background image

1

1

SED

SED

IMENTOLOGY

IMENTOLOGY

4

4

Flow regime, sediment transport & deposition

Flow regime, sediment transport & deposition

2

3

4

Sediment transport and deposition

Sediment transport and deposition

Transport modes in a turbulent fluid

Traction (rolling over the bed surface)

Saltation (jumping over the bed surface)

Suspension (permanent transport within the fluid)

Solution (chemical transport)

5

Hjulstrom 

Hjulstrom 

diagram

diagram

6

Sediment transport and deposition

Sediment transport and deposition

-

-

comment

comment

Fluid density and viscosity play a key role in determining which

particle sizes can be transported

The amount of sediment transport is not only related to flow 

velocity 

(or bed shear stress)

and grain size, but also to:

Grain density

Grain shape

background image

2

7

BED FORMS AND 

BED FORMS AND 

SEDIMENTARY 

SEDIMENTARY 

STRUCTURES

STRUCTURES

:

:

(

(

processes and results

processes and results

)

)

8

2. 

2. 

The flow regime concept

The flow regime concept

:

:

... is the he result of experimental research 

into fluid flows and their depositional 
results

… relates flow energy with the deposited 

bed forms and their internal structures

9

Flume tank experiments

Flume tank experiments

Straight crest

Curved crest

10

POJĘCIE REŻIMU 

POJĘCIE REŻIMU 

PRZEPŁYWU:

PRZEPŁYWU:

Sed. structures:
Cross-lamination
(= small-scale)

Cross-bedding 
(= large scale)

Parallel lamination
with 
parting lineation

Cross-lamination
/cross-bedding 
dipping upstream

Bedforms:
Current          megaripples with        megaripples-dunes
ripples

small ripples on top    without small ripples

Bedforms:

antidunes

planar bed (upper)

'shooting flow'

11

Lower flow regime

Lower flow regime

12

3. 

3. 

Current 

Current 

ripplemarks 

ripplemarks 

and dunes

and dunes

(

(

bed forms

bed forms

& their sedimentary structures

& their sedimentary structures

cross

cross

-

-

lamination and cross

lamination and cross

-

-

bedding

bedding

Features:

- asymmetrical bed forms: stoss side is gentle, lee
side : much steeper (up to 30 degr.)

- height: 0.5 – 3 cm; wave length 5-40 cm

- grain size: <0.7 mm (<medium sand)

- structure: cross-lamination

Origin: 

background image

3

13

Origin of cross lamination 

Origin of cross lamination 

in current 

in current 

ripplemark

ripplemark

Sedimentation 
on the lee side: 
grain avalanching.

14

Origin: key points:

- Stoss side (windward): grains rolled up the slope

- Temporary accumulation at the crest 

- Lee-side: grain avalanching (initiated when the 

slope reaches the angle of repose) & accumulation 
of a lamina/bed inclined with regard to the 
depositional surface (= horizontal bottom)

This way foresets originate

15

Slope of the foreset beds is a function of the 
grain size of the sediments:

• coarse sediments (sand and gravel) result in 

steep slopes

• fine sediments (fine sand and silt) result in 

shallow slopes

16

Classification

Classification

SET

COSET

(= composite set)

The lower boundary of each set: 

- is erosional

- its shape defines the type of 

cross-laminated

or cross-bedded set:

Sets:

1.

Tabular - have planar bounding 
surfaces 

2.

Trough - lower surfaces curved 
or scoop-shaped and truncate the 
underlying beds 

3.

Wedge (a variety of tabular)

17

The shape of the crest defines the shape of the 

lower boundary of the set – see classification 2-D & 3-D forms

Tabular - 2D
Crest straight

Trough – 3D
Crest curved and 
bedfrom height 
decreases laterally

18

Size classification: ripples vs. dunes

Size classification: ripples vs. dunes

(& frequency of occurrence)

(& frequency of occurrence)

megaripples

background image

4

19

Megaripplemarks

Grain size: >0.2 mm (= >fine sand)

Height usu up to a few dcm

20

Climbing current ripples
Origin: 

Deposition out of traction associated with 
suspension

The higher the intensity of deposition out of 
suspension, the steeper the angle of climb

21

Backflow

Backflow

with formation of 

with formation of 

backflow ripples

backflow ripples

STOPPED HERE

STOPPED HERE

22

SAND WAVES : S. Francisco Bay (Golden 

Gate)

23

Aeolian dunes

Barchan

Barchan

Atacama Desert, Chile

Avalanches of sand grains 
(sandy grain flows) down 
the stoss side

background image

5

25

Aeolian versus water

Aeolian versus water

-

-

born cross 

born cross 

bedding/lamination

bedding/lamination

Aeolian:
Steeper dips of foresets (high inter-granular friction of 

dry sediment)

Inversely graded (dispersive pressure in dry sand 

avalanches: dry grain-flow – grain-to-grain collisions)

Water-born:
Lower dips of foresets (low inter-granular friction of 

water-lubricated sediment)

Inverse grading absent (sorting in water-saturated 

avalanches of sand grains)

26

27

Upper flow regime

Upper flow regime

28

Sediment transport and deposition

Sediment transport and deposition

Plane beds and antidunes

In coarse sands (>0.7 mm) lower-stage plane beds develop instead of current ripples

At high (

but still subcritical

) flow velocities upper-stage plane beds

are formed in all sand grain sizes

At still higher flow velocities (

supercritical flow conditions, Fr

≈1 or higher

antidunes are formed, characterized by bedform accretion in 
an upstream direction

29

Parting lineation: plane bed, upper flow regime

Parting lineation: plane bed, upper flow regime

30

Upper flow regime (supercritical flow): standing 

waves – here antidunes are formed

background image

6

31

• eg. – a current ripplemark is a bed form

• Its internal organisation of sediment: 

sedimentary structure = cross lamination

REMEMBER

REMEMBER

:

:

DISTINGUISH BETWEEN THE BED FORMS AND 

DISTINGUISH BETWEEN THE BED FORMS AND 

SEDIMENTARY STRUCTURES

SEDIMENTARY STRUCTURES

32

Sediment transport and deposition

Sediment transport and deposition

by waves

by waves

Waves

Waves are wind-generated oscillatory motions 

of water

Wave height is dependent on wind strength

The depth to which the oscillatory motion due 

to wave action extends is known as the 

wave base

Shallow water leads to breaking waves 

Wave ripples are distinct from current ripples 

due to their symmetry and include low-

energy ‘rolling grain ripples’ and high-energy 

‘vortex ripples’

33

Sediment transport and deposition

Sediment transport and deposition

Waves

Waves are wind-generated oscillatory motions of 

water

Wave height is dependent on wind strength

The depth to which the oscillatory motion due to 

wave action extends is known as the wave base

shallow water leads to breaking waves

Wave ripples are distinct from current ripples due to 

their symmetry, and include low-energy ‘rolling grain 

ripples’ and high-energy ‘vortex ripples’

34

35

oscillation waves

translation waves

swash &
backwash

breakers

36

Animation wave ripples

background image

7

37

Internal structure of wave ripplemarks; Tumlin quarry 
(Gradzinski)

38

Features:

- symmetrical bed forms
- height: 0.5 – 3 cm
- grain size: <0.7 mm (<medium sand)
- structure: composite lamination, bi-directional

------------------------------------------------------------
Important bathymetry indicator: are formed above 

the wave base!!!!

Wave 

Wave 

ripplemarks

ripplemarks

39

Interference ripples

Interference ripples

40

Sediment transport and deposition

Sediment transport and deposition

Tides

Tides

Tides result from the gravitational attraction of the 

Moon and Sun on the Earth, combined with the 

centrifugal force caused by movement of the Earth 

around the center of mass of the Earth-Moon system

Semi-diurnal (= every half-a-day) or diurnal tidal cycles

Neap-spring tidal cycles

Annual tidal cycles

Tide changes proceed via the following stages:

Sea level rises over several hours, covering the intertidal zone:

flood tide.

The water rises to its highest level, reaching high tide & stays at 

this level (slack water).

Sea level falls over several hours, revealing the intertidal

zoneebb tide.

The water stops falling, reaching low tide (slack water).

41

42

Neap & spring cycles

Neap & spring cycles

Neap-spring tidal cycles are controlled by the position of 

the Moon relative to the Sun and Earth

Spring tides (meaning: 'rise'): when the Earth, Moon, and Sun 
are all in a line (Full and New Moon Phases) the high tides 
are MUCH higher than at other times

In brief: high waters are higher than average, low waters are 

lower than average 

Neap tides (unknown origin/meaning): when the Moon and Sun 
are at right angles to each other the high tides are lower 
than at other times

In brief: Neaps result in less extreme tidal conditions 

There is about a seven-day interval between springs and 
neaps 

background image

8

43

44

Tidal currents (

Tidal currents (

cont from here on 8/05

cont from here on 8/05

)

)

45

Tidal ranges around UK

Tidal ranges around UK

46

H

H

erringbone

erringbone

cross stratification

cross stratification

Origin: deposition of current ripples or dunes by 
the currents of alternating opposite flow directions

Are characteristic for tidal conditions (tide-ebb-
…-...)

47

NOTE:

a) Ripplemarks originate only in non-

cohesive sediment (sand, coarse silt) 
transported by traction

b) Muds are deposited out of suspension 

only (being cohesive, cannot be 
transported by traction)

c) Therefore: interbeds of ripple cross 

laminated sand and mud reflect 
significant oscillations of the current 
energy: traction – suspension (V~0 = 
slack water) – traction – suspension -
(V~0 = slack water) ….

Association

Association

Ripplemar

Ripplemar

ks

ks

& mud

& mud

48

Bedding types:
A. Flaser

B. Wavy

C. Lenticular

D. Starved ripples

Sedimentary environment – most often tidal

but also: fluvial – flood plain area

background image

9

49

Ocean currents

Ocean currents

Ocean currents

The circulation of sea water in the world’s oceans is driven by 

wind and contrasts in density due to variable temperature and 

salinity (thermohaline circulation), combined with the Coriolis
effect

Ocean currents transport clay and silt in suspension, and sand 

as bed load, and their effects are especially important in deep 
waters, where storms and tides are less important

50

Global system of winds

Global system of winds

– Solar energy: variations in temperature

– Coriolis effect: 

deflection of fluid flow in 

motion = winds (also water currents

– Major mountain ranges: deflection of 

winds

51

Gravity flows in general

Gravity flows in general

Two groups of flows generated by 

gravity:

1. Fluid gravity flows – the motion of fluid powered 

by gravity sets sediment grains in motion  (e.g 

rivers)

2. Sediment gravity flows: gravity sets sediment in 

motion, which in turn sets the ambient fluid in 

motion due to friction. 

52

Four mechanisms supporting grains in sediment 

Four mechanisms supporting grains in sediment 

gravity flows

gravity flows

Grain flow. Mechanism: (explain) Result: very well sorted sand

Debris flow. Mechanism: (explain) Result: Poorly sorted, matrix-rich, 

massive or inversely-graded bed

Liquefied flow. Mechanism: pore-fluid escape. Result: dish structures 

water escape pipes, sand volcanoes 

Turbidity current. Mechanism: turbulence. Result: normally-graded bed; 

Bouma sequence

53

Sediment transport and deposition

Sediment transport and deposition

Gravity flows

Debris flows have a high (>50%) proportion of sediment to 

water and can be both subaerial and subaqueous

Low Reynolds numbers

• Turbidity currents have a higher proportion of water, are 

always subaqueous, and move due to density contrasts

Higher Reynolds numbers

54

Sediment transport and deposition

Sediment transport and deposition

(

(

cont from 

cont from 

here

here

)

)

Gravity flows

• Debris flows have a high (>50%) proportion of sediment to 

water and can be both subaerial and subaqueous

Low Reynolds numbers

Turbidity currents have a higher proportion of water, most 

commonly are subaqueous, and move due to density contrasts

Higher Reynolds numbers

background image

10

55

56

Autosuspension

Autosuspension

Motion

Turbulence

Suspension

57

a part of 
mud 
remains 
in 
suspen-
sion 
after the 
turbidity 
current

V = 0

with sole marks

Bouma sequeence
intervals (Ta – Te)

58

Newfoundland continental slope

Newfoundland continental slope

59

Erosional 

Erosional 

structures

structures

• Channels

60

Erosional 

Erosional 

structures

structures

• Small channel

background image

11

61

• Scour-and-fill

62

Sole marks 

Sole marks 

-

-

origins

origins

Conditions of origin:
1. Bottom - covered with cohesive sediment (mud)
2. Erosion - caused by turbulence cells in, or objectes carried

by, turbidity current (shale clasts, wood fragments, fish 
bones, itp.)

3. Sand deposition of the overlying bed – immediately after

erosion, preferably out of the same turbidity currrent that 
caused erosion 

Note – the erosional feature is a mold and the sole mark, which 

we see at the base of the corresponding sandstone bed, is a 
cast

63

Other sedimentary structures

Other sedimentary structures

Resulting from liquefaction of sandy sediment:

Sand volcanoes

Clastic dikes (sand dikes)

Deformational structures

Convolute lamination
Recumbent folds
Slump folds
Slump beds
Load casts
Flame structures
Ball-and-pillow

Dessication cracks (mud cracks) 

64

Bioturbations

Bioturbations

& trace fossils 

& trace fossils 

(

(

ichnofossils

ichnofossils

)

)

• Bioturbations (general term): Disturbances of 

sediment by organisms

• Preserved traces of activity of organisms
Traces of:
Resting, crawling, walking, feeding, hiding, 

burrowing, etc 

• Traces of infauna: living within sediment
• Traces of epifauna: living on sediment surface