background image

15.

(a) Free-body diagrams for the blocks and C, considered as a single object, and for the block are

shown below. is the magnitude of the tension force of the rope, is the magnitude of the normal
force of the table on block Ais the magnitude of the force of friction, W

AC

is the combined

weight of blocks and (the magnitude of force 

F

g AC

shown in the figure), and W

B

is the weight

of block (the magnitude of force 

F

g B

shown). Assume the blocks are not moving. For the

blocks on the table we take the axis to be to the
right and the axis to be upward. The compo-
nent of Newton’s second law is then T

−f = 0 and

the component is N

− W

AC

= 0. For block B

take the downward direction to be positive. Then
Newton’s second law for that block is W

B

−T = 0.

The third equation gives W

B

and the first

gives W

B

. The second equation gives

W

AC

. If sliding is not to occur, must be

less than µ

s

, or W

B

< µ

s

W

AC

. The smallest

that W

AC

can be with the blocks still at rest is

W

AC

W

B

s

= (22 N)/(0.20) = 110 N. Since

the weight of block is 44 N, the least weight for
is 110

− 44 = 66 N.

..................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................

..........

............................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

............

............

.....

...........

............

...

..

...........

...........

...........

...........

...........

...........

...........

...........

...........

.....................

..

..

..

..

..

..

..

..

.

......

......

.......

.......

..



T



f



F

g AC



N

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.....................

............

...........

............

...

..

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

.....................

..

..

..

..

..

..

..

..

.

......

......

.......

.......

..



T



F

g B

(b) The second law equations become T

− f = (W

A

/g)aN

− W

A

= 0, and W

B

− T = (W

B

/g)a.

In addition, µ

k

. The second equation gives W

A

, so µ

k

W

A

. The third gives

W

B

− (W

B

/g)a. Substituting these two expressions into the first equation, we obtain W

B

(W

B

/g)a

− µ

k

W

A

= (W

A

/g)a. Therefore,

=

g(W

B

− µ

k

W

A

)

W

A

W

B

=

(9.8 m/s

2

) (22 N

− (0.15)(44 N))

44 N + 22 N

= 2.3 m/s

2

.


Document Outline