background image

Egzamin dla Aktuariuszy z 3 grudnia 2007 r. 
 
Prawdopodobieństwo i Statystyka 
 
Zadanie 1 
 

(

)

4

2

2

4

4

2

2

1

σ

S

σ

S

E

σ

ER

+

=

 

(

)

)

9

(

2

2

2

χ

σ

X

X

i

 

(

)

(

)

(

)

(

)

( )

(

)

4

2

2

4

4

2

2

2

2

2

2

2

2

4

99

,

0

9

9

2

1

1

σ

n

σ

σ

σ

X

X

E

n

X

X

n

E

ES

i

i

=

+

=

=

=

 

2

2

2

9

,

0

9

1

σ

σ

n

ES

=

=

 

19

,

0

1

8

,

1

99

,

0

10

9

2

99

,

0

1

4

2

2

4

4

2

=

+

=



+

=

σ

σ

σ

σ

σ

ER

 

 
Zadanie 2 
 

{

}

(

)

( )

n

t

n

e

t

P

t

X

X

P

=

>

=

<

1

)

(min

1

,...,

min

1

 

( )

)

(

1

min

n

wykl

ne

e

e

n

f

tn

t

n

t

=

=

 

(

)

=

=

=





+

=

=

=

1

1

2

1

1

1

1

1

)

(

,...,

min

i

i

i

i

e

e

e

i

i

i

i

N

P

X

X

E

ODP

 

=

=

+

=

+

=

1

1

2

2

1

1

1

1

1

!

)!

1

(

1

i

i

i

i

e

e

e

i

i

e

e

e

i

i

i

 

logarytmiczny: 

)

1

,

0

(

,....

2

,

1

,

)

1

ln(

1

)

(

=

=

=

c

k

k

c

c

k

M

P

k

 

Z tego: 

=

=

=

=

=

1

1

1

1

1

1

1

1

1

ln

1

1

i

i

i

i

i

e

e

e

e

i

e

e

4

4 8

4

47

6

 

=

=

+

=

+

=

+

=

1

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

i

i

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

ODP

 

1

2

1

)

1

1

(

1

=

=

+

=

e

e

e

e

 

background image

Zadanie 3 
 

(

)

(

)

(

)

5

,

0

var

var

var

,

cov

2

1

2

1

2

1

S

S

S

S

S

S

+

=

 

rozkład hipergeometryczny: 

(

)

832

1995

39

21

40

40

25

1

40

25

21

var

2

1

=

=

+

S

S

 

64

135

39

13

40

40

25

1

40

25

13

var

1

=

=

S

 

39

60

39

8

40

40

25

1

40

25

8

var

2

=

=

S

 

4

5

52

65

156

195

624

780

2496

3120

2496

3840

5265

5985

39

60

64

135

832

1995

=

=

=

=

=

=

 

8

5

2

1

4

5

=

=

ODP

 

 
Zadanie 4 
 
k=5,6,... 

(

) (

)

)

4

(

)

(

4

4

=

=

=

=

=

=

=

X

P

k

Y

P

k

Y

X

P

X

k

Y

P

 

(

) (

)

(

)

=

=

=

=

=

=

=

1)

-

k

 

 w

pika

 

bylo

 

nie

(

1

-

k

 

 w

pika

 

bylo

 

nie

,

4

1

-

k

 

 w

pika

 

bylo

 

nie

4

4

P

X

P

X

P

k

Y

X

P

 





=





=

4

1

3

2

39

52

52

26

13

4

1

1

1

5

4

k

k

k

k

k

k

k

 

4

1

4

3

52

13

52

39

)

(

1

1

=

=

=

k

k

k

Y

P

 

=

=

+

+

=

=





+

=

=

=





=

=

5

0

5

4

4

4

1

1

2

1

2

4

1

2

1

4

3

4

1

3

2

1

5

5

4

1

4

3

3

2

4

1

)

4

(

k

n

n

n

k

k

n

n

n

k

k

X

P

 

(

)

k

k

k

k

k

k

k

k

k

X

k

Y

P





=





=





=

=

=

2

1

5

1

2

1

2

1

5

1

2

4

1

4

3

4

1

3

2

4

1

1

1

 

=

=

=

+

=





+

+

=

=

=





=

5

0

5

10

5

5

2

1

2

1

1

5

)

5

(

5

2

1

5

1

k

n

n

k

n

n

n

n

k

k

k

k

ODP

 

 
Zadanie 5 
 

(

)

(

)

(

)

Y

T

Y

T

P

k

N

P

Y

T

Y

T

P

N

P

Y

T

P

N

P

k

k

>

=

=

>

<

=

=

>

=

=

+

1

2

1

1

,

)

(

,

)

1

(

)

0

(

 

)

,

(

λ

k

Z

k

Γ

 

 
 

background image

∫ ∫

=



+

=

=

=

0 0

0

2

2

2

2

1

1

)

0

(

x

x

β

x

β

x

λ

x

λ

y

β

β

e

β

e

β

x

β

e

λ

dydx

e

λ

ye

β

N

P

 

+

+





+

=

+

+

+

=

+

+

=

=

0

2

2

2

2

2

2

)

(

)

(

)

(

2

)

(

1

β

λ

β

β

λ

λβ

λ

βλ

β

λβ

λ

β

λ

λ

β

λ

βλ

e

λ

e

λ

x

β

e

λ

x

β

λ

x

β

λ

x

λ

=

>

>

=

Γ

=

>

+

<

=

=

)

0

(

)

(

)

,

(

)

(

1

2

Z

Y

X

P

e

t

k

λ

Z

ye

β

Y

e

λ

X

Y

X

Z

Y

Z

P

k

N

P

t

λ

k

k

y

β

x

λ

 

4

4 8

4

4 7

6

4

8

47

6

II

I

X

Z

Y

P

Z

Y

P

X

Z

Y

P

Z

Y

P

)

(

)

(

)

(

)

0

(

+

>

>

=

>

>

=

 

∫ ∫

∞ ∞

=



+

Γ

=

Γ

0

0

2

1

2

1

2

1

)

(

)

(

.

z

z

β

z

β

z

λ

k

k

z

λ

k

k

y

β

e

β

e

β

z

e

z

k

λ

β

dydz

e

z

k

λ

ye

β

I

 

+

+

+

+

+

+

+

=

+

Γ

Γ

+

+

+

Γ

Γ

=

Γ

+

Γ

=

0

0

1

1

)

(

1

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

(

)

(

)

(

)

(

k

k

k

k

k

k

k

k

z

β

λ

k

k

z

β

λ

k

k

β

λ

λ

β

λ

λ

β

k

β

λ

k

k

λ

β

λ

k

β

k

λ

e

z

k

λ

e

z

β

k

λ

∫ ∫

∞ ∞

+

+

=



+

+

Γ

=

+

Γ

0

0

2

1

2

1

2

1

)

1

(

)

1

(

.

x

x

β

x

β

x

λ

k

k

x

λ

k

k

y

β

e

β

e

β

x

e

x

k

λ

β

dydx

e

x

k

λ

ye

β

II

 

+

+

+

+

+

=

+

Γ

+

+

Γ

=

0

)

(

1

)

(

1

1

)

1

(

)

1

(

x

β

λ

k

k

x

β

λ

k

k

e

x

k

λ

e

x

k

λ

β

 

1

1

2

1

1

1

2

1

)

(

)

(

)

1

(

)

(

)

1

(

)

1

(

)

(

)

2

(

)

1

(

+

+

+

+

+

+

+

+

+

+

+

+

=

+

+

Γ

+

Γ

+

+

+

Γ

+

Γ

=

k

k

k

k

k

k

k

k

β

λ

λ

β

λ

λ

k

β

β

λ

k

k

λ

β

λ

k

k

λ

β

 

=

+

+

+

+

+

+

=

=

+

+

+

+

+

+

+

1

1

2

1

2

1

1

)

(

)

(

)

(

)

(

)

(

)

(

k

k

k

k

k

k

k

k

k

k

β

λ

λ

β

λ

βλ

β

λ

λ

k

β

β

λ

λ

β

λ

λ

β

k

k

N

P

 

=

+

+

+

+

+

+

=

)

(

)

(

)

(

1

)

(

2

2

β

λ

λ

β

λ

βλ

β

λ

λ

k

β

β

λ

β

k

β

λ

λ

k

k

 

=

+

+

+

+

+

+

=

...

)

(

2

)

(

)

(

2

2

β

λ

λ

βλ

λ

k

β

β

λβ

λ

β

λ

β

k

β

λ

λ

k

k

 

k

k

k

β

λ

λ

β

λ

β

k

β

λ

k

β

β

λ

λ





+





+

+

=

+

+

+

=

2

2

2

)

1

(

)

(

)

1

(

)

(

 

dla k=0   =  P(N=0) czyli odpowiedź (A) jest prawidłowa 
 
Zadanie 6 
 

n

t

c

t

P

t

P

4

1

)

(min

1

)

(min

=

>

=

<

 

4

5

4

1

4

)

(

=

=

<

t

c

dx

x

c

t

X

P

t

c

 

 

background image

1

4

4

1

4

4

min

4

4

+

=

=

n

n

n

n

t

nc

nt

c

f

 

+

=

=

=

=

c

n

n

c

n

n

n

n

n

nc

n

c

nc

n

t

nc

t

nc

E

1

4

4

)

1

4

(

4

4

1

4

4

min

1

4

4

1

4

4

4

4

 

n

n

a

c

n

nc

a

ET

4

1

4

1

4

4

1

=

=

=

 

=

=

=

=

c

c

c

c

c

x

c

x

c

EX

3

4

3

4

3

4

4

3

4

3

4

4

4

 

c

c

n

n

X

E

3

4

3

4

1

=

=

 

4

3

3

4

2

=

=

=

b

c

c

b

ET

 

(

) (

)

2

1

2

1

2

2

2

2

2

2

c

cT

T

E

c

cT

T

E

R

+

+

=

 

(

)

(

)

(

)

n

n

n

X

X

E

X

X

X

X

E

+

+

+

+

+

=

+

+

...

...

var

...

1

2

1

2

1

 

(

)

=

=

+

+

2

1

9

2

var

...

var

c

n

X

X

X

i

n

 

=

=

=

=

c

c

c

c

c

x

c

x

c

EX

2

2

4

2

4

3

4

2

2

2

2

4

4

 

2

2

2

2

9

2

9

16

18

9

16

2

var

c

c

c

c

X

=

=

=

 

(

)

2

2

2

2

2

2

1

9

16

9

2

3

4

9

2

...

c

n

nc

nc

c

n

X

X

E

n

+

=

+

=

+

+

 

2

2

2

9

16

9

2

c

n

c

X

E

+

=

 

=

=

=

=

c

n

n

c

n

n

n

n

n

nc

n

c

nc

n

x

nc

x

nc

E

2

4

4

)

2

4

(

4

)

4

2

(

4

4

min

2

2

4

4

2

4

4

1

4

4

2

 

=



+

+



+

=

2

2

2

2

2

2

1

4

4

4

1

4

2

2

4

4

4

1

4

3

4

4

3

2

9

16

9

2

16

9

c

n

nc

n

n

c

n

nc

n

n

c

c

c

c

n

c

R

 

=

+

+

+

=

2

2

2

2

2

2

2

2

4

8

4

2

4

)

1

4

(

2

8

c

n

nc

n

c

n

n

c

c

c

n

c

 

(

)

=

+

+

=

n

n

n

n

c

n

nc

c

n

n

n

c

4

)

2

4

(

)

2

4

(

4

)

2

4

(

8

1

8

16

8

2

2

2

2

2

 

)

1

2

(

4

)

1

(

)

2

4

(

8

)

1

(

4

)

2

4

(

8

)

2

2

4

(

)

2

4

(

4

8

2

2

2

2

2

=

=

=

=

n

n

n

c

n

n

n

c

n

n

n

c

n

n

c

n

c

 

 
 
 
 
 

background image

Zadanie 7 
 

(

)

x

θ

θ

x

θ

L

=

2

1

)

,

(

 

x

θ

θ

x

θ

θ

x

θ

θ

2

ˆ

0

2

2

1

3

3

2

=

=

+

=

+

=

 

 

 

(

)

t

x

θ

θ

x

x

λ

>

=

0

2

0

1

2

)

(

 

(

)

2

,

0

4

0

2

0

0

=



>

t

x

θ

x

θ

P

θ

 

(

)

=

+

+

=

<

<

=

<

0

0

2

2

2

2

]

;

0

[

   

2

)

(

1

)

(

1

)

(

t

t

θ

θ

t

θ

t

x

θ

θ

x

θ

θ

t

X

t

P

t

X

P

 

2

2

2

θ

t

θ

x

f

=

 

x

x

=

:

 



+

=



=

>

+

2

)

1

(

1

2

,

)

1

(

1

2

0

4

4

2

1

2

2

t

t

θ

x

t

t

t

θ

x

θ

x

θ

t

tx

 

 

 

(

) (

)

=

=

=

+

=

>

+

<

1

2

0

2

2

2

1

8

,

0

)

1

(

2

,

0

)

1

(

1

2

2

2

2

x

θ

x

t

t

t

t

t

t

θ

t

θ

θ

t

θ

x

X

P

x

X

P

 

)

4

;

0

(

    

8

2

1

16

2

4

2

2

2

1

θ

t

θ

t

θ

θ

t

θ

f

θ

=

=

 

θ

θ

x

1

,

0

2

,

0

2

1

=

=

 

(

)

θ

θ

x

9

,

0

8

,

0

1

2

2

=

+

=

 

=

=

+

=

θ

θ

θ

θ

t

θ

θ

t

θ

moc

1

,

0

0

4

9

,

0

2

2

65

,

0

...

8

2

1

8

2

1

 

 
Zadanie 8 
 

( )

( )

Π

θ

θ

d

X

θ

θ

θ

L

min

,

ˆ

 

 

background image

(

) (

)

(

)

n

n

n

X

X

f

θ

f

θ

X

X

f

X

X

θ

f

,...,

)

(

,...,

,...,

1

1

1

=

 

(

)

=

Γ

Π

=

0

1

1

)

(

2

,...,

2

θ

d

e

θ

α

β

e

x

θ

X

X

f

βθ

α

α

x

θ

i

n

n

n

i

 

(

)

(

)

+

+

+

+

+

Γ

Π

Γ

=

+

=

+

=

=

Π

Γ

=

0

2

2

1

)

(

2

)

(

2

)

(

2

α

n

i

i

n

α

i

x

β

θ

α

n

i

n

α

x

β

α

n

x

α

β

x

β

β

α

n

α

θ

d

e

θ

x

α

β

i

 

(

)

(

)

=

+

Γ

Π

+

Γ

Γ

Π

=

+

)

(

2

)

(

)

(

2

,...

2

1

1

2

α

n

x

β

x

β

α

e

θ

α

β

e

x

θ

X

X

θ

f

i

n

α

α

n

i

βθ

α

α

x

θ

i

n

n

n

i

 

(

)

(

)

)

(

2

1

2

α

n

x

β

e

θ

α

n

i

β

x

θ

α

n

i

+

Γ

+

=

+

+

+

 

( )

( )

(

)

(

)

+

+

+

=

+

Γ

+

=

0

1

2

2

2

)

(

ˆ

ˆ

θ

d

e

θ

α

n

x

β

θ

θ

e

θ

L

β

x

θ

α

n

α

n

i

θ

c

i

 

(

)

(

)





+

+

+

=

+

=

+

=

=

+

Γ

+

+

=

=

>

0

2

1

2

2

2

calka

 

inaczej

 

bo

 

0

 

byc

 

musi

 

to

2

)

(

ˆ

ˆ

2

c

β

x

β

α

n

α

e

θ

α

n

x

β

θ

θ

θ

θ

i

c

β

x

θ

α

n

α

n

i

i

48

47

6

 

(

)

(

) (

)

(

)

+

+

+

+

+

+

+

+

+

Γ

+

Γ

+

=

+

+

2

2

2

2

2

2

ˆ

ˆ

2

)

1

)(

(

)

(

)

(

θ

c

β

x

α

n

θ

c

β

x

α

n

α

n

c

β

x

α

n

α

n

x

β

i

i

α

n

i

α

n

i

 

( )

[ ]

...

ˆ

2

2

α

n

i

i

c

β

x

x

β

θ

L

+



+

+

=

 

+

+

=

=



+

+

+



+

+

=

+

c

β

x

α

n

θ

θ

c

β

x

α

n

c

β

x

x

β

θ

i

i

α

n

i

i

2

2

2

2

ˆ

0

ˆ

2

)

(

2

ˆ

 

min

0

2

ˆ

2

2

2

2

>



+

+

=

+

α

n

i

i

c

β

x

x

β

θ

 

 
Zadanie 9 
 

[

]

[

]

y

x

y

F

y

f

x

F

y

F

x

f

x

F

s

n

r

s

r

n

y

x

f

s

n

r

s

r

rs

=

  

)

(

1

)

(

)

(

)

(

)

(

)

(

)!

(

)!

1

(

)!

1

(

!

)

,

(

1

1

 

A

y

x

y

x

=

:

  

)

2

,

0

(

,

 

 

 
 
 
 

background image

A

   

na

   

2

1

2

1

2

1

2

)

,

(

12

=

=

X

Y

f

 

∫ ∫

=

=

2

0 0

1

2

)

(

y

dxdy

xy

YX

E

 

∫ ∫

=

=

2

0 0

3

2

2

y

dxdy

x

EX

 

∫ ∫

=

=

2

0 0

3

4

2

y

dxdy

y

EY

 

9

1

9

8

1

3

4

3

2

1

)

,

cov(

=

=

=

Y

X

 

 
Zadanie 10 
 

)

(

0

k

P

H

 - rozmiar testu 

przy 

0

 prawdopodobieństwo kaŜdego ustawienia X<Y<X<... jest takie samo 

ilość wszystkich ustawień = 9! 

5

 

4

 

3

 

1

6

 

4

 

2

 

1

5

 

4

 

2

 

1

7

 

3

 

2

 

1

6

 

3

 

2

 

1

5

 

3

 

2

 

1

4

 

3

 

2

 

1

7

6

5

4

3

2

1

lub

         

13

:

S

K

   

5

 

6

 

7

 

9

4

 

6

 

8

 

9

5

 

6

 

8

 

9

3

 

7

 

8

 

9

4

 

7

 

8

 

9

5

 

7

 

8

 

9

6

 

7

 

8

 

9

7

6

5

4

3

2

1

27

S

 

 
Z tego: dla kaŜdego 4!5! 
RAZEM=4!5!14 

63

7

9

1

9

8

7

6

14

24

!

9

14

!

5

!

4

=

=

=

=

ODP