

+

   

 

 

 

 

 

(11) 

 

background image

Applying conservation of energy in the CM system yields: 

 

2

2

2

1

1

1

1

.1.

.1.

2

2

2

2

C

C

C

v

AV

v'

AV'

+

=

+

2

C

 

 

Substituting for v

c

 and v'

c

 from Eqns.9 and 10: 

 

2

2

2

2

2

2

2

2

1

1

1

1

2

2

2

2

1

1

C

C

C

C

C

C

A V

AV

A V'

AV'

(A

)V

(A

)V'

+

=

+

+

=

+

 

 

which yields: 

 

C

V

V'

=

C

C

'

 

 

 

 

 

 

 

(12) 

 

Substituting in Eqns. 9 and 10: 

 

C

v

v'

=

 

 

 

 

 

 

 

(13)

 

Thus the velocities do not change in the CM frame. 

 
RELATIONSHIP BETWEEN SCATTERING CROSS SECTION IN LAB AND CM 
FRAMES 
 

From Fig.3, we can write for the horizontal and vertical components: 

 

Horizontal:  

cos

cos

C

'
L

L

CM

v

v

v

C

θ

θ

=

+

 

 

 

 

 

(14) 

 

Vertical:  

 

sin

sin

C

'

'

L

L

v

v

C

θ

θ

=

 

 

 

 

 

 

(15) 

 

Dividing the Left Hand Side (LHS) of both equations, we get: 

 

sin

sin

tan

1

cos

cos

C

c

C

L

CM

C

C

C

v'

v

v'

A

θ

θ

θ

θ

θ

=

=

+

+

   (16) 

 

Here we used from Eqn.1: 

 

1

1

CM

L

v

v

A

=

+

 

 

background image

 

 
and from Eqns.2,13: 
 

 

 

 

 

'

1

C

C

L

A

v

v

v

A

=

=

+

L

C

C

v

A

A

v

v

+

=

=

1

'

 

 

Now:  

 

L

L

L

L

CM

C

C

C

(

)sin

d

(

)sin

d

σ θ

θ

θ

σ

θ

θ

θ

=

 

 
where:  

L

L

(

)

σ θ

 is the differential scattering cross section in the LAB system, 

 

CM

C

(

)

σ

θ

 is the differential scattering cross section in the CM system. 

 

Thus:  

 

C

L

L

CM

C

L

L

sin

d

(

)

(

)

sin

d

C

θ

θ

σ θ

σ

θ

θ

θ

=

 

 

 

 

(17) 

 

From Eqns.15 and 13: 

 

C

L

sin '

'

sin '

L

L

C

C

v

v

v

v

θ
θ

=

=

 

 

background image

Thus, from Eqn. 11: 

 

C

L

sin '

sin 

1

L

L

v

A

v

A

θ
θ

=

+

 

 

 

 

 

 

(18) 

 

Substituting in Eqn.17: 

 

C

L

L

CM

C

L

1 A

' d

(

)

(

)

A

d

L

L

v

v

θ

σ θ

σ

θ

θ

+

=

   

 

 

(17)' 

 

Differentiating Eqn.16 with respect to 

L

θ , we get: 

 

2

C

C

C

2

C

L

2

2

L

L

C

1

[(

cos

) cos

sin

]

1

d

sec

1

cos

d

(

cos

)

A

A

θ

θ

θ

θ

θ

θ

θ

θ

+

+

=

=

+

 

 

Thus: 

 

2

C

C

2

L

L

C

1

(

cos 

)

d

A

1

d

cos

 .(

cos

  1)

A

θ

θ
θ

θ

θ

+

=

+

 

 

 

 

(19) 

 

To get an expression for 

 in terms of 

L

θ

2

cos

C

θ

, we use Eqn.14: 

 

2

2

2

'

cos

(

cos

)

'

'

1

(

c

1

'

1

'

CM

C

L

C

L

L

L

L

C

L

L

v

v

v

v

v

A

v

A v

A v

θ

θ

os

)

θ

=

+

=

+

+

+

 

 
by use of Eqns. 1, 11 and 13. 
 

Thus:  

 

2

2

2

2

2

1

cos

(1

cos

)

(1

)

'

L

L

L

v

A

A

v

C

θ

θ

=

+

+

 

  (20) 

 

Substituting Eqn.20 into Eqn.19, we get: 

 

background image

2

C

C

2

2

2

L

C

C

2

2

2

2

2

2

C

1

(

cos

)

d

A

1

1

d

(

cos

) (

cos

1

(1

)

'

(1

)

'

1

(

cos

1)

L

L

L

L

A

v

A

v

A

A

A

v

A

v

A

θ

θ
θ

θ

θ

θ

+

=

)

+

+

+

+

=

+

  

(21) 

 

Substituting Eqn.21 into Eqn. (17)': 

 

3

3

L

L

CM

C

3

3

(1 A)

'

1

(

)

(

)

1

A

(

cos

1)

L

L

C

v

v

A

σ σ

σ

σ

θ

+

=

+

  

(17)'' 

 

To get the value of 

3

'

(

)

L

L

v

v

 we use the triangular relationship from Fig. 3: 

 

2

2

2

2

2

'

'

2 '

cos(180

)

'

2 '

cos

C

o

L

CM

C

C

CM

C

CM

C

CM

C

v

v

v

v

v

v

v

v

v

θ

θ

=

+

=

+

+

 

 

Substituting for 

from Eqn.1, using 

CM

v

'

C

v

v

C

=

, and substituting for v

L

 from Eqn.11, we get: 

 

2

2

2

'

1

2 cos

(1

)

L

L

v

A

A

v

A

2

C

θ

+

+

=

+

 

 

 

 

 

(22) 

 

Substituting Eqn.22 into Eqn. (17)'', we get: 

 

3

2

L

L

CM

C

3

3

(1 A)

1

(1

2 cos

)

(

)

(

)

1

A

(1

)

(

cos

1)

C

C

A

A

A

3 / 2

A

θ

σ θ

σ

θ

θ

+

+

+

=

+

+

 

 

Finally: 

 

3 / 2

2

L

L

CM

C

1

2

(

.cos

1)

(

)

(

)

1

(

cos

1)

C

C

A

A

A

θ

σ θ

σ

θ

θ

+

+

=

+

 

  (23) 

 
which relates the scattering cross sections in the LAB and CM systems. 

background image

 

RELATIONSHIP BETWEEN THE INITIAL AND FINAL ENERGIES 

 

To relate the final and initial particle energies in the LAB system, we use Eqn. 22: 

 

2

2

2

2

1

.1. '

'

1 2

2

1

(

1)

.1.

2

L

C

L

v

E

A

A

E

A

v

cos

θ

+ +

=

=

+

 

 

 

 

(24) 

 

Defining the collision parameter: 

 

2

1

1

A

A

α

= ⎜

+

⎟    

 

 

 

 

 

(25) 

 

Thus: 

 

2

2

2

1

2

1

2.

,  1-

2.

(

1)

(

1)

A

A

A

A

α

α

+

+ =

=

+

+

 

 

And: 

 

(1

)

(1

) cos

'

[

]

2

C

E

E

α

α

θ

+

+ −

=

⋅  

 

 

 

(26) 

 
which relates the initial and final energies for a collision. 

 

SPECIAL CHARACTERISTICS OF PARTICLES COLLISIONS ENERGY 

TRANSFER 

 
 

Equation 26 describing the relationship between the initial and final energy of a neutron 

after collision with a nucleus possesses several important characteristics: 
 

1. It implies that the energy transfer from neutron to nucleus is related to the scattering angle 

in the CM system. 
For the case of no collision we have 

0

C

θ

= , then: 

 

'

E

E

= . 

 

2. The maximum energy loss occurs in a back scattering collision: 

180

o

C

θ

=

Then: 

 

background image

'

E

E

α

=

 

The maximum energy loss would be: 

 

max

'

(1

E

E

E

E

E

)E

α

α

= −

= −

= −

 

 

3. Not only a neutron cannot gain energy in an elastics collision with a stationary  

nucleus (E'<E), but is cannot emerge with an energy E' less than the value of  E

α

 

RELATIONSHIP BETWEEN THE SCATTERING ANGLES 

C

θ

 AND 

L

θ

 

 

By inspection of Fig.3 we can write using Eqns. 1 and 2: 

 

' cos

' cos

1

cos

1

1

L

L

C

C

CM

L

C

L

v

v

v

A

v

v

A

A

θ

θ

θ

=

+

=

+

+

+

 

 

Substituting for v'

L

 from Eqn.22, we get: 

 

2

1

(1

2 cos

)

'

(1

)

C

L

L

A

A

v

v

A

θ

+

+

=

+

/ 2

 

thus: 
 

2

1/ 2

(1

2 cos

)

1

cos

cos

(1

)

1

1

C

L

C

A

A

A

A

A

A

θ

θ

θ

+

+

=

+

+

+

+

 

So that: 

2

cos

1

cos

(

2 cos

1)

C

L

C

A

A

A

1/ 2

θ

θ

θ

+

=

+

+

 

 

 

 

(27) 

 

For high mass number elements such as Uranium, A>>1, the second term in the numerator, and 
the second and third terms in the denominator are small, then: 
 

2 1/ 2

cos

cos

cos

(

)

C

L

C

A

A

θ

θ

θ

=

 

 
and the CM and LAB frames coincide to each other. 
 

THE AVERAGE COSINE OF THE SCATTERING ANGLE 

0

µ  

 

We can write in the LAB system: 

 

background image

4

0

0

4

0

cos

cos

L

L

d

d

π

π

θ

µ

θ

=

=

 

where: 
 

2 sin

C

C

d

d

π

θ θ

Ω =

 
is an element of solid angle. 

Even though diffusion is isotropic in the CM frame, it is not so, in general, in the LAB 

frame. 

The departure from isotropic scattering is measured in terms of 

0

cos

L

θ

µ

=

, where: 

 

0

0

0

1/ 2

0

1/ 2

0

1

cos

cos

2 sin

4

1

cos

sin

2

1

cos

1

sin

2 ( 2

2 cos

1)

1

cos

1

(cos

)

2 ( 2

2 cos

1)

L

L

C

L

C

C

C

C

C

C

C

C

C

d

d

A

d

A

A

A

d

A

A

π

π

π

π

µ

θ

θ

π

θ θ

π

θ

θ θ

θ

C

θ

θ

θ

θ

θ

θ

=

=

=

+

=

+

+

+

=

+

+

 

 

C

C

C

C

C

:  cos

,

0

 cos

1

1

                       

 cos

1

1

Let

y

y

y

θ

θ

θ

θ

π

θ

= ⇒

= + ⇒ =

= ⇒

= − ⇒ = −

+

 

 
Thus: 

1

0

2

1/ 2

1

1

1

2

1/ 2

2

1/ 2

1

1

1

1

2

(

2

1)

1

1

2

(

2

1)

(

2

1)

Ay

dy

A

Ay

Ay

dy

dy

A

Ay

A

Ay

µ

+

+

+

+

=

+

+

=

+

+

+

+

+

 

 

Now, from a table of integrals: 

 

2

2

2(2

,        

3

dx

a

bx

xdx

a

bx

a

bx

b

b

a

bx

a

bx

+

− )

=

= −

+

+

+

 

 

Thus: 

background image

 

1

2

2

2

0

2

1

2

2

2

0

3

2

2

3

2

2

2 (

1)

2

1

( 2)[2(

1)

2

]

(

1)

2

2

12

2

:     

A

1,   

2A

1

1

(

1

)(

1)

(

1

)(

1)

(

1)

(

1)

2

3

1

1

(

1

1

2

3

1

2

A

Ay

A

A

Ay Ay

A

Ay

A

A

where

b

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

µ

α

µ

+

+ +

+ −

=

+ +

+

+

=

+ −

+ −

+ +

+

+ −

=

+ −

+

+ − −

− −

+

+ +

+

=

)

2

2

1 6

2

2

2

3

2

3

3

A

A

A

− +

=

=

 (28) 

 
This relationship applies for elements other than hydrogen, that is for A not equal to unity. 
 

THE SCATTERING PROBABILITY DISTRIBUTION FOR ELASTIC 
SCATTERING FROM STATIONARY NUCLEI 

 

Since scattering is isotropic in CM system, the probability: 
 

C

C

 

 

( ')

'

 

Number of  favorable events scattering between

and

d

P E dE

Total number of  events

C

 

 

θ

θ

θ

+

=

 
can be expressed using Fig. 4 as: 
 

2

 

( ')

'

 

2 sin

       

4

1

(cos

)

'

2

'

1 (cos

)

'

2

'

C

C

C

C

Surface dS

P E dE

Total unit surface

d

d

d

dE

d

dE

dE

π

θ θ

π

θ

θ

=

=

= −

= −

E

 

 

From Eqn. 26: 

 

background image

(1

)

(1

) cos

'

2

2

'

(1

)

cos

1

(1

(cos

)

2

'

(1

)

C

C

C

E

E

E

E

d

dE

E

)

α

α

θ

α

θ

α

α

θ

α

+

+ −

=

+

=

=

 

 

 

 

Thus: 

 

1

( ')

'

'

(1

)

P E dE

dE

E

α

= −

   

 

 

 

(29) 

 

Since dE' is negative, P(E') is positive and equal to: 

 

1

( ')

(1

)

P E

E

α

=

 

 
and the collided neutron energy will be between E and  E

α

. This is shown in Fig.5. The neutron 

has an equal probability of falling between the energies E'=E and E'= E

α

 

AVERAGE ENERGY OF NEUTRON AFTER A COLLISION 

 

background image

This, using Eqn. 29 can be written as: 

 

 

 

 

 

2

2

2

2

'

' ( ')

'

1

'

'    

(1

)

'

1

.

2

(1

)

1

2

(1

)

E

E

E

E

E

E

E

E P E dE

E

dE

E

E

E

E

E

E

α

α

α

α

α

α

α

=

= −

= − ⎢

=

 

 

 

 
Thus: 
 

'

(1

)

2

E

E

α

= +

  

 

 

 

 

 

(30) 

 

THE AVERAGE LOGARITHMIC ENERGY DECREMENT PER 
COLLISION 

 

The average value of decrease of the natural logarithm of neutron energy in a collision is: 

background image

 

ln

ln

ln

'

'

E

E

E

E

ξ

=

=

 

 

 

 

 

(31) 

 

Its utility is that it is independent of the neutron energy as shown below: 

 

ln

( ')

'

'

'

ln

' (1

)

E

E

E

E

E

P E dE

E

E

dE

E

E

α

α

ξ

α

=

= −

 

 

Making the change of variable: 

 

'

'

        

E

dE

d

E

E

χ

χ

=

=

 

 

1

1

1

1

1

ln

1

1

ln

1

1

1

[ ln

]

[ ln

1]

1

1

Ed

E

d

α

α

α

χ

ξ

α

χ

χ χ

α

χ χ χ

α α α

α

α

=

= +

=

=

+

 

 
From which: 
 

1

[1

ln ] 1

ln  

1

1

α

ξ

α α α

α

α

=

− +

= +

α

 

  (32) 

 
But the collision parameter is: 
 

2

1

1

A

A

α

= ⎜

+

 

 
Thus: 
 

2

(

1)

(

1

1

ln

2

(

A

A

A

A

ξ

)

1)

= +

+

 

 

 

 

 

(33) 

 
When A is large, (A>>1), for heavy elements: 
 

background image

2

3

5

3

5

(

1)

1

1

1

1 2

[

...]

2

3

5

1

1

1

1

:     ln(

)

2(

...)

1

3

5

                                        

A

A

A

A

A

Z

Since

Z

Z

Z

Z

ξ

→ −

+

+

+

+

+

+

+

 

 

2

2

2

1

2

1

 

 

 

A

A

A

A

ξ

+

= −

 

 

 

 

 

(34) 

 
by considering that the value of 1 in the numerator is small relative to the other terms. 

For A>10 an expression correct to about 1% fitting experimental data is: 

 

2

2

3

A

ξ

=

+

 

 

 

 

 

 

 

(35) 

 

In the case of mixture of elements in a moderator, the individual values of 

ξ

 are weighed 

by the scattering cross sections of each component to obtain its average value over the mixture: 
 

1

1

n

si i

i

n

si

i

σ ξ

ξ

σ

=

=

=

   

 

 

 

 

 

(36) 

 

THE AVERAGE NUMBER OF COLLISIONS IN A MODERATOR 
 

To slow down from energy 

'

'

E E  to energy 

''

E

'

'

 the number of neutron collisions can 

be estimated from: 
 

'

ln

''

E

E

N

ξ

=

 

 

 

 

 

 

 

(37) 

 

SLOWING DOWN POWER AND MODERATING RATIOS 

 

These moderator parameters are defined as: 

 

Slowing down power =

s

ξ

  

 

 

 

 

(38) 

 
This is a measure of how efficient a material is in slowing-down the neutron energy. 

background image

 

Moderating ratio =

s

a

ξ

 

 

 

 

 

 

(39) 

 
This is a measure of the efficiency of moderation without absorption. 

Table 1 compares the values of the slowing down power and the moderating ratios for 

several materials. Deuterium used in heavy water distinguishes itself as a superior moderator. 
Nevertheless, carbon as graphite, light water and beryllium are also used as neutron moderators. 
 

Table 1: Properties of major moderator materials. 

 

 
 

Element 

Mass 

Number 

Average 

Logarithmic 

Energy 

decrement 

ξ 

Average 
Number 

of 

Collisions 

Macroscopic 

Absorption 

Cross 

section 

Σ

a

Slowing 

Down 

Power 

ξΣ

s

Moderating 

Ratio 

ξΣ

/

Σ

a

1 1 18 

0.0792 

1.53 

72.0 

2 0.725 25 0.0009 

37.0 

12,000.0 

He 

4 0.425 43  0.0 

0.000016 

83.0 

Li 

7 0.268 67  71.0 

0.176 

159.0 

Be 

9 0.209 80 0.008  - 

11 0.176 103 780.0  -  170.0 

12 0.158 115 0.005 

0.064  - 

16 0.120 150  0.0 

 

THE LETHARGY OR LOGARITHMIC ENERGY DECREMENT 

 

This is defined as: 

 

0

ln

E

u

E

=

 

 

 

 

 

 

 

 

(40) 

 
where 

is arbitrary reference energy corresponding to zero lethargy (e.g. 10 MeV). 

0

E

The lethargy of a neutron increases as it is slowed down. The lethargy variable allows the 

expression of the neutron energy E as a dimensionless variable. 

The lethargy change can be written as: 

 

background image

 

 

1

2

1

2

ln

E

u

u

u

E

∆ =

− =

   

 

 

 

 

 

(41) 

 
From Eqn. 40: 
 

0

u

E

E e

=

 

 

 

 

 

 

 

 

(42) 

 

It is evident that 

ξ

 can be regarded as the average change in the lethargy of a neutron per 

collision. Regardless of its energy, a neutron suffers the same number of collisions for the same 
specified change in lethargy. Figure 6 shows that a neutron loses considerably more energy in 
earlier scatterings than in later ones. 
 
REFERENCE 
 

1.  M. Ragheb, ”Lecture Notes on Fission Reactors Design Theory,” FSL-33, Department of 

Nuclear, Plasma and Radiological Engineering, 1982.  

 
EXERCISE 
 
1. 

Carry out the detailed derivation proving that, for elements other than hydrogen, the 

mean value of the cosine of the scattering angle for neutron collisions is given by: 

background image

 

 

 

 

4

0

0

4

0

cos

2

cos

3

L

L

d

A

d

π

π

θ

µ

θ

=

=

=


Document Outline