background image

Steerprop

TECHNICAL INFORMATION

DESIGNERS' CHECKLIST No. 1

Azimuth Stern Drive Tugs (ASD)

background image

1/2001 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs (ASD) 

 
TABLE OF CONTENTS 

 

GENERAL 
MAIN DIMENSIONS 

1. 

Main Particulars........................................................................................................... 1 

2. 

Main Dimension Ratios .............................................................................................. 2 

3. 

Main Particulars Estimate.......................................................................................... 2 

HULL FORM 

4. 

Stern Lines ................................................................................................................... 2 

5. 

Hard Chine................................................................................................................... 3 

6. 

Round Bilge.................................................................................................................. 3 

7. 

Transom........................................................................................................................ 3 

SKEG 

8. 

Skeg Size ..................................................................................................................... 4 

WEIGHT, HYDROSTATIC, STABILITY 

9. 

Metacentric Height, Stability...................................................................................... 5 

10. 

Weight........................................................................................................................... 5 

11. 

Trim and Draft.............................................................................................................. 5 

HULL STRENGTH 

12. 

Mounting Adapters...................................................................................................... 5 

13. 

Navigation Mast........................................................................................................... 6 

14. 

Shaft Bearing Support................................................................................................ 6 

15. 

Bulwark......................................................................................................................... 6 

16. 

Skeg.............................................................................................................................. 7 

PROPULSOR INSTALLATION 

17. 

Propulsor Installation Alternatives............................................................................ 7 

18. 

Distance between the Propulsor Units .................................................................... 9 

19. 

Propulsor Tilting and Heeling..................................................................................10 

INTERMEDIATE SHAFTS 

20. 

Shaft Arrangement....................................................................................................10 

21. 

Shaft Angle.................................................................................................................14 

22. 

Cardan Joint Phasing...............................................................................................14 

GENERAL LAYOUT 

23. 

Forecastle...................................................................................................................15 

24. 

Aft Deck ......................................................................................................................15 

25. 

Towing Hook / Aft Towing Winch............................................................................16 

26. 

Superstructure...........................................................................................................16 

27. 

Wheelhouse...............................................................................................................16 

28. 

Control Layout ...........................................................................................................17 

PROPULSOR ROOM SPACE 

29. 

Propulsor Room Space............................................................................................18 

MAIN ENGINE

 

30. 

Main Engine Choice ................................................................................................18 

ESCORT TUGS

 

31. 

Special Requirements .............................................................................................18 

EXTERNAL CONNECTIONS

 

32. 

Electricity....................................................................................................................19 

33. 

Cabling........................................................................................................................19 

34. 

External Tanks...........................................................................................................19 

35. 

Cooling........................................................................................................................19

 

background image

1/2001 

March 2001

 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs (ASD) 

 

GENERAL 

This “checklist” is compiled in order to enable designers with no or little 

experience in azimuth propulsion vessels to make significantly better 

preliminary designs and proposals for stern drive tugs. The list can also 

well serve the experienced designer as a checklist or reminder that 

important aspects  have been considered in the design. 

The list is based on a the experience of supporting naval architects, 

shipyards and owners with comments, hints and suggestions on how to 

improve their designs in order to optimise the available performance of 

vessels equipped with azimuth propulsion. When compiling the list we 

have also used direct input from naval architects on what is special on 

vessels with azimuth propulsion and what should be kept in mind when 

designing these kinds of vessels. 

The list is in no way exhaustive and does not include  every  important 

aspect to a good stern drive design. It is more to be seen as a reminder to 

details often not known, forgotten or ignored. 

The advice and details in the list should not be taken as requirements, nor 

can a tug be designed solely relying on the items in this list  – the real 

work, and end result is still up to the naval architect designing the vessel 

as is the full responsibility. Steerprop Ltd. cannot be held responsible for 

any possible negative influence on any design based on the proposals in 

this list. 

 

MAIN DIMENSIONS 
1. 

Main Particulars 

Stern drive tugs intended for harbour duty and ship handling should be 

dimensioned according to the local requirements, assisted vessel size, 

environment (wind, current, tide…), type of jetties, manoeuvring space 

etc. 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

Typical maximum length of a harbour/ship-handling tug is  approximately  

33 m (LOA). Correspondingly, maximum bollard pull that  normally 

reasonably  can  be accommodated is 60 …65 tons.  Nevertheless, some 

recent designs indicate even much higher power/length ratio. 

 

2. 

Main Dimension Ratios 

Typical main dimension ratios for stern drive tugs are 

L/B = 2.7 …3.0 

B/T = 2.3 …2.6 

CB  = 0.48 …0.52 

 

3. 

Main Particular Estimate 

Tug designs are normally based on a certain bollard pull requirement, from 

which the necessary engine power can be determined. Once this is 

assessed the correct azimuth propulsor and propeller diameter can be 

chosen. The required minimum draft of the tug can then be set to 1.6 

…1.75 x propeller diameter. 

For the first estimate of main particulars the lightweight of the tug can be 

approximated to 200 …250 kg/m

3

 (LBH). Ice class and other special 

requirements are not accounted for and should be considered separately. 

Dead weight capacity is depending on vessel purpose and may vary from 

less than 60 ton to more than 400 tons for “same size” tugs. 

Check space and height requirements for the main components, propulsor 

and main engines to determine required hull height. 

 

HULL FORM 
4. 

Stern Lines 

Stern drive tugs should be designed with a “buttock flow” or - also called - 

“pram-type” stern, where the water inflow to the propellers  is  mainly 

along the buttocks, not from the sides. The angle between the baseline 

and the buttocks in the stern should be kept as small as possible. A good 

rule-of-thumb for maximum recommended angle is  13º + 1º for each 

meter of immersion (hull draft). Thus, on ASD tugs the angle should 

normally be kept less than 17º …17.5º (fig. 1). 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

 

 

Fig.1. 

Profile of a buttock flow stern. Maximum recommended angle a is 13º + 1º for each meter 

of draft 

Larger angles will cause the water flow to separate as well as water inflow 

from the sides, which is prone to decrease propeller performance 

drastically. 

The stern profile need not to be S-formed, as there is no need  to, or 

benefit in straightening the buttocks to be almost horizontal in way of the 

propulsors. 

The stern should have a slight V-angle all the way to the transom. There is 

no need for flattening the area in way of the propulsors. A  V-angle – even 

a slight one – will reduce the risk for stern slamming in waves. 

The propulsors may protrude below base line, as on some of the finest tug 

designs they do. The skeg dimensions ought to match. 

 

5. 

Hard Chine 

Hard  chine  designs are possible, but only double chine type is 

recommended.   Alignment of the chine  needs attention.  Flow separation 

may occur where flow-lines cross the chine. This increases the resistance 

and deteriorates the operating conditions for the propeller.  

The double chine should extend all the way to the transom. 

 

6. 

Round Bilge 

From hydrodynamics point of view the best bilge form is a round bilge with 

the radius growing towards the stern. A hull form with a narrowing stern is 

also advantageous. 

 

7. 

Transom 

The transom should be designed with as little immersion as possible, as 

the water “trapped” behind the transom causes a large increase in 

resistance. 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

An immersed transom should be “cut off” at  approximately 45º to the 

waterline in way of the waterline in order to improve astern performance, 

fig. 2. A cut off will have a substantial influence on both astern speed and 

astern manoeuvrability. The propulsor should not be installed too close to 

the transom  in order to avoid ventilation of the  propeller while going 

astern or braking. 

 

 

Fig. 2.   A transom “cut-off”, as shown above, will improve the astern performance substantially  

 

SKEG 
8. 

Skeg Size 

The skeg can normally be very small without losing the directional 

stability. A short skeg will make the tug more manoeuvrable and will 

improve astern running course keeping and performance. In no case 

should the skeg run all the way to the propulsors, when turned for astern 

sailing, fig. 3.  A too long skeg will also make sidestepping difficult as the 

water flow from the propulsor is re-directed by skeg. 

 

 

Fig. 3.   Maximum skeg length shown in the left figure. The right figure shows a too long skeg. 

The draft of the skeg  should preferably be large enough to go below the 

azimuth propulsors by 100…300mm. However, dry-docking procedures 

should be taken into account,  when  the propulsion units are protruding 

below the bottom of the tug hull. 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

WEIGHT, HYDROSTATICS, STABILITY 
9. 

Metacentric Height, Stability 

Typical metacentric height for a stern drive tug is  approximately 1.5 m. 

Tugs with less initial stability need to have their stability checked carefully 

and may still end up with stability problems.  

The stability for the specified bollard pull needs to be checked at an early 

stage, especially if the design is rather narrow. The stability requirement is 

not only for a static situation, as – in normal towing conditions – both the 

tug and the  assisted vessel are moving,  the assisted vessel  dragging the 

tug along.  Especially important this is if the tug is  assisting  vessels at 

higher speed or used for escort towing. 

 

10. 

Weight 

The weight of the azimuth propulsors may come as a surprise and often it 

will be difficult to get a proper balance, if not accounted for in the first 

basic design. The units are way back in an area with little or no  hull 

volume. Hence, the centre of gravity for the rest of the tug needs to be 

kept more forward than on other tug types. 

 

11. 

Trim and Draft 

At least the trim of a tug should be possible to be altered to improve the 

performance and prevent  ventilation of the propellers in braking  astern 

running. For ice  going tugs the possibility to  trim the vessel fast is 

important, as is the possibility to increase the draft for ice navigation. 

 

HULL STRENGTH 
12. 

Mounting Adapters  

Minimum recommended mounting adapter height is 300 …500 mm at the 

lowest point, depending on size and form, fig. 4. Minimum height is 

determined by strength requirements and installation procedure. 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

min. 300 mm

Mounting adapter

 

Fig. 4. 

A drawing showing the mounting adapter and its minimum height. 

The hull  in way of the azimuth propulsors may  require extra strength  to 

accomplish the correct sequence of  damage, i.e. the propulsor should 

break before tearing off the bottom. 

 

13. 

Navigation Mast 

The mast needs to be stiff enough and possibly supported to reduce 

excessive vibrations, especially in fast manoeuvres at high speed. 

 

14. 

Shaft Bearing Supports 

The shaft bearing supports need to be stiff and strong enough to take the 

load of the rotating shaft. 

 

15. 

Bulwark 

The bulwark should be inclined inwards to  prevent the bulwark  from 

touching assisted vessels. Ideally the bulwark should not be as far to the 

sides as possible, but some tens of  centimetres  inwards to enable easy 

stepping onboard without having to jump the bulwark first. 

The bulwark around aft deck need to be strong enough to take the whole 

weight of the tow wire without shearing, if the tug is equipped with an aft 

winch and intended for towing over the stern. 

 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

16. 

Skeg 

The skeg need to be supported inside the hull, not just welded to the 

bottom plate. A “soft” skeg may cause severe vibration throughout the 

tug, not only  to  the skeg itself.  The vessel  is also supported by the skeg 

during dry-docking and it is the first part to hit the bottom in case of 

grounding, thus protecting the propeller nozzles. 

 

PROPULSOR INSTALLATION 
17. 

Propulsor Installation Alternatives  

The Steerprop propulsors may be  installed in several different 

configurations  and variations thereof.  Additional, customized installation 

configurations can also be arranged. The main installation modes are: 

 

• 

Weld-in installation 

• 

Small bolt-in mounting cone 

• 

Large mounting adapter for thru-hull mounting 

 

Weld-in Installation 

The weld in installation is the strongest installation into the hull and the 

propulsor is an integrated part of the hull structure. The propulsor is 

usually installed in two parts – the upper part, that is welded into the hull, 

from above and the lower part from below the hull. 

 

Fig. 5. 

Weld-in installation: 1) the upper part is installed from above; 2) the upper part is welded at 

the hull bottom and at the top flange, the lower part is brought into place from below the 

hull; 3) the lower part is bolted to the upper part 

 

 

 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

Small Bolt-in Mounting Cone 

When the propulsor is installed using the small  mounting cone there is no 

need to compromise hull strength around the propulsors, as the needed 

openings in the hull can be kept to a minimum.  Mounting cone installation 

allows  the  propulsor to be installed in one piece from below or in two 

pieces, upper gearbox from above and lower gearbox from below. 

 

 

Fig. 6. 

Small bolt-in mounting cone installation – in one piece: 1) the propulsor is brought below 

the hull; 2) the propulsor is turned in way of the trunk and lifted into position; 3) the 

propulsor is bolted into the trunk and the clutch assembly is installed 

 

 

 

Fig. 7. 

Small bolt-in mounting cone installation – in two parts: 1) the upper part is installed from 

above, the lower part is brought into place from below the hull; 2) the upper part is bolted 

into the hull; 3) the lower part is lifted into place and bolted to the upper part 

 

Large Mounting Adapter 

The use of a large mounting adapter allows the complete propulsor to be 

lifted onboard in one piece. Often it is possible to do so even with the 

vessel in water. This feature also enables the propulsor to be lifted off the 

vessel for repairs and maintenance without dry-docking the vessel. See 

fig. 8. 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

 

 

Fig. 8. 

Large bolt-in mounting adapter installation: 1) the propulsor is lifted onboard; 2) the 

propulsor is bolted to the trunk flange; 3) the deck hatch is bolted or welded into place 

above the propulsor 

 

18. 

Distance between the Propulsor Units 

In order to improve the overall performance, especially the 

manoeuvrability of the  tug, the unit should be installed as far from each 

other as possible. Minimum recommended distance between the units is 

the unit turning diameter + 500 mm.  

It is also recommended that the distance from the vessel side to the unit 

centre is more than ½ unit turning diameter + 500 mm, in order to 

prevent the units from touching jetties or assisted vessels even when 

heeling. 

min.

500 mm

min.

500 mm

 

 

Fig. 9. 

Minimum distance between the units as well as between the side and the units are 500 mm 

The tug beam should be designed to allow the required units to be 

installed accordingly. 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

10 

 

 

19. 

Propulsor Tilting and Heeling 

The propulsor units need not to be installed vertically, but can be both 

tilted (longitudinally) and heeled (laterally) in order to achieve some 

benefits. Typically the units are tilted, up to 3º …5º in order to decrease 

the cardan shaft angles on the intermediate shaft. To achieve same 

lifetime expectancy / maintenance interval for all the cardan bearings the 

prime mover should be tilted correspondingly. Note that some main engine 

manufacturers have strict maximum angles for engine tilt, thus also 

restricting the propulsor tilt angle. 

A tilt of 2º …3º is recommended to improve the hydrodynamic efficiency of 

the installation. 

If the main engines need to be installed close to each other, the distance 

between the units can be maximized (and performance improved) by a) 

using oblique intermediate shaft angles  – note maximum cardan shaft 

angles! – and/or b) by heeling the units outwards. Maximum heel angle is 

to be determined case by case. 

tilt 3

o

         

heel 5

o

heel 5

o

 

 

Fig. 10.  The units can be installed either tilted or heeled, or both. A tilt of 2º …3º is recommended to 

optimise the water inflow to the propeller. 

 
 

INTERMEDIATE SHAFTS 
20. 

Shaft Arrangements 

The power train between the prime mover and the propulsor is by an 

intermediate shaft. Depending on application and installation there are 

several different possibilities for the intermediate shaft layout.  In the 

shortest case the shaft is only a tooth coupling and a flexible coupling, 

between the engine flywheel and the propulsor input flange. 

In order to prevent the forces from the propulsor and the shafts to 

damage the prime mover a flexible coupling has  always  to be installed 

between the engine flywheel and the intermediate shaft package. 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

11 

 

Tooth Coupling and Flexible Coupling 

This is the shortest possible intermediate shaft installation, where the 

shaft is a mere tooth coupling connected to the propulsor flange at one 

end and to the flexible coupling on the prime mover flywheel. 

 

 

Fig. 11.  Using only a tooth coupling and a flexible coupling results in the shortest possible 

intermediate shaft line arrangement 

Stub Shaft 

The next shortest intermediate shaft is a short, so called stub shaft. The 

shaft should be equipped with a pair of bearings to take the gravity load of 

the shaft and thus the shortest possible length  is one that provides for 

space for the bearings. The stub shaft is usually fixed by flanges to the 

propulsor input flange and the flexible coupling on the prime mover 

flywheel. 

 

 

Fig. 12.  The stub shaft arrangement is another very compact installation method. 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

12 

 

Centalink 

If a short shaft without bearings is preferred a possibility is to use a so-

called  flexible shaft ,e.g.  Centalink, where the  shaft (normally of tube 

type) is integrated  to torsionally stiff flexible elements at each end of the 

shaft. 

 

Carbon Fibre Shaft 

A novel solution for straight shaft installations is to use a large diameter 

hollow carbon fibre shaft, which requires no bearings. The use of a carbon 

fibre shaft is feasible in stern drive tugs, where a  conventional straight 

shaft otherwise would be used. The carbon fibre shaft will save weight and 

installation work compared to a conventional shaft with bearings and 

bearing foundations. The carbon fibre shaft is using the same flexible 

elements as in the Centalink solution above. Maximum length of a single 

piece shaft is approx. 8 m. 

 

 

Fig. 13.  The  “flexible” shaft line arrangement – with no bearings – enables a fast and easy 

installation of the intermediate shaft. 

 

Single Cardan Shaft 

If the engine is installed close to the same level as the propulsor and 

rather close to each other a single cardan shaft can be used as the 

intermediate shaft. In order not to damage the engine a stub shaft is 

required, at least for power ratings above, say 600 kW. The stub shaft 

requires a pair of bearings capable of taking axial forces and to take the 

shaft weight. Note that the cardan shaft cannot be used with very small 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

13 

 

angles, a minimum of 1º is normally required to ensure that the joint 

bearings are moving. 

 

 

Fig. 14.  Sometimes it is feasible to use the single cardan shaft solution. Also this installation will 

require a stub shaft and flexible coupling. 

 

 

Typical ASD Intermediate Shaft 

The typical intermediate shaft arrangement on a stern drive tug comprises 

cardan shafts and a rather long straight shaft. Also this arrangement will 

require a stub shaft at the prime mover end as well as a flexible coupling 

to save the prime mover from damage. 

 

 

 

Fig. 15.  The typical intermediate shaft on stern drive tugs comprise two cardan shafts with a long 

straight shaft in between. At the prime mover end a stub shaft and a flexible coupling wil be 

required 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

14 

 

21. 

Shaft Angle  

The height difference between prime mover flywheel and azimuth 

propulsor input flange should be kept as small as possible. Maximum 

allowed height is dependent on distance between the prime mover and 

cardan shafts chosen. 

Maximum usable angle is approximately 7.5º per joint, due to cardan shaft 

rpm, bearing lifetime, and vibration. Use of the maximum angle has to be 

separately checked. In order to avoid later problems,  maximum 

recommended angle is 6 ...6.5º per joint. 

 

max. 15

o

 

Fig. 16   The angle of the intermediate shaft should be minimized - maximum recommended angle is 

usually 15º 

 

 

22. 

Cardan Joint Phasing. 

In order to improve the performance and lifetime of the cardans as well as 

to reduce the risk for vibration problems on the intermediate shaft, the 

cardan shaft joints at each end of the intermediate shaft should be in the 

same phase for an odd number of shaft bearings and in different phase for 

an even number of bearings. 

 

 

 

Fig. 17  Cardan shaft phasing. Above with same phase for intermediate shaft with odd number of 

bearings. Below with different phasing for intermediate shafts with even number of 

bearings. 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

15 

 

 

GENERAL LAYOUT 
23. 

Forecastle 

Stern drive tugs for harbour use should be designed without a forecastle. 

The normal direction of work is “over the bow” and thus the main towing 

point and winch are installed on the foredeck. A forecastle will bring the 

towing point considerably higher deteriorating the stability. Also on coastal 

tugs the forecastle should be kept as low as possible, preferably only as 

half height forecastle. 

h

H

 

 

Fig. 18  Stern drive tugs for harbour and coastal duty should have the foredeck as low as possible, 

as most of the normal operation is “over the bow”. A high forecastle causes a high heeling 

moment due to the towing point position 

 

24. 

Aft Deck 

The stern “corners” should be rounded with a large radius, enabling 

turning against a ships hull during ship handling operations.  The fendering 

should be smoothly continuing without sharp corners between the bow and 

side fendering and the stern and side fendering, as the ASD tug is able to 

push with either bow, stern or sides against the assisted vessel. 

 

CL

 

 

Fig. 19  A good stern deck has large-radius rounded corners 

 

 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

16 

 

25. 

Towing Hook / Aft Towing Winch 

If the tug is equipped with an aft towing point / hook it should be 

positioned as far forward as possible on the main deck and have to be in 

front of the propulsion units, in order to improve/enable manoeuvring 

while working over the stern. 

 

26. 

Superstructure 

The superstructure should be designed as narrow as possible, with a small 

wheelhouse far from the sides to enable the operation under the   flair , 

bow or stern of large vessels e.g. container vessels, without the  risk for 

damage on the tug or the assisted vessel. Also smoke stacks and fire 

monitors should be as close to the centreline as practically possible. 

 

 

Fig. 20  This sketch shows the need for narrow and central superstructure and wheelhouse, 

especially for the handling of vessels with high flare. 

 

 

27. 

Wheelhouse 

The wheelhouse should be designed as small and compact as practicable, 

in order to ensure the efficient use of a single control position layout. The 

tug master should have as good view as possible from the steering 

position – minimum requirement is that the bow fender as well as the aft 

corners are visible as well as the bow winch and aft towing hook or winch . 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

17 

 

 

 

Fig. 21 The important lines of sight from the wheelhouse are to the bow fender and stern corners, 

ideally to the winch and as much of aft deck as possible. Visibility upwards is also important 

for tugs assisting high freeboard / high sheer vessels (see fig. 7). 

 

 

Fig. 22 An example sketch of a single steering position wheelhouse layout, with “walk -through” 

control layout. The helmsman’s chair is installed on tracks to enable it to be moved out of 

the way. 

 

 

28. 

Control Layout 

The azimuth propulsor controls should be positioned in a way to enable the 

helmsman to easily concentrate on the tug operations, not on how to 

handle his tug. The optimum solution is to place the control cabinets on 

each side of the steering position. The distance between the cabinets 

should allow the (possible) helmsman’s chair to fit between them, but the 

distance between the propulsor controls should be kept between 55 cm 

and 65 cm. 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

18 

 

55 ...65 cm

 

 

 

Fig. 23 A typical single steering position layout with a “walk-through” control layout. The distance 

between the azimuth propulsor controls should be 55-65 cm. 

PROPULSOR ROOM SPACE 
29. 

Propulsor Room Space 

There should be enough internal height in the propulsor room to allow for 

installation as well as maintenance of the units. Recommended is a height 

of 200 …300 mm above the units. A separate bolted-on maintenance hatch 

can be installed above the unit if enough height is otherwise not available. 

The Steerprop Azimuth Propulsors are designed to be as short as possible, 

i.e. the internal height requirement is minimised and thus the units are 

suitable also for low deck heights. 

 

MAIN ENGINE 
30. 

Main Engine Choice 

The propeller and main engine should be chosen together in order to 

ensure that there is enough of torque available even in negative water 

inflow to the propellers. If not, there is risk for engine overload and 

stalling in a critical phase of ship handling. 

 

ESCORT TUGS 
31. 

Special Requirements 

In order to improve the escort capability of a “standard” stern drive tug 

design. The main requirement is stability. A minimum metacentric height 

of 3 m is recommended. 

background image

1/2001 

March 2001 

 

DESIGNERS’ CHECKLIST Nº 1 

Azimuth Stern Drive Tugs

 

 

19 

 

Maximum obtained towline in indirect arrest is dependent on the positions 

of the azimuth propulsor, the tow point and the centre of effort of the 

underwater part of the hull. For more information please contact Steerprop 

office in Rauma. 

 

EXTERNAL CONNECTIONS 
32. 

Electricity 

The  Steerprop propulsors require an external feed of electricity for the 

control, for the display and emergency steering as well as for the alarms. 

The system is of 24 V DC type and the electricity is required to the control 

cabinets, normally situated in the engine room. 

The electricity demand is approx. 300 W for the primary steering, approx 

100 W for the emergency steering and display and approx. 50 W for the 

alarms. 

The electricity feed is required to be continuous with a battery backup. 

 

33. 

Cabling 

The controls will require three cables for each propulsor to be drawn 

between the wheelhouse control stand and the engine room / propulsor 

room. There is one cable for the main control, one for the emergency 

control and display and on cable for the alarms. 

 

34. 

External Tanks 

The Steerprop propulsors require a shaft seal tank of approx. 20 litre 

capacity for each propulsor to be installed in the propulsor room. For units 

with hydraulic steering (normal for stern drive tugs) a hydraulic unit  -  

comprising required tanks (capacity 60 …100 litres), filters, valves and 

coolers  – need to be installed close to each propulsor . The unit is 

delivered as a part of the Steerprop delivery. The hydraulic unit need to be 

connected to the propulsor with 6 pipes between the propulsor and the 

hydraulic unit and 5 pipes between the hydraulic unit and the propulsor. 

 

35. 

Cooling 

The Steerprop units are equipped with coolers that need to be connected 

to a cooling water system (fresh or sea water) the water capacity need is 

100 …200 litres/min, depending on propulsor size and power. These values 

are for an input water temperature of +32º C. 

background image

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 

 

 

Steerprop Ltd. 

P.O. Box 217 

FIN-26101 RAUMA 
Finland 

 
e-mail: steerprop@steerprop.com  

phone: +358 2 8387 7900 
fax: 

+358 2 8387 7910 

 

 

w w w . s t e e r p r o p . c o m