background image

Section 7 

4

7.3   WINCH DRIVES 

Winch drums are driven through reduction gears by a motor which may be powered by hydraulic 
pressure, electricity or steam. Hydraulic motors may be powered by a central power pack (which 
may also be used to power other motors such as those of cranes or cargo winches), or may be 
part of a self-contained winch incorporating an electrically driven hydraulic pump in each winch. 
Another version of a unitised hydraulic winch drive employs a torque converter for power 
transmission between an electric motor and the winch gearing. 

The winch drive should ideally allow for continuous variation in line speed, permitting heaving 
and rendering at high speed when the load is small, and developing high pull when the speed is 
low. The pull at stalled heave should not exceed 50% of the mooring line's MBL to prevent 
routine overstressing of the mooring line. 

The considerations guiding the selection of drive systems at a ship's design stage will not be 
discussed in detail, since many are beyond the scope of this guide: these include initial cost, 
maintenance cost, energy cost, reliability, company experience, climatic conditions, availability of 
steam and interconnection with other systems. There are also many variations within each 
category (especially within hydraulic and electric systems) that may significantly alter the 
performance, reliability and cost. Any of these are acceptable aboard tankers if they are properly 
designed and executed. 

Onboard arrangements should address the need to ensure that power supplies to mooring 
equipment, including steam, hydraulic or electric, are sufficient and adequately protected. Where 
the power source is a single hydraulic motor, alternatives in the form of a spare motor or cross-
connection capability, should be available.     

The following short discussion on each basic type places emphasis on the speed/pull 
characteristics: 

7.3.1   Hydraulic Drives 

The speed/pull characteristic varies with the type of motor: 

•  The speed of a low pressure vane motor can be infinitely varied up to the rated speed by 

a special throttle valve. High slack rope speeds can be obtained only by suitable drive 
modifications to provide a high speed range at reduced torque. 

•  A high pressure variable displacement hydraulic motor has an ideal speed/pull 

characteristic within certain limits. To achieve a high slack line speed, a speed change 
provision is required. 

•  A low speed high pressure radial piston motor has high torque and can be infinitely 

varied up to the rated speed by the manoeuvring valve. To achieve high slack line 
speed, the motor can have a dual speed step enabling high speed without any gear 
arrangement. 

•  A torque converter drive has a similar characteristic as a variable displacement high 

pressure motor and it also requires a second gear step to provide for a high slack line 
speed. 

7.3.2   Self-Contained Electro-Hydraulic Drives 

Self-contained electro-hydraulic winches have their own hydraulic pump unit which alleviates the 
need for any external hydraulic pipework. They demonstrate the same operational benefits as 
other hydraulic winches. 

7.3.3  Electric Drives 

Electric winches have been fitted to several tankers in recent years. The advantages of electric 
drives include reliable operation, reduced maintenance and the low risk of oil pollution when 
compared to hydraulic drives. In general, each electric motor is equipped with a fail-safe disc 
brake and each winch can be operated either individually or simultaneously with all other 
winches.Electric winches are of two different types: 

background image

Section 7 

5

•  frequency controlled. 

•  pole changing multispeed motors. 

 
Frequency control. 
 
A frequency controlled electric winch is driven by a single speed electric motor controlled by a 
frequency converter which performs infinitely varied speed and torque control allied with smooth 
starting and stopping equivalent to hydraulic winches. The frequency control also results in 
acceptable slack line speeds.  
 
Pole changing multispeed motors. 
 
Electric winches with pole changing motors are operated in fixed speed steps. Most common 
units have three speed steps, where the first two are for normal operation and the third is for high 
slack line speeds. Speed control for these winches is via on-off switching for each of the fixed 
speed steps. 

 

7.3.4   Steam 

In the past, steam winches have been popular on large tankers. They are simple, safe, robust 
and have an ideal speed/pull characteristic. A minor drawback of the typical twin cylinder double 
acting steam engine is the non-uniform torque (varying by up to 50% for each 45% of crankshaft 
rotation). This is most noticeable at very low speeds. 

Because of the widespread change from steam main propulsion systems to diesel systems, now 
also apparent on LNG carriers, alternative winch drive systems utilising hydraulic or electric 
power have gained in popularity. 

 

7.4   WINCH BRAKES 

The brake is the heart of the mooring system, since the brake secures the drum and thus the 
mooring line at the shipboard end. A further important function of the brake is to act as a safety 
device in case the line load becomes excessive, by rendering and allowing the line to shed its 
load before it breaks. 

Ideally, a brake should hold and render within a very small range, and once it renders, should 
shed only enough load to bring the line tension back to a safe level. Unfortunately, the widely 
used band brake with screw application is only marginally satisfactory in fulfilling these 
requirements and its operation requires special care. 

The brake holding power is based on the final mooring calculations which are a function of the 
ship's size and hull form. The following diagram depicts the process used to assess mooring line 
characteristics and winch design parameters. 

background image

Section 7 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7.3: CALCULATION OF MOORING LINE MBL AND RELATIONSHIP TO WINCH 

PARAMETERS 

 

7.4.1  Layers of Mooring Line on Drum 

Split-drum Winch 

The rated brake holding capacity is only achieved with one layer of line on the tension section of 
the drum. Operation with additional layers will decrease the brake holding capacity. 

As an example, the theoretical reduction in holding load for more than one layer on a 610mm 
(24") diameter drum is as follows and assumes a rated brake holding capacity of 55 tonnes: 

 

Layer of Line  

Theoretical 

Holding Capacity 

(tonnes)       (kN) 

% Rated 

Holding 

Capacity 

1 55 

539 

100 

2 49 

481 

89 

3 45 

441 

82 

4 41 

402 

75 

5 38 

373 

69 

 

Undivided Drum Winch 

Brake holding capacity of the undivided drum winch, as with the split-drum winch, is affected by 
the number of layers on the drum. It is therefore, essential that the operator of an undivided drum 
winch knows the number of layers of mooring line on the drum that the manufacturer states will 
develop the design brake capacity. More layers on the drum will increase the moment applied to 
the drum because of the increased moment arm. This means that a smaller mooring line load will 
provide the moment which will cause the brake to slip. Conversely with less layers on the drum, 
mooring line loads must be larger to cause the brake to slip. It is very possible that mooring line 
loads could become excessive, thereby increasing the possibility of mooring line failure. Thus, 
the operators, as in the case of split-drums, should be advised and trained in the use of the 
undivided drum winch to ensure the integrity of moorings and the safety of the ship. 

Ship Size and Hull Form

(input data from Shipyard/Ship Designer

Mooring Force Calculation

Ref Section 2.3

Mooring Re straint Requirements

Ref Section 2.4

Mooring Re straint Requirement/Number of 

Mooring Lines in Same Group =

MBL of Mooring Line

MBL gives ‘De sign Rope’

Table 7.1 and ISO 3730

‘Design Rope’ leads to following Winch 
parameters:

Brake Design Load   = 80% of line MBL

Brake Holding Load   = 60% of line MBL

Winch Pull: not to exceed 30% of line MBL

Drum Diameter            = 16 x line diameter

Width of Tension Part = 10 x line diameter 

Ship Size and Hull Form

(input data from Shipyard/Ship Designer

Ship Size and Hull Form

(input data from Shipyard/Ship Designer

Mooring Force Calculation

Ref Section 2.3

Mooring Force Calculation

Ref Section 2.3

Mooring Re straint Requirements

Ref Section 2.4

Mooring Re straint Requirements

Ref Section 2.4

Mooring Re straint Requirement/Number of 

Mooring Lines in Same Group =

MBL of Mooring Line

Mooring Re straint Requirement/Number of 

Mooring Lines in Same Group =

MBL of Mooring Line

MBL gives ‘De sign Rope’

Table 7.1 and ISO 3730

MBL gives ‘De sign Rope’

Table 7.1 and ISO 3730

‘Design Rope’ leads to following Winch 
parameters:

Brake Design Load   = 80% of line MBL

Brake Holding Load   = 60% of line MBL

Winch Pull: not to exceed 30% of line MBL

Drum Diameter            = 16 x line diameter

Width of Tension Part = 10 x line diameter 

‘Design Rope’ leads to following Winch 
parameters:

Brake Design Load   = 80% of line MBL

Brake Holding Load   = 60% of line MBL

Winch Pull: not to exceed 30% of line MBL

Drum Diameter            = 16 x line diameter

Width of Tension Part = 10 x line diameter 

background image

Section 7 

7

When applying the requirement for winch brakes to hold to a minimum holding load of 60%  of 
MBL to undivided winch drums, due consideration should be given to the number of layers of 
mooring line which will be wound on a drum during normal operations. For this purpose, it should 
be assumed that a minimum of 30-50 metres of mooring line will be outboard of the chock. 

7.4.2  Band Brakes 

Band brakes follow the same principle as wrapping a rope around a bitt or warping head to hold a 
line's force. Relatively little force is required to hold a high load. This principle provides for easy 
brake application, but has disadvantages such as sensitivity to changes in friction, dependency of 
setting force on rope force and sensitivity to reeling direction. 

The main factors which affect the actual holding capacity of the band brake are discussed 
below: 

7.4.2.1  Torque Applied 

Figure 7.4 shows the results of a series of brake holding load tests on a VLCC when the torque 
applied is varied. It can be seen that the holding load will drop appreciably when the torque 
applied is lower than the recommended value. It is, therefore, essential that the operator applies 
the brake properly. 

 

 

FIGURE 7.4:  EFFECT OF APPLIED TORQUE ON BRAKE HOLDING POWER 

 

Shipboard inspections have shown that winch brakes are very often not torqued to their design 
level and, in some tests, two men were required to apply the required torque. Hence, several 
VLCC operators are now installing hydraulically actuated brakes on new VLCCs and are 
retrofitting them on older VLCCs to ensure proper brake holding load. As an alternative, to 
ensure proper brake holding load, many operators are installing spring-applied brakes with 
hydraulic or manual release on new ships.  

Whichever brake arrangement is installed, it is essential that it is operated properly to achieve 
desired holding loads. 

Also, it has been found that some winch actuators and controls are poorly positioned. As a result, 
the operator is unable to see what is happening on deck. Proper design is essential to ensure 
proper operation. 

background image

Section 7 

8

7.4.2.2  Condition of the Winch 

The physical condition of the winch gearing and brake shoe linings have a significant effect on 
brake holding load capacity. Oil, moisture or heavy rust on the brake linings or brake drum can 
reduce brake holding load capacity by up to 75%. Many operators run the winch with the brake 
set slightly to burn off or wear off the oil or moisture. Care, however, must be taken to ensure 
that excess wear is not caused by this practice when using composite brake linings. Excessive 
winch speed can also reduce brake holding capacity by the build-up of heat in the composite 
brake lining. 

7.4.2.3  Winch in Gear 

Winches should never be left in gear with the mooring drum brake on. Hydraulic or electric drives 
can suffer severe damage should the brake render.  

Mooring drums should always be left disconnected from the winch drive whenever the mooring 
line is tensioned and the drum brake is fully applied.  

7.4.2.4  Friction Coefficient 

A small change in the friction coefficient will cause a large change in the holding capacity. As a 
rule of thumb for typical mooring winch brakes, the change in holding capacity is twice the 
change in the friction coefficient. For example, a 10% change in friction will cause a 20% change 
in holding capacity. The friction change can be due to wear of the rim or brake lining, or to 
changes in weather conditions, among others. This drawback can be partially offset by stainless 
steel lining of brake rims and by frequent testing and recalibration. 

Asbestos-free brake linings generally have a higher friction coefficient than asbestos linings and 
their performance remains relatively constant in wet and dry conditions. 

When changing from an asbestos to asbestos-free brake lining, it should be confirmed that the 
new lining has a friction coefficient that corresponds to the original design. The brake should be 
tested before the winch is returned to service and its holding power reconfirmed. 

7.4.2.5  Load Dependency of Holding Capacity 

Once a line load is applied to the drum, the brake band will stretch, reducing the load on the 
brake controls. For this reason, a conventional screw brake can be easily re-tightened when the 
mooring line is under high load, even if it was set hard originally. This means that there is no way 
to determine the proper handwheel torque required once the winch is subjected to a high line 
load. The danger exists that under worsening environmental conditions the brakes can be re-
tightened to the point where the line may part before the brake slips. The problem can be solved 
by using spring applied brakes. The spring automatically compensates for the elongation of the 
brake band, thus assuring a constant holding capacity of the brake. It also prevents the brake 
from being over-tightened. 

background image

Section 7 

9

 

FIGURE 7.5:  SPRING-APPLIED BRAKE WITH HYDRAULIC RELEASE 

A schematic of a spring-applied band brake is shown in Fig. 7.5. In the case shown, the brake is 
released by a hydraulic hand pump. To apply the brake, a valve is opened to release the 
hydraulic pressure. Winches with hydraulic drives can utilise the main hydraulic pressure to 
release the brake. The handwheel is not used for routine operation: it serves to adjust the spring 
compression during calibration, and to release the brake in case of a hydraulic malfunction. The 
handwheel should be secured with a seal after each calibration to prevent tampering. 
Alternatively, the brake screw can be equipped with a brake setting indicator to provide an easy 
visual check of the correct adjustment of the brake setting.  

A manually operated spring-applied brake is shown in Fig. 7.6. When tightening the brake screw 
the spring is compressed and the compression is proportional to the holding load of the brake. 
When the brake is adjusted to the correct rendering force, an indicator is adjusted so the brake 
can be reset repeatedly to its correct value. This type of spring-applied brake setting indicator 
compensates fully for any wear of the brake lining and elongation in the brake mechanism. 

 

FIGURE 7.6  SPRING-APPLIED BRAKE WITH MANUAL SETTING AND RELEASE 

 

background image

Section 7 

10

7.4.2.6  Sensitivity in Reeling Direction 

A band brake is designed to work in one direction only. Therefore the line must always be reeled 
correctly onto the drum. Each arrangement should be assessed on a case-by-case basis with 
reference to manufacturer's guidance. With lines correctly reeled, tension on the line should be in 
a direction that causes the free end of the band to be forced towards the fixed end, thereby 
forcing the two halves of the band to close together.  
 

Disc brakes work equally well in either direction. 

Some winches are equipped with hydraulic-assist brakes where a hydraulic cylinder is used to 
set the brake. A pressure gauge connected to the cylinder allows the brake to be applied with 
the proper force, predetermined during brake testing. Once the brake is applied with the 
hydraulic assist, the load is transferred to the mechanical linkage by tightening the handwheel 
until the pressure in the assist cylinder starts to drop. Although this feature eliminates the need 
for a torque wrench, the brake has the same drawbacks as the mechanical screw brake 
mentioned above. This type of brake is therefore not recommended for new ships. 

Since hydraulic-assist brakes and some spring-applied brakes with hand hydraulic release look 
similar, it is very important that operators study the instruction book for their particular ship's 
installation. 

7.4.3  Disc Brakes 

Disc brakes are in wide use for input brakes (see Section 7.4.4), but few, if any, winch 
manufacturers offer them for drum brakes.  

7.4.4  Input Brakes 

Some  hydraulic winches and most electric winches are provided with spring-applied brakes at 
the drive motor. They are automatically applied by springs when the control lever is in neutral 
and automatically released when the control lever is in the heave or rendering position (when the 
motor is powered).  

Some high pressure hydraulic winches are equipped with a counterbalance valve acting as a 
motor brake. In these cases, it is important to apply the drum brake immediately after completion 
of the mooring operation as the motor will creep in the pay-out direction due to internal leakage 
in the hydraulic motor.  

ISO Standard 3730 requires all electric winches to be provided with automatic brakes having  a 
holding capacity of 1.5 times the rated load.  

Multiple-drum winches always require a brake for each drum. 

Most input brakes are not rated to serve as a primary brake due to strength limitations of the 
gears. If this is the case, once the ship is moored the drum must be set on the drum brake and 
disengaged from the drive by means of the dog clutch. If the drum is left engaged and the drum 
brake is set, both brakes will work in unison (rated holding capacity is directly additive). The 
combined holding capacity will exceed 100% of the line's MBL, an undesirable result for reasons 
explained earlier. (See also 7.4.2.3). 

7.4.5  Winch Brake Testing 

Regardless of the brake type, periodic testing is essential to assure a safe mooring. The following 
provides a guide for testing of mooring winch brakes: 

 

7.4.5.1   General 

Before testing a winch brake, it should be ensured that the brake and the brake drum is in a 
satisfactory condition. Any damage or failure should be rectified before any testing takes place. If 
the brake has not been in use for some time, it should be applied slightly with the winch running 
in the pay out direction, thereby cleaning the brake drum surface and the brake lining. 

background image

Section 7 

11

The main purpose of brake testing is to verify that the brake will render at a load less than the 
design rope's MBL. New ships are normally supplied with a brake test kit of the simplified type. 
Each winch manufacturer will have their own test equipment and procedures which should be 
followed by the operator, details of which will be contained in the instruction manual.  

7.4.5.2   Frequency 

Each winch brake is to be tested individually and tests are to be carried out prior to the ship's 
delivery and every year thereafter in line with recommendations in the International Safety Guide 
for Oil Tankers and Terminals (ISGOTT), Reference 4. In addition, individual winches are to be 
tested after completion of any modification or repair involving the winch brakes, or upon any 
evidence of premature brake slippage or related malfunctions. Brakes should be tested to prove 
that they render at a load that is equivalent to 60% of the line's MBL. 

The provision of a stopper arrangement on the tightening screw, such as placing locking nuts on 
the threaded end, is NOT acceptable due to safety reasons as it will impede the brake setting 
and reduce the brake holding load. See Figure 7.7 below. 

FIGURE 7.7: IMPROPER FITTING OF LOCKING NUTS TO BRAKE TIGHTENING SCREW 

7.4.5.3  Test Specification 

For each ship a winch test specification is prepared incorporating specific instructions for setting 
up the test gear, preparation of the winch for testing, setting of the winch brakes, application of 
the test load, revision of torque wrench or hydraulic pressure readings if required, and recording 
of test results. It should be noted that the  coefficient of friction of the asbestos brake lining is 
considerably affected by moisture. Newer types of asbestos-free brake linings are more stable 
and are not so sensitive to moisture. To assure constant results the winch should  be operated for 
a short period with the brake set slightly on to dry the brake surface. 

7.4.5.4   Supervision of Testing 

All winch testing is to be carried out under the supervision or in the presence of a senior officer 
designated by the Master or Chief Engineer or repair superintendent familiar with the test 
procedure and the operation of the winches. 

 

7.4.5.5   Test Equipment 

Typical equipment for testing the brakes is shown in Figure 7.8 , and includes the following items: 

•  Lever consisting usually of two pieces of bar as shown on the sketch. The lever is 

secured to the drum of the winch by means of bolts furnished with the test kit and fitted 
through holes provided in the drum flange; 

•  Hydraulic jack with pressure gauge; and 

•  Foundation to be placed under the hydraulic jack for the purpose of distributing the load 

into the deck structure. 

background image

Section 7 

12

It is recommended that a complete set of test equipment is placed on board each ship, properly 
stowed in an appropriate location. Alternatively, the Owner may elect to procure one or two sets 
of testing equipment for each type and size of winch and retain this equipment in a convenient 
central location for shipment to repair facilities as required. 

 

FIGURE 7.8 :  TYPICAL WINCH BRAKE TEST EQUIPMENT 

7.4.5.6   Method of Testing 

The testing arms are bolted to the flange of the winch drum with the hydraulic jack pressed under 
the end of the arms at the designated location and resting on supports. The flange brake is set 
as recommended in the test specification. If the winches are set manually, a torque wrench 
should be used. If they are set hydraulically, the pressure gauge should first be calibrated. 

Before testing, the detailed instructions for testing included in the test specification should be 
reviewed and the equipment prepared accordingly. The instructions will include: 

•  The values for torque wrench or pressure gauge fitted for setting up the brakes; 

•  A curve or table relating hydraulic jack test pressure to line pull; and 

•  Hydraulic jack pressure at which the brake is designed to render. 

With the winch prepared for testing, the testing gear securely in place and winch brakes set in 
accordance with the recommendations, pressure is applied to the hydraulic jack. The winch drum 
is to be carefully observed. At the first sign of movement, the hydraulic pressure applied to the 
jack is recorded and the following action taken: 

•  If slippage occurs at a pressure less than designed, the brake should be tightened or 

background image

Section 7 

13

repaired and jack pressure reapplied; 

•  If the recorded pressure corresponds to the design pressure the jack should be 

released and the test gear removed; or 

•  If slippage does not occur at the design pressure, the brake setting should be 

adjusted so the brake can render at the design load. 

The lever should be lightweight for easy handling. Testing can be further simplified by reducing 
the lever to slightly more than the drum flange radius and placing the jack directly on the winch 
foundation. A graphic depicting  such a test arrangement is shown in Fig. 7.9 . In place of the 
heavy lever, a simple fitting attached to the drum flange suffices. The higher jack loads may pose 
a problem for existing equipment, but provision for this method can easily be incorporated into 
new equipment. 

Once the brakes are tested and calibrated, the proper setting should be recorded. In case of 
conventional screw brakes, a tag should be attached stating the proper torque. For spring-
applied brakes, the spring compression distance should be recorded and the spring adjustment 
mechanism secured with a seal. 

 

FIGURE 7.9 :  SIMPLIFIED BRAKE TEST KIT 

 

7.4.6  Brake Holding Capacity 

The primary brake should be set to hold 60% of the mooring line's MBL. Since brakes may 
deteriorate in service, it is recommended that new equipment be designed to hold 80% of the 
line's MBL, but have the capability to be adjusted down to 60% of the line's MBL. A drum brake 
holding capacity of 80% MBL is also required by Lloyds, DNV and ISO Standard 3730 with the 
rope on the first layer. If a brake of an undivided drum is set to hold 80% MBL on the first layer, it 
will hold approximately 65% MBL on the third layer. 

When testing spring-applied brakes, it is important to bear in mind that, in service, the brake 
band will rotate some quarter to half a turn beyond the initial slipping point experienced when 
tested before full holding load is achieved. Thus, for spring-applied brakes, the final holding load 
will be higher than the initial slipping load recorded. This load could be some 10 – 20% above 
the test load due to a combination of the servo effect in the brake and the spring force acting on 
the brake screw, which compensate for the elongation in the brake band and mechanism. 

background image

Section 7 

14

Should a spring-applied brake be tested to 80% of the line's MBL, the final brake holding load 
could be 90 – 100% of the MBL. It is therefore important that spring-applied brakes are tested 
and adjusted to render at no more than 60% MBL, resulting in a final brake holding load of about 
70 – 80% of the MBL, as illustrated in Figure 7.10 below.   

FIGURE 7.10: EFFECT OF SLIPPAGE ON FINAL BRAKE HOLDING LOAD – 

SPRING-APPLIED BRAKES 

'80%' to change to '60%'. '90–100%' to change to '70 – 80%'

 

 

7.5   WINCH PERFORMANCE 

The principle performance particulars for different size mooring winches should correspond to 
values listed in Table 7.1, noting the further explanations in 7.5.1. These are in general 
agreement with ISO Standard 3730, except for minimum light line speed and in-service setting of 
brake. 

7.5.1  Rated Pull (also called drum load or hauling load) 

This is the pull that the mooring line can develop at the rated speed on the first layer. The listed 
values should not be less than 22% and not more than 33% of the design line’s minimum 
breaking strength. This value assures adequate force to heave in against environmental forces. 
On the other hand, it is low enough to prevent line overstressing in the stalled condition, 
considering that the stall pull is generally higher than the rated pull for most drive types. 

7.5.2  Rated Speed (also called nominal speed or design speed) 

The rated speed is the speed that can be maintained with the rated load applied to the mooring 
line. The rated speed in combination with the rated pull determines the power requirement for the 
winch drive. The recommended rated speed is higher for the smaller size winches because the 
smaller sizes are intended for smaller ships and these warp and moor more quickly than large 
ships. 

7.5.3  Light-Line Speed (also called no-load speed or slack-line speed) 

This is the speed that can be achieved by the winch with negligible load on the line. High speed 
is essential to pass a line quickly to a shore mooring point or to bring the line quickly back on 
board. The listed value recognises that during this phase the line is normally not on the first 
layer, even on split-drum winches, and the actual line speed could be up to 50% higher. The 

Brake Holding
Load

Drum
Rotation

Slipping point
with brake test kit 

Final brake
holding load

80%

90-100%

~ ¼

~ ½

Brake Holding
Load

Drum
Rotation

Slipping point
with brake test kit 

Final brake
holding load

80%

90-100%

~ ¼

~ ½

background image

Section 7 

15

slack line speeds achievable are different for different types of drives and this should also be 
considered when specifying performance and drive type for new equipment. For example, a low 
pressure two-speed vane motor can achieve only twice the rated speed. 

7.5.4  Stall Heaving Capacity (also called stall pull) 

This is the line pull the winch will exert when the control is in heave and the line is held stationary. 
A high stall heave capacity is desirable to winch a ship onto the pier against high environmental 
loads. On the other hand, the stall pull should not be so high that there is any danger of line 
breakage, and should never exceed 50% of the mooring lines MBL. Achievable stall pull depends 
on the drive type and control. As a rule of thumb the following ratios of stall pull to rated pull may 
be assumed: 

Hydraulic  

1.05  

Electric  

1.25 

Steam-driven   1.50 

7.5.5  Drum Capacity 

The drum should be capable of stowing the total line length. Table 7.1 lists the drum capacities 
as specified in ISO Standard 3730. Two capacities, 'normal' and high' are indicated. Winches 
with undivided drums could be more suitable for the 'normal' capacity since this would reduce the 
number of layers required. ISO Standard 3730 also specifics that for undivided drums the total 
number of layers shall not exceed five for normal capacity drums and eight for high-capacity 
drums when the total hawser length is stowed on the drum. For split drums, there is no limitation 
on the number of layers on the storage section. The ISO standard notes the possibility of line 
damage if large loads are applied while more than four layers of rope are reeled on the drum. 
This  applies to wire rope, since the standard also warns of a short rope life if synthetic rope 
under tension is wound in more than one layer. 

On split-drum winches, it should be possible to store the total length of the mooring line on the 
stowage part of the drum. This would facilitate the rapid payout of a line during mooring without 
the need to transfer the line through the dividing flange slot. An allowance for 1.5 extra layers 
should be made when determining the flange diameter of 'normal' capacity drums storing wire 
ropes.  

 

 

background image

Section 7 

16 

TABLE 7.1: PERFORMANCE SPECIFICATION FOR MOORING WINCHES

BRAKE HOLDING 

FORCE * 

DRUM CAPACITY *** 

RATED 
WINCH 

SIZE 

RATED 

PULL* 

RATED 
SPEED 

MIN * 

LIGHT-

LINE 

SPEED 

MIN ** 

DESIGN 

ROPE 

DIA. 

(WIRE 

ROPE) 

MINIMUM 

BREAKING 

STRENGTH 

OF ROPE 

STALL 

PULL 

MAX. 

DESIGN 

VALUE 

NEW 

(80%) 

IN-

SERVICE 
SETTING 

(60%) 

MINIMUM 

DIA. OF 

DRUM 

 
Normal

 

 

High 

WIDTH 

OF 

TENSION 
SECTION 

**** 

 

See 7.5.1 

See 7.5.2 

See 7.5.3 

ISO 3730 

ISO 2408 

See 7.5.4 

See 7.4.6 

See 7.4.6 

See 6.2.4 

See 7.5.4 

See 7.2 

(t) 

kN   (t) 

m/min 

m/min 

mm 

kN    (t) 

kN   (t) 

kN    (t) 

kN    (t) 

mm 

mm 

12 

125  (12) 

12 

45 

26 

426  (43) 

213  (21) 

341  (35) 

256  (26) 

416 

200 

400 

260 

16 

160  (16) 

12 

45 

32 

646  (66) 

323  (33) 

517  (53) 

388  (40) 

512 

250 

500 

320 

20 

200  (20) 

9.6 

45 

36 

817  (83) 

408  (41) 

654  (67) 

490  (50) 

576 

250 

500 

360 

25 

250  (25) 

9.6 

45 

40 

1010  (103) 

505  (51) 

808  (83) 

606  (62) 

640 

250 

500 

400 

32 

320  (32) 

7.8 

45 

44 

1220  (124) 

610  (62)   976   (100) 732  (75) 

704 

250 

500 

440 

40 

400  (40) 

7.8 

45 

48 

1450  (148) 

725  (74)  1160  (119) 870  (89) 

768 

250 

500 

480 

*         With rope on first layer 

**       This is the desirable light line speed in the first layer and is in excess of the 0.5 m/s requirement of ISO Standard 3730. However, achievable light line      

speed depends on the winch drive as mentioned in 7.4 and 7.6.3, and should be clarified with the winch manufacturer. 

***      For split drums, this applies to the storage part of the drum. 

****    Applies to split drums only 

 

Note: Performance data also applies to winches designed for fibre ropes, but drum dimensions must be increased to suit the larger diameter of the fibre lines.   

 

background image

Section 7 

17

7.6   STRENGTH REQUIREMENTS 

 

The strength of the mooring winch structure should be based on the breaking strength of the line 
and the criteria given in Section 4. The winch should therefore be clearly marked with the range 
of rope strengths for which it is designed. 

Although brakes should slip before the line breaks, under extreme conditions such as over-
tightening of the brake or overriding rope turns, the winch may be subjected to the full MBL of the 
line. For this reason, it is recommended that all structural components of the winch including 
brakes, foundations and supporting deck structure should be designed in accordance with 
Section 4.4.10.  

Where a drive input brake is intended to be the primary brake, all components, including the 
reduction gears, must be based on the full MBL of the mooring line. For winches with undivided 
drums, the line must be assumed to be at the layer that produces the highest stress in each 
individual component. For split-drum winches the line shall be assumed to be on the first layer. 

Ship designers should pay special attention to the support structure in way of the fixed end of 
band brakes, as this is the major load transfer point. (See Section 5 for further details.)

  

 

7.7   WINCH TESTING 

 

In addition to brake testing per 7.4.4, the following acceptance tests are recommended. The 
tests are in general agreement with ISO Standard 3730. 

 7.7.1 Rules concerning testing at manufacturer's facility for the acceptance of the manufacturer 

and purchaser: 

•  Type testing 

One winch of each batch must be tested. This test may be replaced by a prototype test 
certificate if agreed by the manufacturer and purchaser. 

The test shall be carried out as follows: 

(1)  operation under load: alternately hauling and rendering at the rated load of the winch for 

30 minutes continuously. 

(2)  holding test: to be tested by applying the brake holding load to a rope led off the drum, 

with no rotation of the drum; this may be carried out on board ship if agreed between 
purchaser and manufacturer. 

(3) automatic brake system test: this test may be carried out on board ship if agreed 

between purchaser and manufacturer. 

(4)  throughout testing, the following should be checked: 

(a) tightness against oil leakages  

(b) temperature of bearings 

(c) presence of abnormal noise  

(d) power consumption 

(e) speed of rotation of the drum. 

Where tests are required in excess of the type test, they should be agreed between the 
purchaser and manufacturer at the time of the contract. 

•  Individual tests 

For hydraulic systems, care should be taken to ensure that there is no risk of contamination 

background image

Section 7 

18

and lines and systems should be flushed and cleaned prior to commissioning. The standard of 
cleanliness should meet the requirements of ISO 4406. 

The following tests should be carried out: 

(1)  operation under no load: running for 30 minutes, 15 minutes continuously in each 

direction, at light line speed. 

(2)  correct operation of brake system. 

 

(3)  throughout testing, the following should be checked: 

(a) tightness against oil leakages  

(b) temperature of bearings 

(c) presence of abnormal noise  

(d) power consumption 

(e) speed of rotation of the drum. 

 

7.7.2  On-board acceptance tests and inspections 

It is recommended that the following inspections and tests be carried out on board the ship using 
ship's power. 

•  Running tests 

The winch is to be run for ten minutes at light-line speed, five minutes continuously in each 
direction. Bearing temperature rises must be checked. 

 

7.8   SUMMARY OF RECOMMENDATIONS 
 

The following is a summary of the recommendations contained in Section 7. 

7.8.1  Recommendations for Ship Designers 

•  All winches should be controlled in the manual mode, including automatic-tensioning 

winches as presently designed, see 7.1.1. 

•  In selecting drive systems, the speed-pull relationship for various types should be 

considered, see 7.3. 

•  Minimum rated winch pull should be not less than 22% and not more than 33% of the 

design line’s MBL, see 7.5.1. 

•  Minimum rated speed should be selected on the basis of ship size, from minimum of 

7.8 m/min (0.13m/sec) for large ships and minimum of 12 m/min (0.20m/sec) for small 
ones, see 7.5.2 and Table 7.1. 

•  Minimum light line speed should preferably be 45 m/min (0.75m/sec), but will be 

dependent on the chosen drive system, see 7.5.3 and Table 7.1. 

•  Maximum stall pull should be 50% of the design rope's  MBL, see 7.5.4. 

•  New winch brakes should be designed for  holding 80% of the design rope's  MBL,. 

Operating load is to be set to 60% of the design rope's MBL, see 7.4.6.  

•  Stopper arrangements on the tightening screw, like locking nuts on the threaded end, 

are NOT acceptable due to safety reasons, see 7.4.5.2. 

•  Winch drums should have a minimum diameter of 16 times the design rope's 

background image

Section 7 

19

diameter, see 6.2.4. 

•  The tension section of a split drum should be wide enough for ten turns of the design 

wire or unjacketed high modulus rope. For other fibre rope types, a minimum of 5 or 6 
turns, see 7.2 and 7.2.1.   

•  Winch brakes should be of the  spring applied type with brake setting indicator, see 

7.4.2.5. Manually operated brakes should have the provision for correct setting and 
re-setting, see 7.4.5. 

•  To improve consistency of brake performance, stainless steel should be considered 

for brake drum surfaces, see 7.4.2.4. 

•  Winch brake testing provisions should be incorporated into the winch design, see 

7.4.5. 

•  The strength of all structural winch components, including drum brakes and deck 

support, should be based on the design rope's MBL. See Section 4.4.  

•  Winches should be clearly marked with the rope MBL for which they are designed. 

 

7.8.2   Recommendations for Ship Operators 

•  The instructions for the particular mooring winches should be followed carefully. Items of 

equipment which appear similar may require very different operation. 

•  Automatic tension mooring winches should only be used in the manual mode, see 7.1.1. 

•  Winch brakes should be tested annually  to hold 60% of the MBL of the mooring lines. 

After testing , a tag with proper setting values should be attached to the winch.  Spring-
applied brakes should be provided with a brake setting indicator to prevent incorrect 
setting, see 7.4.6. 

•  Mooring lines must be spooled onto the drum in the correct direction, since band brakes 

are designed to work in one direction only, see 7.4.2.6. Winch drums should be marked 
to show correct reeling or payout direction. 

•  Winches that are provided with both a drum brake and an input brake should be operated 

with one brake only while the ship is moored. On multiple drum winches, this will always 
be the drum brake. On single drum winches, the instruction book should be consulted to 
determine which brake is the primary brake designed to hold 60% of the line's MBL. 
Where the drum brake is the primary brake, the clutch between drum and shaft should be 
disengaged while the ship is moored. This applies also to winches without input brakes. 

•  When adjusting mooring lines under high load, the winch must be placed in gear and set 

to heave prior to the brake being slacked off. Failure to do this could result in damage to 
winch clutch mechanisms. 

 

 

background image

Section 8 

1

Section 8 

 

Mooring Fittings

 

 

8.1  INTRODUCTION 

 

Many national, shipyard and vendor standards exist for mooring fittings. However, one difficulty in 
establishing the general acceptability of a particular fitting is the inconsistency in load and design 
parameters between various standards. This can be partially compensated for by the continuing 
adoption of ISO Standards as the basis of national or vendor specifications. Unfortunately, the 
ISO Standards do not cover all mooring fittings, nor do they always provide the detail included in 
some national standards. Moreover, some ISO and national standards have not been updated to 
keep pace with industry progress, adding further to the difficulty in knowing which strength criteria 
are relevant to a fitting. It is therefore recommended that the criteria detailed in Section 4.4 are 
adopted. 

Any fitting of undocumented or incomplete strength characteristics should be verified for 
compliance with the strength criteria recommended in Section 4.4 by detailed calculations and 
formal type-approval processes. 
 
The following guidance highlights some of the critical elements associated with the selection and 
installation of acceptable deck mooring fittings. 

 

8.2  MOORING BITTS 

ISO 3913 contains standards for bitts (double bollards) with diameters from 100mm to 800mm.  

The bitts should penetrate the baseplate rather than just be welded to the top of the baseplate, 
and strengthening rib plates should be fitted in the base.  

The tabulated 'single rope maximum loading' quoted in the ISO Standard is the SWL when the 
rope is belayed in a figure-of-eight fashion. According to the ISO Standard two ropes of this value 
may be applied in figure-of-eight fashion near the base, or alternatively a single rope of twice the 
load may be applied, as a loop, at heights up to 1.2 times the bitt nominal diameter. 

The reason that the SWL depends on the method of rope belaying is that certain belaying 
methods tend to pull the two posts together and thus induce a higher stress in each barrel than 
that produced by an eye laid around a single post. With figure-of-eight belaying, the loading in 
each post corresponds to the sum of all forces in the successive rope layers, which can be higher 
than the maximum rope load. Experienced mariners are aware of this phenomenon and have 
devised methods that effectively distribute the external load over the two posts (for instance, by 
taking one or two turns around the first post before starting to belay in figure-of-eight fashion). 
Fig. 8.1 illustrates the two methods of belaying a rope around bitts.  

When belaying unjacketed high modulus lines around bitts, for example, when making fast a tug's 
line, two turns should be taken around the leading post prior to turning the line up in a figure-of-
eight fashion.  

background image

Section 8 

2

 

TABLE 8.1:  MAXIMUM PERMISSIBLE ROPE LOADING OF BITTS 

Note: change 'bollard' to 'bitt' in table. Delete 'bollard' in Note 1 

 

8.3  CRUCIFORM BOLLARDS 

ISO 3913, Addendum 1covers bollards with a barrel diameter from 70mm to 400mm.  

Similarly to bitts (double bollards), the tabulated 'single rope maximum loading' value quoted in 
ISO for double cruciform bollards is the SWL when the rope is applied in figure-of-eight fashion. 
Since a single cruciform bollard cannot be overstressed if certain belaying methods are used, 
their SWL is twice that of a double bollard. No information on height of rope application is given in 
the standard. However, since the scantlings are the same, it is assumed to be the same as for 
bitts.   

Cruciform bollards are fitted in the vicinity of tanker manifolds. These fittings typically have a SWL 
suited for hose-handling operations and they may not be suitable for use for mooring applications. 

 

background image

Section 8 

3

 

FIGURE 8.1:  METHODS OF BELAYING A ROPE ON BITTS  

 

8.4  CLOSED AND 

PANAMA-TYPE CHOCKS 

Although the terms 'closed chock' and 'Panama chock' are often used interchangeably, not all 
closed chocks are 'Panama chocks'. Panama chocks must comply with Panama Canal 

background image

Section 8 

4

regulations, which stipulate, among others, a minimum surface radius (178mm), a minimum 
throat opening (300 x 250mm for single, 350 x 250mm for double type) and a safe working load 
(32 t for single, 64 t for double type (314 kN or 628 kN)). 

Closed chocks or Panama-type chocks are either deck mounted or bulwark mounted. The 
strength of these fittings does not appear to be a problem due to their substantial design. 
Nevertheless, the method of attachment to the deck or bulwark is important, and it is 
recommended that the criteria listed in Section 4.4.4 be applied. 

Some standards quote 'enlarged' type closed chocks. These are usually large throat opening 
size and large radius fittings. They are especially useful with large diameter wires where the 
effects of bend radius are significant. Where soft rope tails are used, the size of the throat 
opening may have to be of the enlarged type to allow for connector shackles. 

When closed chocks are used in conjunction with HMPE mooring lines, consideration must be 
given to ensuring that contact surfaces are smooth and free from chafe points. (See Section 
6.4.7.2). 

Specific requirements are in place for closed chocks that are used in conjunction with the 
emergency towing equipment required under Regulation ChV/15-1 of SOLAS, details of which 
are provided in Section 3.4. 

FIGURE 8.2:  CLOSED CHOCK 

 

8.5  ROLLER FAIRLEADS AND PEDESTAL FAIRLEADS 

The rollers resemble sheaves and may be mounted near the edge of the deck to serve as 
mooring fairleads or they may be mounted upon a pedestal elsewhere on the deck to provide a 
fair lead to a winch drum or warping drum. Deckside roller fairleads may be of the open or closed 
type. In the case of the open type the roller pin is a cantilever attached at the base only. Almost 
all pedestal fairleads are of the cantilever pin type. Experience has shown that the cantilever pin 
and its attachment are very critical and pin failure has been the cause of serious accidents. 
Pedestal fairleads have also failed at the pedestal-to-deck connection due to improper design or 
workmanship. 

Roller fairleads and pedestal fairleads should be designed to meet the strength requirements 
contained in Section 4.4.x and undergo a formal type approval process.  

 

background image

Section 8 

5

8.6  UNIVERSAL ROLLER FAIRLEADS 

Universal roller fairleads consist of several cylindrical rollers, or a combination of rollers and 
curved surfaces. Possible arrangements are shown in Figs. 8.3 , 8.4  and 8.5  

The basic four-roller type may have to be modified to suit extreme inboard or outboard line 
angles. Sometimes the inboard lead to the winch or bitts requires an additional vertical roller, or 
in rare cases, two additional vertical rollers as shown in Fig. 8.5. Extreme outboard angles can 
be accommodated with chafe plates as shown in Fig. 8.4. 

Some line angles are impractical and seldom occur. For example, the inboard lead seldom runs 
in an upward direction and the outboard angle is upward only at terminals with a large difference 
in tide or when moored in canal locks. In this case the Type C shown in Fig. 8.2 would be 
adequate and result in a lower overall height of the fairlead. 

Care should be taken when installing fairleads on sloping bulwarks, such as those in the bow 
area, to avoid line chafing at the upper outboard edge of the frame. Type A-2 or A-3 of Fig. 8.4  
would be suitable for this case. 

Apart from line leads, the following considerations apply when selecting universal fairleads: 

•  Roller diameter. A small diameter will reduce the strength of the line (refer to Section 

6.2.4). For use with wire rope with independent wire rope core, the roller diameter 
should be about 12 times the rope diameter. For synthetic ropes, including HMPE, 
advice should be sought from the rope manufacturer. 

•  Opening size (dimensions W1 and W2 in Fig. 8.3 ). The minimum size is determined 

by the space required to pass the eye of the line or end fittings (such as those 
required for tails) through the fairlead. The following minimum dimensions are 
recommended: 

Width  

= 12 x d (wire and HMPE) 

 

4 x d (conventional synthetic fibre)  

 

Depth  

= 8 x d (wire and HMPE) 

 

2 x d (conventional synthetic fibre) 

•  Strength. Strength should be the main criterion. The recommended strength criteria 

is shown in Section 4.4.6 and 4.4.7. Many existing designs do not comply with these 
criteria. Often the frame is not strong enough to resist longitudinal forces such as 
those applied to spring lines. Adequate frame strength, in the areas indicated by the 
letter 'K' in Figure 8.3, should therefore be provided by the designer to ensure that 
the fitting is suitable for such applications. 

•  Installation/material. As mentioned in Section 5, the type of frame construction can 

seriously affect the ease of installation. Designs with a closed base member 
effectively connecting the end posts are preferable. Also if the frame is made of steel 
of higher strength than the adjoining hull structure, elaborate hull reinforcements will 
be required. 

All rollers should have lubrication-free bearings or bush bearings provided with grease nipples 
and provisions for turning. 

background image

Section 8 

6

 

FIGURE 8.3 :  TYPES OF UNIVERSAL ROLLER FAIRLEADS 

 

background image

Section 8 

7

 

FIGURE 8.4 :  ADDITIONAL CHAFE PLATES FOR TYPE A FAIRLEADS 

 

FIGURE 8.5 :  UNIVERSAL FAIRLEADS WITH ADDITIONAL INBOARD ROLLERS 

 

8.7  STOPPERS 

The most common loose fitting is a stopper, which is required to temporarily hold the load of a 
line while the line is in the process of being belayed on a set of bitts. 

Common methods of stopping-off wire or synthetic and natural fibre ropes are shown in Fig. 8.6 . 

Stopping off a line entails risk. High loads in the line must be avoided, since the stoppers have 
less strength than the mooring line. Only a properly sized 'carpenter's' stopper can approach the 
line's strength. 

All chain stoppers should be provided with certification attesting to their construction and SWL. 

 

8.8  SELECTION OF FITTING TYPE 

At the ship design stage, a decision should be taken regarding the types of fairleads employed at 
the shipside for use with mooring lines. Roller-type chocks result in less line wear and improve 
the winch hauling capacity because they reduce friction between line and chock. On the other 
hand, roller-type fittings require more maintenance and can be very large if the rollers are of 
proper size for the intended service. A large bend radius is much easier to realise in Panama-
type chocks and for this reason they are often used in combination with winch-mounted wire 
ropes. 

background image

Section 8 

8

Winch-mounted conventional fibre lines should ideally be used with properly-maintained roller-
type fairleads, since the friction created by the fixed fairleads can lead to rapid line damage. 
However, it has been shown that HMPE ropes, due to their low coefficient of friction, may not 
turn the roller leads, even though they may be well maintained. In such situations, rapid line 
wear may result.  

 

FIGURE 8.6 :  STOPPERS

 

background image

Appendix A 

1

Appendix A 

 

Wind and Current Drag 

Coefficients for VLCC’s and Gas 

Carriers and Example Force 

Calculation 

 
 
 

A.1  INTRODUCTION AND GENERAL REMARKS

 

 

Environmental loads acting upon a ship due to wind and current should be derived from specific 
model test data for that ship design or from the general non-dimensional drag force coefficients 
for oil tankers and gas carriers contained in this Appendix. These coefficients were extracted 
from the OCIMF publication "Prediction of Wind and Current Loads on VLCC’s", 2

nd

 Edition 

(1994) and the OCIMF/SIGTTO publication "Prediction of Wind Loads on Large Liquefied Gas 
Carriers", 1

st

 edition (1985), both of which are out of print.     

The wind and current drag coefficients contained in "Prediction of Wind and Current Loads on 
VLCC’s" were defined originally for tankers above 150,000 tonnes deadweight. More recent 
model test data on modern tanker forms confirms that these same coefficients are, in most 
cases, sufficiently accurate when applied to smaller ships, and that they may therefore be used 
for a range of ships down to approximately 16,000 tonnes deadweight. These drag coefficients 
may also be appropriate for smaller ships provided there is geometric similarity. This means the 
ratio of freeboard to hull breadth should be similar for the transverse wind drag coefficients and 
the ratio of draft to hull breadth should be similar for the transverse current drag coefficients,       

For gas carriers, the wind coefficients apply to membrane and spherical tank designs in the 
range 75,000 m

to 125,000 m

3

. For gas carriers outside this range, generally acceptable wind 

drag coefficient data is not available and, unless model tests are to be carried out in each case, 
a conservative extrapolation from the published gas carrier data should be adopted. 

Some general guidelines for adjustments if the actual ship geometry is outside the model range 
are included herein. For instance, the wind tunnel oil tanker models correspond to typical pre-
MARPOL tankers with a ratio of overall length to loaded freeboard of 50 – 60, and a ratio of 
ballast freeboard to full load freeboard of 3. It is suggested that wind drag coefficients for 
MARPOL (SBT and double hull) tankers, which generally have higher freeboard than pre-
MARPOL tankers, be obtained by interpolation or extrapolation on the basis of the ratio of 
midships freeboard to hull breadth. The transverse coefficients will generally be higher for newer 
tankers in full load condition and may be higher in ballast conditions depending on actual ballast 
draft and trim.     

Likewise, current drag coefficients contained in "Prediction of Wind and Current Loads on 
VLCC’s"  are based on tankers with a length to beam ratio of 6.3 - 6.5. Some tankers have a 
lower ratio and earlier studies indicate that the longitudinal current drag coefficient may be 25% 
to 30% higher with a length to beam ratio of 5.0.  It should be noted that, unlike the longitudinal 
wind drag, the longitudinal current drag is calculated in terms of the hull length times draft.    

Where more relevant drag force data is available for a specific ship, this should be used in 
preference to the general data from the earlier OCIMF and SIGTTO publications. When 

background image

Appendix A 

2

comparing such other data, it should be noted that the OCIMF and SIGTTO drag data has been 
increased above the original measured mean results, to allow for scatter in the raw data, scaling 
effects, and variations in hull geometry. The wind drag coefficients for VLCC’s were all increased 
by 20%, except the transverse and yaw wind coefficients for ballasted VLCC’s, which were 
increased by 10%. The wind drag coefficients for LNG ships were also all increased by 10%. No 
increase in the measured data was made to any of the current drag coefficients.           

A.2  SYMBOLS AND NOTATIONS 

 
The following symbols and notations are used in this Appendix: 
 
Symbol  

 

 
A

L

 

Longitudinal (broadside) wind area 

m

2

 

A

T

 

Transverse (head-on) wind area 

m

2

 

A

HL

 

Above water longitudinal hull area 

m

2

 

A

HT

 

Above water transverse hull area 

m

2

 

B Beam 

C

Xc

 

Longitudinal current drag force coefficient 

Non-dimensional 

C

Yc

 

Lateral current drag force coefficient 

Non-dimensional 

C

XYc

 

Current yaw moment coefficient  

Non-dimensional 

C

Xw

 

Longitudinal wind drag force coefficient 

Non-dimensional 

C

Yw

 

Lateral wind drag force coefficient 

Non-dimensional 

C

XYw

 

Wind yaw moment coefficient 

Non-dimensional 

F

Xc

 Longitudinal 

current 

force 

Newtons 

F

YFc

, F

YAc

 

Force at forward and aft of the ship due to current 

Newtons 

F

YFw

, F

YAw

 

Force at forward and aft of the ship due to wind 

Newtons 

F

Yc

 Lateral 

current 

force 

Newtons 

F

Xw

 Longitudinal 

wind 

force 

Newtons 

F

Yw

 Lateral 

wind 

force 

Newtons 

h 

High above water/ground surface 

Current velocity correction factor 

Non-dimensional 

L

BP

 

Length between perpendiculars 

L

OA

 Length 

overall 

MD Moulded 

depth 

M

XYc

 

Current yaw moment 

Newton metres 

M

XYw

 

Wind yaw moment 

Newton metres 

Water depth measured from water surface 

T Draft 

(average) 

V

c

 

Current velocity (average) 

m/s 

v

c

 

Current velocity at depth s 

m/s 

V

w

 

Wind velocity at 10 metre elevation 

m/s 

v

w

 

Wind velocity at elevation h 

m/s 

WD Water 

depth 

θ

c

 

Current angle of attack measured from longitudinal axis of ship  degrees 

θ

w

 

Wind angle of attack 

degrees 

ρ

Density in water 

kg/m

3

 

ρ

Density in air 

kg/m

3

 

 
Density for salt water is taken as 1025 kg/m

3

 and for air 1.28 kg/m

3

.   

 

Approximate conversion factors of 10 kN = 1 tonne.f and 1 m/s = 2 knots are used. 

 

 

 

 

   

 

 

background image

Appendix A 

3

A.3  WIND AND CURRENT DRAG COEFFICIENTS FOR LARGE 

TANKERS 

 

Environmental loads induced on large tankers (for the purposes of this Appendix considered to be 
tankers in the 150,000 to 500,000 DWT range) by wind and current can be computed with the 
procedures described in this Appendix. The forces and moments generated are suitable for a 
computer analysis of the required mooring restraint. The following non-dimensional coefficients 
are used throughout: 
 
 

C

   =  longitudinal force coefficient 

 

C

Y

   =  lateral force coefficient 

 

C

XY

   =  yaw moment coefficient. 

 
The subscripts w and c are used to distinguish between wind and current. 
 
The sign convention and coordinate system adopted are illustrated in Figure A1. The sign 
convention for the axis of coordinates for ships refers to a wind or current direction as 0 degrees 
when it flows parallel to the hull from stern to bow.  Positive angles increase in an anti-clockwise 
direction.   
 
Curves of the force and moment drag coefficients as a function of wind and current angle of 
attack are provided in Figures A2 to A4 and Figures A5 to A14, respectively. The wind 
coefficients are based upon data obtained from wind tunnel tests conducted at the University of 
Michigan in the 1960's. The values of the current coefficients are based upon data from model 
tests performed at the Maritime Research Institute Netherlands (1975-1991) and for the deep 
water case ( WD/T  ≥  6) the Design Manual of the United States Navy (“Harbor and Coastal 
Facilities”, NAVDOCKS DM-26, Bureau of Yards and Docks, Department of the Navy). The forces 
and moments computed will be in units of Newtons and Newton metres respectively, with their 
point of action at the intersection of the transverse and longitudinal centre line of the tanker. 

 

Two bow configurations are given in Figure A15 illustrating the effect of an elliptic-cylindrical bow 
versus a more conventional bulbous bow. An elliptic-cylindrical bow resembles a segment of an 
elliptic-cylinder. For convenience, the more rounded elliptic-cylindrical bow is referred to as a 
"cylindrical" bow and the sharper conventional bulbous bow as a "conventional" bow. 
 
A.3.1    
Major Factors Affecting Wind Loads 
 
The coefficients are only valid for ships with superstructure at the stern. The coefficients and 
areas (A

T

 and A

L

) must be consistent for the particular tanker condition being investigated. The 

transverse and longitudinal areas A

T

 and A

L

respectively, are measured from the head-on and 

broadside projections of the above water portion of the tanker.  
 
For wind loads on tankers with other structures adjacent, such as tandem mooring arrangements, 
the calculated data should be treated with caution as the coefficients do not take into account the 
effects of sheltering. 
 
Changes in freeboard have the most significant impact on the wind coefficients. The deviations in 
the coefficients result from differences in the relative force contributions of the hull and 
superstructure to the final loads, and also the ratio of freeboard to breadth. The extreme cases 
are represented by the fully loaded and ballasted conditions of the tanker, therefore, separate 
curves for these conditions have been developed. 
 
Variations in bow configuration also produce a substantial difference in the longitudinal force 
coefficient for a ballasted tanker. The configuration changes are characterised by tankers with so-
called "conventional" bow shapes versus a "cylindrical" bow shape. The coefficients depicting the 
effects of the bow shape have been plotted in Figure A2.

 

 

 

background image

Appendix A 

4

A.3.1.1  

Effects of Trim 

 
The wind drag coefficients assume the trim is zero in the fully loaded condition and 0.8 degrees in 
the ballast condition. The effects of trim will be greatest on the yaw moment and when the trim 
differs significantly from that assumed above, a correction to the yaw moment may be necessary.  

 

A.3.2   

Current Drag Coefficients 

 
Curves of the current drag coefficients C

Xc

, C

Yc

and C

XYc

are presented in Figures A5 to A14 for 

the following conditions: 
 

•  Current angle of attack: 0 degrees at the stern to 180 degrees bow on.. 

 

•  Water depth to draft ratio ( WD/T): 

1.10 
1.20 
1.50 
3.00 
≥ 6.00 (deep water) 
 

•  Two bow configurations 

 

•  Distinction is made between a cylindrical bow configuration without a bulbous bow and a 

conventional bulbous bow configuration. For a cylindrical bow with a bulb, it is 
recommended to use the data for the cylindrical bow without a bulb. For the conventional 
bow shape without bulb, the larger coefficient, with or without bulb should be used. 

 

•  Loading condition (draft = 100% loaded draft and 40% loaded draft). 

 

•  Zero trim 

 
For the later series of tests, the coefficients of the WD/T case of 1.05 were not measured. The 
results for the F

Yc

,  and  M

XYc 

coefficients for the WD/T  case of 1.05 case are taken from the 

original, 1977 edition of "Prediction of Wind and Current Loads on VLCC’s". In cases of WD/T 
ratio of less than 1.10, it is recommended that surge force coefficients are treated with caution. 
 
A.3.2.1  

Current Velocity 

 
An average current velocity ( V

c

 ) over the draft of the ship should be used in computing the 

current forces and moment. If the vertical current velocity profile is known, the definition of the 
average current velocity over the draft of the ship can be obtained from the following equation: 
 

 

where: 

V

c

   - average current velocity (m/s) 

T    - draft of ship (metres) 
v

c

  - current velocity as a function of water depth s (m/s) 

  - water depth measured from the surface (metres). 

 
If the velocity profile is not known, the velocity at a known water depth should be adjusted by the 
factors provided in Figure A16 to obtain the equivalent average velocity over the draft of the ship. 
The example calculation in A.5 shows use of this procedure. 
 
A.3.3   

Major Factors Affecting Current Loads 

 
Underkeel clearance has the greatest influence on the current drag coefficients. The lateral force 
coefficients for a water depth to draft ratio of 1.05 are approximately three times larger than the 

background image

Appendix A 

5

coefficients for a water depth to draft ratio equal to 3.0. This increase is primarily due to the 
blockage effect of the tanker that causes a proportionately larger volume of water to pass around 
rather than under the tanker as the underkeel clearance decreases. 
 
The magnitude of the current forces and moment is also influenced by the tanker bow form in a 
similar manner to the wind. Two curves are provided to represent a "conventional" versus a 
"cylindrical" bow shape wherever the difference in the coefficients is significant. 
 
A.3.3.1  

Effects of L/B Variations 

 
The test program mainly concerned L/B ratios between 6.3 and 6.5  to reflect the majority of 
existing VLCC's. However, more recent VLCC's tend to have L/B ratios in the range from 5.0 to 
5.5. 
 
The drag coefficients presented in this Appendix however are still valid for these types of tankers, 
with the possible exception of the longitudinal coefficients. The longitudinal drag coefficients tend 
to higher values with decreasing L/B ratios. 
 
For a VLCC with an L/B of 5.0, an increase in the longitudinal drag coefficients of maximum 25 to 
30% is to be expected for the smaller current angles (up to max. 15 degrees). 
 
A.3.3.2  

Effects of Trim 

 
The trim is assumed to be zero for all the current drag data, and the effects of trim on current 
coefficients were not investigated.  However the effect of trim will be most pronounced for the yaw 
current coefficients for ballasted tankers in shallow water. The reader should be cautious in using 
the yaw current coefficients under these conditions when the trim exceeds one degree. 
 
 

background image

Appendix A 

6

 

FIGU

RE A1

:  

SIG

N

 CO

NV

ENTION

 A

N

D

 CO-

O

R

D

IN

ATE 

S

Y

STE

M

 

Note: 

Co

effici

ents presente

d in the Section are fo

r win

and current

 angle

s of attack from 0 – 

180 de

gre

es 

but 

are al

so valid

 for angle

s fro

m

 181 – 359 

degr

ee

s with 

the approp

ria

te sign chan

ge

s. 

 

background image

Appendix A 

7

 

 

FIGURE A2: LONGITUDINAL WIND DRAG FORCE COEFFICIENT

background image

Appendix A 

8

 

FIGURE A3: LATERAL WIND DRAG FORCE COEFFICIENT 

 
 
 

 

FIGURE A4: WIND YAW MOMENT COEFFICIENT

background image

Appendix A 

9

 

FIGURE A5: LONGITUDINAL CURRENT DRAG FORCE COEFFICIENT – LOADED TANKER 

(WD/T = 1.1)

 

 

background image

Appendix A 

10

 

 

FIGURE A6: LONGITUDINAL CURRENT DRAG FORCE COEFFICIENT – LOADED TANKER 

(WD/T = 1.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

Appendix A 

11

 

FIGURE A7: LONGITUDINAL CURRENT DRAG FORCE COEFFICIENT – LOADED TANKER 

(WD/T = 1.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

Appendix A 

12

 

 

FIGURE A8: LONGITUDINAL CURRENT DRAG FORCE COEFFICIENT – LOADED TANKER 

(WD/T = 3.0) 

 
 
 
 
 
 
 
 
 
 
 
 
 

background image

Appendix A 

13

 

 

FIGURE A9: LONGITUDINAL CURRENT DRAG FORCE COEFFICIENT – LOADED TANKER 

(WD/T >4.4) 

 
 
 
 
 
 
 
 
 
 
 
 

background image

Appendix A 

14

 

FIGURE A10: LATERAL CURRENT DRAG FORCE COEFFICIENT – LOADED TANKER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

background image

Appendix A 

15

 

 

FIGURE A11: CURRENT YAW MOMENT COEFFICIENT – LOADED TANKER 

 
 
 

background image

Appendix A 

16

 

 

FIGURE A12: LONGITUDINAL CURRENT DRAG FORCE COEFFICIENT – BALLASTED 

TANKER (40% T) 

 

background image

Appendix A 

17

 

 

FIGURE A13: LATERAL CURRENT FORCE DRAG COEFFICIENT – BALLASTED TANKER 

(40% T) 

background image

Appendix A 

18

 

 

 

FIGURE A14: CURRENT YAW MOMENT COEFFICIENT – BALLASTED TANKER 

40% T, BASED ON MIDSHIPS 

 
 

background image

Appendix A 

19

 

 

FIGURE A15: VARIATION IN BOW CONFIGURATION 

 
 
 
 
 

background image

Appendix A 

20

FIGU

RE A1

6

 CU

R

R

ENT VELOCIT

Y

 CO

RRE

CTI

O

N FA

CTO

R

 

background image

Appendix A 

21

A.4  WIND AND CURRENT DRAG COEFFICIENTS FOR GAS 
CARRIERS 

 

A.4.1

  Introduction 

 
The coefficients used to compute current loads on VLCCs are also generally applicable to the 
computation of current loads acting on liquefied gas carriers in the 75,000 to 125,000 m

class. 

Thus, separate current coefficients were not developed for gas carriers. 
 
Available reports dealing with the prediction of wind loads on gas carriers exhibit widely scattered 
results. Various reasons for the differences can be cited; test bases are rarely similar, and the 
techniques and procedures used in obtaining the loads vary considerably. Added to this, the 
inherent differences in the facilities at which the test programs were conducted make attempts at 
generalising existing data for design purposes a very difficult task. Additionally, the existing wind 
coefficients for VLCCs were not considered applicable to gas carriers due to inherent differences 
in hull shape and wind area distribution. However, based on the relative similarity of the 
submerged hull geometry between these gas carriers and VLCCs with "conventional bows," it 
was felt that the current coefficients could be used with more confidence. 
 
As a result of the above, it was recommended that appropriate wind force and moment 
coefficients be developed for gas carriers. Wind tunnel tests similar to those conducted for 
VLCCs had been carried out in the industry. The results of these tests were obtained by OCIMF 
and SIGTTO and subsequent data analysis led to the development of the wind force and moment 
coefficients presented in this Appendix. The analysis was similar to that used to prepare the wind 
drag coefficients for VLCCs.

 

 
Some of these drag coefficients differ from those previously derived for specific gas carriers. The 
coefficients presented in this Section are generally more conservative than previously obtained 
data. This level of conservatism is believed to be justified since the coefficients in this report were 
developed with the intention of safely applying them to the general range of gas carrier forms, 
sizes and mooring configurations. It does not necessarily follow that the previous use of less 
conservative coefficients for specific ships with specific mooring configurations is invalidated by 
this new data. 

 

A.4.2  

Wind drag coefficients for gas carriers 75,000 to 125,000m

3

 

 
Wind loads induced on moored gas carriers in the 75,000 to 125,000 m

3

 (cubic meter) class can 

be computed based on the drag coefficients described in this Section.  
 
The following non-dimensional coefficients are used throughout in the calculation of design loads: 
 
 

C

Xw

   = Longitudinal Force Coefficient 

 

C

Yw

   = Lateral Force Coefficient 

 

C

XYw

  = Yaw Moment Coefficient 

 
The subscript, w, is added to indicate that the coefficients are due to wind. 
 
The wind drag coefficients are based upon data obtained from wind tunnel tests.  Curves of the 
wind drag coefficients C

Xw

, C

Yw

 and C

XYw

 are presented in Figures A17, A18 and A19. In the 

original OCIMF/SIGTTO publication "Prediction of Wind Loads on Large Liquefied Gas Carriers", 
the sign convention and coordinate system was different from that used for the VLCC data. The 
present figures have been edited to be consistent with the VLCC

 data. 

 
The following conditions are covered: 
 

•  Wind angle of attack: 0 degrees at the stern to 180 degrees bow-on. The coefficients are 

equally applicable to winds from 181 to 359 degrees with appropriate changes in the 
signs of the coefficients. 

 

background image

Appendix A 

22

•  Any operating draft condition: the coefficients presented in this report are applicable to 

draft conditions ranging from ballasted to fully loaded as the changes in freeboard are 
relatively small (see Table A1). Zero trim is assumed in all cases. 

  

•  Two cargo tank types: the curves illustrate the effect of spherical tanks versus 

conventional prismatic tanks. Where the effects between these two tank types are 
insignificant, the curves have been combined and presented as a single curve.  

 
While the coefficients do not vary with the ship's draft, the forward and side areas must be 
consistent for the particular ship load condition and tank type under investigation. 

 

A.4.2.1   

Gas carrier wind areas 

 
The transverse and longitudinal areas A

and A

respectively, are measured from the head-on 

and broadside projections of the above water portion of the ship. Areas and principal dimensions 
for a typical 75,000 m3 (prismatic tanks) gas carrier and typical 125,000 m

3

 gas carriers 

(prismatic and spherical tanks) are given in Table A1.  
 
A.4.2.2   

Major factors affecting wind loads 

 
The presence of spherical tanks on gas carriers has the most significant impact on the wind drag 
coefficients. The deviations in the coefficients result from differences in the relative force 
contribution and distribution due to the configuration of the spherical tanks. Therefore, separate 
curves for conventional prismatic and spherical tanks have been developed where the deviations 
are significant. Differences in ship load condition are not significant due to the relatively small 
change in draft from a ballasted to a fully loaded condition for the sizes of gas carriers reviewed. 

 
 

Ship 
Size 

(1) L

OA

 

L

BP

 B MD 

Load 
Condition

T

(2)

 

A

L

 

A

T

 

A

HL

 

A

HT

 

m

3

 

 

m

 

m

 

m

 

m

 

 

x (10)

m

2

 

x (10)

m

2

 

x (10)

m

2

 

x (10)

m

2

 

Full 10.0 

3.3 

0.9 

2.7 

0.3 

75,000 PR 230.0 220.0 36.0 22.4 

Ballast 8.0 

3.8 

1.0 

3.2 

0.5 

Full 11.0 

4.5 

1.2 

3.5 

0.6 

125,000 PR 288.6 274.0 44.2 25.0 

Ballast 9.0 

5.0 

1.3 

4.1 

0.7 

Full 11.0 

6.6 

1.3 

3.5 

0.6 

125,000 SP  288.6 274.0 44.2 25.0 

Ballast 9.0 

7.1 

1.4 

4.1 

0.7 

 

TABLE A1: PRINCIPAL DIMENSIONS/CHARACTERISTICS OF TYPICAL LIQUEFIED GAS CARRIERS 

 

Notes: (1)  Cargo tank type: PR signifies prismatic tanks; SP signifies spherical tanks 

(2)  Values in table represent draft conditions for fully loaded and ballasted drafts, both having a trim 

angle of 0 degrees while moored.

background image

Appendix A 

23

 

FIGURE A17: LONGITUDINAL WIND DRAG FORCE COEFFICIENT – GAS CARRIER 

C

Xw

 

background image

Appendix A 

24

 

FIGURE A18: LATERAL WIND DRAG FORCE COEFFICIENT – GAS CARRIER 

C

Yw 

 

background image

Appendix A 

25

 

FIGURE A19: WIND YAW MOMENT COEFFICIENT – GAS CARRIER 

C

XYw

 

background image

Appendix A 

26

A.5  EXAMPLE FORCE CALCULATIONS FOR VLCC

 

 

 
Objective: 
 
To compute the wind and current drag forces and moments on a 280,000 DWT tanker with a 
"cylindrical" bow configuration. The tanker is fully loaded with a 22.3 metre draft and is moored in 
24.5 metres of water. 
 
(a)  The wind velocity is 34 m/s measured at a 20 metre elevation. The angle of wind attack is 30 

degrees off the bow i.e. at an angle of 150 degrees. 

 
(b)  The average current velocity is 1.03 m/s (2 knots). The direction of the current is 10 degrees 

off the bow i.e. at an angle of 170 degrees. 

 

The sign convention is the same as Figure A1. 

 

Wind Load Calculations: 

 

Step 1Determine ship characteristics 
 
Particulars for a 280,000 DWT tanker in a fully loaded condition. 
 

A

L

  

= 3160 m

2

 

A

T

 

= 1130 m

2

 

L

BP

  

= 325 m 

 
 
Step 2:
 Obtain wind drag coefficients for θ

 = 150 degrees 

 
NOTE: "Cylindrical" bow is not a significant factor for the wind loads on a fully loaded tanker. 
 

C

Xw

  

=  -0.73   Figure A2 

C

Yw

  

=    0.31    Figure A3 

C

XYw

   = -0.032   Figure A4 

 
 
Step 3:
 The wind velocity is calculated using: 

  

where   V

w  

= 10 metre wind velocity (m/s) 

 

v

w

   = the wind velocity at elevation h (m/s) 

 

h  

= elevation above ground/water surface (metres) 

 

 

which leads to V

w

 = 30.9 m/s. Substituting these values in the following equations gives: 

 
 

background image

Appendix A 

27

 

Substituted:  
 

 

 
Current Load Calculations: 

 

Step 1Determine ship characteristics 
 
Particulars for 280,000 DWT tanker in fully loaded condition 
 
 
Step 2:
 Obtain the current coefficient for θ

c

  = 170 degrees 

 
From the water depth draft ratio WD/T= 1.10 and the form of the bow (cylindrical) we get: 
 

C

Xc

  

=   0.00   Figure A5 

C

Yc

  

=   0.67    Figure A10 

C

XYc

   =   0.15   Figure A11 

 
 
Step 3: Substituting these values in the following equations will give: 
 

 

Substituted: 
 

 

background image

Appendix A 

28

If the current velocity had been given at 30% of the draft of the ship, the following procedure 
would be used to obtain the average current velocity: 
 
Step 4: Obtain the current velocity correction factor from Figure A16 for WD/T= 1.10 
 
 

K = 0.948 

 
 
Step 5:
 Compute the average velocity 
 

 

Recompute using equation from Step 3: 
 

 

 
 
Summary of Wind and Current Loads 
 
The following table summarises the wind and current loads calculated above and also the effect 
of the wind and current for other conditions. 
 
Wind loads on laden 280,000 DWT tanker for 34 m/s wind at 20 m elevation: 
 

WIND ANGLE OF ATTACK 

 

Full Load 

180 

Degrees 

150 

Degrees 

120 

Degrees 

90 

Degrees 

60 

Degrees 

30 

Degrees 

Degrees 

F

Xw

 in kN 

- 655 

- 504 

- 228

28 

196 

449 

511 

F

Yw 

in kN 

599 

1,216

1,390 1,303  830 

M

XYw 

in kNm 

-20,082 

- 52,700

- 71,500  - 103,00  - 90,300 

 

 
Current loads on a laden 280,000 DWT at a water depth to draft ratio = 1.10, cylindrical bow: 

 

CURRENT ANGLE OF ATTACK 

 

Full Load 

180 Degrees 

2.57 m/s 

170 Degrees 

1.03 m/s 

90 Degrees 

0.514 m/s 

F

Xc

 in kN 

- 809 

72 

F

Yc 

in kN 

2,522 

3,200 

M

XYc

 in kNm 

192,101 

25,514 

 

The values indicated in bold are taken from the example calculation. 

background image

Appendix B 

1

Appendix B 

 

Rope Over-strength 

 
 

B.1 INTRODUCTION 

 

This Appendix has been prepared as background to the treatment of rope over-strength in 
this 3

rd

 edition of Mooring Equipment Guidelines. It was prompted by concern about the fact 

that HMPE ropes show an increase in strength above MBL during the early part of their 
service life. This over-strength could typically be apparent for many months on a mooring line 
designed for a service life of 10 to 15 years. This Appendix considers the implications of this 
over-strength for fitting design for new ships and for fittings when wire ropes are to be 
replaced by HMPE on an existing ship. For original equipment, it would be possible to 
increase the size of fittings to carry the maximum strength of the rope rather than its MBL, but 
for replacement ropes this is hardly an option. The guiding principle of Section 4 is that fittings 
shall be able to carry rope breaking load without permanent deformation, and it is considered 
essential to maintain this principle even when over-strength ropes were in use. It was thus 
necessary to make an informed choice between simply accepting rope over-strength in the 
existing recommendations, or amending them by adding a factor to recommend extra strength 
in fittings carrying potentially over-strength ropes. 
 

0

20

40

60

80

100

120

140

0

5

10

% MB

L

Years in Service 

 

FIGURE B1 : DEPICTION OF HMPE MOORING LINE RESIDUAL STRENGTH 

 
There are two aspects to this problem, one being the loading applied by the rope, and the 
other being the strength or resistance of the fitting. Both of these are subject to statistical 
variations of various types, and the loading, based as it is on rope breaking load, is also time 
dependent.  
 
It should be noted that rope manufacturers catalogue minimum breaking strengths 
using different methods, for example, ISO shows MBL as unspliced strength whereas 
USA manufacturer’s standards use spliced strength. In addition, some manufacturers 
catalogue average minimum break strength, whereas others use 2 standard deviations 
below lowest actual break strength. This can result in variations up to 20% above 
catalogue strengths when new. for the purposes of these Guidelines, the ISO definition 
has been adopted. 
 

 

 

background image

Appendix B 

2

B.2 LOADING 

 

The breaking of a mooring rope on a fitting is a rare event and Mooring Equipment Guidelines 
has the objective of ensuring that fitting failure is a very much rarer one. A given fitting on a 
given ship has a very small chance of experiencing a rope failure during the life of a ship, and 
hence, because the odds against experiencing more than one rope failure on a given fitting 
during a ship’s life are so high, a large safety margin against permanent deformation of a 
fitting is not necessary, even though the consequences of fitting failure may be very serious.  
 
The actual load needed to break a rope is influenced by a number of factors: 

•  The fact that Minimum Break Load for a new rope is just that, the minimum guaranteed 

value in a population of breaking load values which has a mean value greater than the 
MBL, and a standard deviation about the mean. 

•  Rope type. Steel wire has less variability (smaller standard deviation) than fibre rope. 
•  Age. The strength of all rope types eventually declines with age. The HMPE problem is 

that there is an initial increase of strength of around 20% as the rope works in from new. 

• 

The fact that the strength in an in-line tensile test is higher than that obtained in a test 
over a curved surface, where strength reductions of 15% can occur at D/d ratios of 8 or 
less, and such ratios occur in a number of fitting types. Even on a winch, with a more 
benign D/d ratio, strength reductions are known to occur.

 

 
 

B.3 RESISTANCE 

 

The calculated ability of a fitting to withstand without permanent deformation the force exerted 
on it by a breaking rope is influenced by: 

•  The refinement of the calculation model employed. 
•  The fact that the actual yield strength is larger than the specified minimum yield stress 

(SMYS). The SMYS is, in fact, the minimum of a population of yield stress values which 
has a mean value by definition larger than the minimum, and a standard deviation about 
the mean. For steels, the variability can be quite large, particularly in thin sections and 
plate. 

•  The use of 85% of SMYS as the limit on the stresses caused by the load on the fitting. 

This concentration on linear elasticity and avoidance of yield is to overlook all the benefits 
of the well-known ductility of steel. Reaching yield stress at hot spots (as long as it is not 
done repeatedly) does not mean that there is no strength reserve available. For example, 
if a rather thick-walled tube in bending (e.g. a bollard) reaches surface yield at a bending 
moment of, say, 100 kNm, it will continue to accept increasing bending moments up to 
about 130 kNm before the entire cross-section has reached yield and a “plastic hinge” 
forms with deformation growing at constant moment. Even then strain hardening provides 
further reserves of strength. The ratio of 1.3 rises to 1.5 for solid rectangular cross-
sections, although it is smaller for structural I -sections. In terms of bending moment, the 
ratio of 1.3 to 0.85 is close to 1.5, so that the real reserve against noticeable permanent 
deformation at 85% of yield is not a factor of 1.18 but one of 1.5. Values close to 1.5 
apply for shear loading, although for pure tension the factor of 1.18 would be more 
appropriate. Fortunately pure tension does not often occur in typical fittings. 

•  In passing, there is no such thing as a welded structure where yield is not present from 

day one. Any deposit of weld metal is brought into tensile yield as it cools, although some 
of these stresses may be shaken out by service loads on the structure. 

This discussion suggests that it would not be surprising if test results for fittings designed to 
the 85% of yield criterion in Section 4 showed reserves of strength of 50% or more above the 
design load before permanent deformation was noted, and even greater reserves before 
fracture occurred.

  

 
 

background image

Appendix B 

3

B.4 COMPARISON OF RESISTANCE AND LOADING 

 

The remarks above show that loading and resistance are both statistical distributions, with the 
loading having time-dependence as the rope ages. The objective is to minimise the overlap 
between the upper tail of the loading distribution and the lower tail of the resistance 
distribution. Minimise, rather than eliminate, to avoid expensive over-design of the fittings. 
 
The worst case scenario seems to involve a HMPE rope breaking at that point in its life when 
it has maximum over-strength. In round figures, breaking at 1.2 MBL, eroded by a minimum of 
10% by being broken on a curved surface. The designed resistance factor is 1.18 on yield, 
and up to 1.5 allowing for spread of plasticity short of permanent deformation. Even 
comparing 1.2 MBL (with some reduction due to the curved surface effect) and 1.18 on yield, 
there does not seem to be a real problem for an event that occurs so rarely on any given 
fitting. With ductility considered, and the fact that the over-strength persists for only a fraction 
of the rope service life, it seems extremely unlikely that fitting failure will ever precede rope 
failure, even if HMPE ropes are used to replace original equipment of a similar rating at some 
stage in the life of a ship. There appears to be a more than adequate reserve to cope with the 
worst case where a stronger than expected rope is placed on a fitting whose steel is only just 
up to the specified minimum yield stress. 

 

It is also worth noting that fitting failure has apparently been a very rare occurrence in the 
experience of operators in recent years, much rarer than the already rare rope failures. This 
would suggest that the safety criteria of the 2

nd

 edition of Mooring Equipment Guidelines has 

given good service, and can be carried forward to the 3

rd

 edition, following careful review, with 

some confidence.  
 
 

B.5 CONCLUSION 

 
In the light of the discussion presented above, it was concluded that it was not necessary to 
add a specific factor in the revision of Section 4 to cope with rope over-strength early in 
service life. 

 
 
 
 
 

 

  
 
  
 
 
 
 

background image

Appendix C 

1

Appendix C 

 

Guidelines for Handling, 

Inspection and Removal from 

Service of  

Wire Mooring Lines 

 
 

C.1  HANDLING AND INSTALLING

 

 

C.1.1  General 

The procedure for installing the rope should be planned in accordance with manufacturer's 
recommendations. 
 
The rope should be checked to verify that is not damaged when unloaded and when 
transported to the storage compound or site. 
 
C.1.2  Offloading and Storage 

To avoid accidents, ropes should be off-loaded with care. The rope reels or coils should not 
be dropped and care should be taken to prevent the rope being struck by a metal hook or the 
fork of a fork-lift truck. 
 
After delivery, the rope identification and condition should be checked and it should be 
verified that it is in accordance with the details on the certificates and/or other relevant 
documents. The rope diameter should be checked and terminations examined to ensure that 
they are compatible with the equipment to which they are be fitted.  
 
For storage, a clean, well ventilated, dry, undercover location is preferred. If outdoor storage 
is unavoidable, the rope should be covered with waterproof material. The rope should be 
stored in a location where it is not likely to be affected by chemical fumes, steam or other 
corrosive agents and protected in such a manner that it will not be exposed to any accidental 
damage. 
 
During long periods of storage, the reel should be rotated periodically, particularly in warm 
environments, to prevent the migration of the lubricant from the rope. It should be ensured 
that the rope does not make any direct contact with the floor and there is a flow of air under 
the reel. Consideration should be given to supporting the reel on a simple A-frame or cradle, 
located on the ground.  
 
Ropes in storage should be examined periodically and, when necessary, a suitable dressing 
which is compatible with the manufacturing lubricant should be applied. The rope supplier 
should be contacted for guidance on the type of dressings available and the methods of 
application. After the dressing has been applied, the rope should be re-wrapped, unless it is 
considered that this will be detrimental to rope preservation.  

C.1.3  Certification and Marking 

It should be ensured that the relevant Certificate has been obtained before putting a rope into 
service and verified that the marking on the rope or its package matches the Certificate. The 

background image

Appendix C 

2

Certificate should be retained in a safe place for identification of the rope when carrying out 
subsequent periodic examinations in service. 
 
C.1.4  Handling and Installation 

The handling and installation of the rope should be carried out in accordance with a detailed 
plan and should be supervised by a competent person. Personnel should wear suitable 
protective clothing such as overalls, industrial gloves, helmet, eye protectors, safety footwear 
and, where the emission of fumes due to heat is likely, a respirator. 
 
C.1.4.1  Verification of Wire Rope Specification and Condition 

It should be ensured that the correct rope has been supplied by checking to see that the 
description on the Certificate is in accordance with that specified in the purchase order. The 
rope itself should be checked by measurement to confirm that the nominal diameter is in 
accordance with the nominal size stated on the Certificate. For verification purposes, the 
diameter should be measured by using a suitable rope vernier gauge fitted with jaws broad 
enough to cover not less than two adjacent strands. Two sets of measurements should be 
taken, spaced at least 1 metre apart, ensuring that they represent the largest cross-sectional 
dimension of the rope. At each point, measurements should be taken at right angles to each 
other. The average of the four measurements should be within the tolerances specified in the 
appropriate Standard or Specification.  
 
The rope should be examined visually to ensure that there is no damage or signs that 
deterioration may have taken place during storage or transportation to the installation site.  
 
The rope should be carefully transferred from the storage area to the installation site.  

C.1.4.2  Removing Wire Ropes from Coils and Reels 

Rope coils should placed on the ground and the wire rolled out straight, ensuring that it does 
not become contaminated with dust/grit, moisture or any other harmful material. If the coil is 
too large to physically handle it may be placed on a 'swift' turntable and the outside end of the 
rope pulled out while allowing the coil to rotate.  

When the rope is on a reel, a shaft should be passed through the reel and the reel placed in a 
suitable stand which allows it to rotate and be braked to avoid overrun during installation. 
Where multi-layer coiling is involved, it may be necessary for the reel to be placed in 
equipment which has the capability of providing a back tension in the rope as it is being 
transferred from reel to drum. This is to ensure that the underlying (and subsequent) layers 
are wound tightly on the drum.  

The reel and stand should be positioned such that the fleet angle during installation is limited 
to 1.5 degrees.  
 
The release of the outboard end of the rope from a reel or coil should be done in a controlled 
manner. On release of the bindings and servings used for packaging, the rope will want to 
straighten itself from its previously bent position. Unless controlled, this could be a violent 
action and it should be ensured that personnel stand clear.  
 
The rope should be monitored carefully as it is being pulled into the system and checks 
should be made to ensure that it is not obstructed by any part of the structure. 
  
If a loop forms in the rope, it should be ensured that it does not tighten to form a kink. 
 

This entire operation should be carried out carefully and slowly under the supervision of a 
competent person. 
 

C.1.4.3  Cutting Wire Ropes 

Particular care should be taken when the rope is required to be cut and manufacturer's 
instructions should be followed. Secure servings should be applied on both sides of the cut 

background image

Appendix C 

3

mark and the length of the servings should be at least equal to two rope diameters. One 
serving either side of the cut is normally sufficient for preformed ropes.  

 

Prior to cutting, the rope should be arranged and positioned in such a manner that at the 
completion of the cutting operation the rope ends will remain in position, thus avoiding any 
backlash or any other undesirable movement.  

 

The rope should be cut with a high speed abrasive disc cutter. Other suitable mechanical or 
hydraulic shearing equipment may be used, although their use is not recommended when a 
rope end is required to be welded or brazed. 
  
Adequate ventilation should be ensured to avoid any build-up of fumes from the rope and its 
constituent parts, including any fibre core or rope lubricants. The products used in the 
manufacture of steel wire ropes for lubrication and protection present minimal hazard to the 
user in the form shipped. However, the user should take reasonable care to minimise skin 
and eye contact and also avoid breathing associated  vapours and mists.  
 
C.1.4.4  Securing the Ends of Wire Ropes 

Any fittings, such as clamps or fixtures, should be checked to be clean and undamaged 
before being used for securing rope ends.  
 
When terminating a rope end with a wedge socket, it should be ensured that the rope tail 
cannot withdraw through the socket by securing a clamp to the tail, in accordance with 
manufacturer's instructions. The tail length should be a minimum of 6 rope diameters.  
 
C.1.4.5  Transferring Wire Ropes to Winch Drums 

 
When coiling a rope on to a plain (or smooth) barrel drum, it should be ensured that each lap 
lies tightly against the preceding lap. The application of tension in the rope will greatly assist 
in the effective coiling of the rope.  
 
With plain barrel drums it is difficult to achieve satisfactory multi-layer coiling beyond three 
layers.  
 
The direction of coiling of the rope on the drum is important, particularly when using plain 
barrel drums, and should be related to the direction of lay of the rope in order to induce close 
coiling (Figure C1 refers). 
 

 

FIGURE C1: PROPER METHOD OF LOCATING ROPE ANCHORAGE POINT ON A 

PLAIN DRUM 

background image

Appendix C 

4

 

When multi layer spooling has to be used, after the first layer is wound on a drum the rope 
has to cross the underlying rope in order to advance across the drum in the second layer. The 
points at which the turns in the upper layer cross those of the lower layer are known as the 
cross-over points and the rope in these areas is susceptible to increased abrasion and 
crushing. Care should be taken when installing a rope on a drum and when operating to 
ensure that the rope is spooled and layered correctly.  
 
The condition of re-usable rope end terminations should be checked before use to confirm 
their size, strength and cleanliness before use. When re-using a socket, depending on its type 
and dimensions, the existing cone should be pressed out or, if necessary, removed by using 
heat. 
 
It should be checked that the new rope is spooling correctly on to the drum and that no slack 
or cross laps develop. As much tension as possible (2%-5% of the MBF of the rope) should 
be applied to ensure tight and even spooling, especially on the first layer. As multi-Iayer 
spooling is unavoidable, succeeding layers should spool evenly on the preceding layers of 
rope.  
 
 

C.2  INSPECTION OF WIRE ROPES 

 

At routine intervals, the entire length of rope should be inspected by a competent person with 
particular attention paid to those sections that experience has proven to be the main areas of 
deterioration. Excessive wear, broken wires, distortion and corrosion are the usual signs of 
deterioration. For a more detailed examination special tools are necessary which will also 
facilitate internal inspection  

 

In cases where severe rope wear takes place at one end of a wire rope, the life of the rope 
may be extended by changing round the drum end with the load end, i.e. turning the rope 'end 
for end' before deterioration becomes excessive.  
 
Broken wires should be removed as they occur by bending backwards and forwards using a 
pair of pliers until they break deep in the valley between two outer strands. Protective clothing 
such as overalls, industrial gloves, helmet, eye protectors and safety footwear should be worn 
during this operation.  

The number and position in the rope of any broken wires should be recorded.  

The authorised person responsible for carrying out wire rope maintenance should ensure that 
the ends of the rope are secure. At the drum end this will involve checking the integrity of the 
anchorage and, at the outboard end, the integrity of the termination should be checked.  
 
Following any periodic examination or routine or special inspection where any corrective 
action is taken, a record made of the defects found, the extent of the changes and the 
condition of the rope should be appended to the rope's Certificate.  
 
The following procedure should be applied if it is necessary to prepare samples from new or 
used rope, for the purpose of examination and testing to destruction:  
 

•  Check that the rope end, from which the sample will be taken, is secured by welding or 

brazing. If not, select the sample length further away from the rope end and prepare new 
servings.  

 
•  Serve the rope, using the buried wire technique and apply a rope clamp or grip as close 

to the cut mark as practically possible. Do not use solder to secure the servings.  

 

•  Ensure that the sample is kept straight throughout the whole procedure and ensure that 

the minimum sample length is 1 metre unless otherwise specified.  

 

background image

Appendix C 

5

•  The rope should be cut with a high speed abrasive disc cutter or an oxyacetylene torch. 

Weld the rope ends of the sample, after which the clamp or grip can be removed. 

 

•  The identification of the rope should be established and the sample suitably marked and 

packed. It is recommended that the sample is kept straight and secured to a wood pallet 
for transportation.  

 
 

C.3  REMOVAL OF WIRE ROPES FROM SERVICE 

 

C.3.1  General 

The safe use of wire rope is qualified by the following criteria: 

•  the nature and number of broken wires;  

•  broken wires at the termination;  

•  localised grouping of wire breaks;  

•  the rate of increase of wire breaks;  

•  the fracture of strands;  

•  reduction of rope diameter, including that resulting from core deterioration;  

•  decreased elasticity;  

•  external and internal wear;  

•  external and internal corrosion; 

•  deformation;  

•  damage due to heat or electric arcing;  

•  rate of increase of permanent elongation.  

 
All examinations should take into account these individual factors, recognising the particular 
criteria. However, deterioration frequently results from a combination of factors, giving a 
cumulative effect which should be recognised by the competent person, and which reflects 
the decision to discard the rope or to allow it to remain in service.  
 
The individual degrees of deterioration should be assessed, and expressed as a percentage 
of the particular discard criteria. The cumulative degree of deterioration at any given position 
is determined by adding together the individual values that are recorded at that position in 
the rope. When the cumulative value (C.3.2 to C.3.8) at any position reaches 100%, the rope 
should be discarded.  

C.3.2  Nature and Number of Broken Wires 

Broken wires usually occur at the external surface, but there is a  probability that some of 
broken wires will occur internally and are "non-visible" fractures.   

One valley break may indicate internal deterioration, requiring closer inspection of this 
section of rope. When two or more valley breaks are found in one lay length, the rope should 
be considered for discard. 

Particular attention should be paid to any localised area, which exhibits a dryness or 
denaturing of lubrication. 

If the number of visible broken wires found in a rope is more than 4 over a length of 6d, or 8 
over a length of 30d, the rope should be discarded, 'd' being the nominal diameter of the rope 

 
C.3.3  Broken Wires at Termination 

Broken wires at, or adjacent to, the termination, even if few in number, are indicative of high 
stresses at this position and can be caused by incorrect fitting of the termination. The cause 
of this deterioration should be investigated and, where possible, the termination should be 
remade, shortening the rope if sufficient length remains for further use, otherwise the rope 
should be discarded.  
 
 

background image

Appendix C 

6

C.3.4  Localised Grouping of Broken Wires 

Where broken wires are very close together, constituting a localised grouping of such breaks, 
the rope should be discarded. If the grouping of such breaks occurs in a length less than 6d 
or is concentrated in any one strand, it may be necessary to discard the rope even if the 
number of wire breaks is smaller than the maximum number referred in C.3.2 above. 
 
C.3.5  Rate of Increase of Broken Wires 

If the predominant cause of rope deterioration is fatigue, broken wires will appear after a 
certain period of use, and the number of breaks will progressively increase over time.  
 
In these cases, it is recommended that careful periodic examination and recording of the 
number of broken wires be undertaken, with a view to establishing the rate of increase in the 
number of breaks. 
  
C.3.6  Fracture of Strands 

If a complete strand fracture occurs, the rope should be immediately discarded.  
 
C.3.7  Reduction of Rope Diameter Resulting from Core Deterioration 

Reduction of rope diameter resulting from deterioration of the core can be caused by: 

a)  internal wear and wire indentation. 
b)   internal wear caused by friction between individual strands and wires in the rope, 

particularly when it is subject to bending,  

c)   fracture of a steel core. 

  
If these factors cause the actual rope diameter to decrease by 10%, the rope should be 
discarded, even if no broken wires are visible.  

Note: New ropes will normally have an actual diameter greater than the nominal diameter.  
 
Low values of deterioration might not be so apparent from normal examination. However, the 
condition can result in a high loss of rope strength, so any suggestion of such internal 
deterioration should be verified by internal examination. If such deterioration is confirmed, the 
rope should be discarded.  

C.3.8  External Wear 

Abrasion of the outer strands of the rope results from rubbing contact, under load, with 
fittings such as chocks and fairleads. 
  
Wear is promoted by lack of lubrication, or incorrect lubrication, and also by the presence of 
dust and grit.  
 
Wear reduces the strength of ropes by reducing the cross-sectional area of the steel strands. 
  
If the actual rope diameter has decreased due to external wear by 7% or more of the nominal 
rope diameter, the rope should be discarded, even if no wire breaks are visible.  
 
C.3.9  Decreased Elasticity 

Under certain circumstances, usually associated with the working environment, a rope can 
sustain a substantial decrease in elasticity and is thus unsafe for further use.  
 
Decreased elasticity is difficult to detect. If the examiner has any doubt, advice should be 
obtained from a specialist in wire ropes. However, it is usually associated with the following:  

•  reduction in rope diameter;  

•  elongation of the rope lay length;  

•  lack of clearance between individual wires and between strands, caused by the 

compression of the component parts against each other;  

•  appearance of fine, brown powder between or within the strands;  

•  increased stiffness. 

background image

Appendix C 

7

 
While no wire breaks may be visible, the wire rope will be noticeably stiffer to handle and will 
certainly have a reduction in diameter greater than that related purely to wear of individual 
wires. This condition can lead to abrupt failure under dynamic loading and is sufficient 
justification for immediate discard. 
  
C.3.10  External and Internal Corrosion 

C.3.10.1  General 

Corrosion occurs particularly in marine and polluted industrial atmospheres. It will diminish the 
breaking strength of the rope by reducing the metallic cross-sectional area, and it will 
accelerate fatigue by causing surface irregularities, which lead to stress cracking. Severe 
corrosion can cause decreased elasticity of the rope. 

 

C.3.10.2  External Corrosion 

Corrosion of the outer surface of the wire can be detected visually.  
 
Wire slackness due to corrosion attack/steel loss is justification for immediate rope discard. 

 

C.3.10.3  Internal Corrosion 

This condition is more difficult to detect than the external corrosion which frequently 
accompanies it, but the following indications can be recognised: 

•  variation in rope diameter;  

•  loss of clearance between the strands in the outer layer of the rope, frequently 

combined with wire breaks between or within the strands.  

 
If there is any indication of internal corrosion, the rope should be subjected to internal 
examination, carried out by a competent person.  
 
Confirmation of severe internal corrosion is justification for immediate rope discard.  
 
C.3.11  Deformation 

C.3.11.1  General 

Visible distortion of the rope from its normal shape is termed "deformation" and can create a 
change at the deformation position, which results in an uneven stress distribution in the rope.  

C.3.11.2  Basket or Lantern Deformation 

Basket or lantern deformation, also called "birdcage", is a result of a difference in length 
between the rope core and the outer layer of strands. Different mechanisms can produce this 
deformation. 
 
If, for example, a rope is running onto the drum under a great fleet angle, it will touch the 
flange of the drum groove first and then roll down into the bottom of the groove. This 
characteristic will unlay the outer layer of strands to a greater extent than the rope core, 
producing a difference in length between these rope elements. The drum will then be able to 
displace the loose outer strands and bring the length difference to one location in the reeving 
system where it will appear as a basket or lantern deformation. 
 
Ropes with a basket or lantern deformation should be immediately discarded. 
 
C.3.11.3  Core or Strand Protrusion/Distortion 

This feature is a special type of basket or lantern deformation in which the rope imbalance is 
indicated by protrusion of the core between the outer strands, or protrusion of an outer strand 
of the rope or strand from the core. 
 
Rope with core or strand protrusion/distortion should be immediately discarded.  
 
C.3.11.4  Wire Protrusion  

background image

Appendix C 

8

In wire protrusion, certain wires or groups of wires rise up in the form of loops.  
 
Rope with wire protrusion should be immediately discarded.  

 

C.3.11.5  Local Increase in Diameter of Rope 

A local increase in rope diameter can occur and might affect  a relatively long length of the 
rope. This condition usually relates to a deformation of the core and consequently creates 
imbalance in the outer strands, which become incorrectly oriented.  
 
If this condition causes the actual rope diameter to increase by 5% or more, the rope should 
be immediately discarded.  

 

C.3.11.6  Kinks or Tightened Loops 

A kink or tightened loop is a deformation created by a loop in the rope which has been 
tightened without allowing for rotation about its axis. Imbalance of lay length occurs, which will 
cause excessive wear, and in severe cases the rope will be so distorted that it will have only a 
small proportion of its strength remaining.  
 
Rope with a kink or tightened loop should be immediately discarded.  

 

C.3.11.7  Bends 

Bends are angular deformations of the rope caused by external influence.  

 

Rope with a severe bend should be immediately discarded. 
 
C.3.11.8  Damage due to Heat or Electric Arcing 

Ropes that have been subjected to exceptional thermal effects, externally recognised by the 
colours produced in the rope, should be immediately discarded.  
 
 

 

Section Criteria 

Discard 

Criteria 

Visible wire breaks 

C.3.2 

Number in length of 6d or 
30d  

Discard if over 4 in length 6d 
or 8 over 30d 

Wire breaks at 
termination 

C.3.3 

Evidence of broken wires 

Remake termination or 
discard rope 

Fracture of Strand 

C.3.6 

Strand fracture 

Discard if present 

Reduction of rope 
diameter 

C.3.7 

% reduction  

Discard if diameter decreased 
by 10% 

Abrasion of outer 
wires 

C.3.8 

Degree of deterioration (%) 

Discard if over 7% 

 

TABLE C.1: SUMMARY OF THE MAJOR CRITERIA FOR THE INSPECTION AND 

DISCARD OF WIRE ROPES 

 
C.3.12  Removal of Rope from Service 

Only qualified and experienced personnel, taking the appropriate safety precautions and 
wearing the appropriate protective clothing, should be responsible for removing wire rope 
from service.  
 
Care should be taken when removing the condemned rope from drums as it may be grossly 
distorted, lively and tightly coiled.  
 
Discarded rope should be stored in a safe and secure location and should be suitably marked 
to identify it as rope which has been removed from service and is not to be used again.  
 

background image

Appendix C 

9

The date and reason for discard should be recorded on the rope's Certificate before it is filed 
for future reference.  
 
Attention should be paid to any Regulations affecting the safe disposal of steel wire rope. 
 

 

Examples of fatigue failure of a wire rope which has been subjected to heavy loads through 
under-sized fairleads. 

Wire fractures at the strand or core interface 
caused by failure of core support. 

 

FIGURE C2: EXAMPLES OF ROPE DAMAGE WITH BROKEN WIRES 

 
 

 

FIGURE C3: REDUCTION IN WIRE ROPE DIAMETER 

 

Undamaged 

Rope Section 

Damaged 

Rope Section 

Strands bind and take 

on an oval shape if the 

core has failed. 

Note the decrease 

in lay angle when 

the core  fails. 

Normal 

Diameter 

Reduced 
Diameter 

background image

Appendix C 

10

 

FIGURE C4: WIRE ROPE CRUSHING DAMAGE 

 
 

Normal Undamaged Rope 

One Rope Lay 

Stretched rope shows increased lay length 

 

FIGURE C5: ROPE STRETCH LEADING TO DECREASED ELASTICITY 

background image

Appendix C 

11

 

FIGURE C6: CROSS SECTION DEPICTING SUBSTANTIAL WEAR AND SEVERE 

LATERAL CORROSION 

 
 

 

FIGURE C7: BASKET OR LANTERN DEFORMATION 

 
 

A open kink in a rope caused by 

improper handling.  

Examples of wire ropes exhibiting severe damage resulting from service after being 

kinked, leading to localised wear, distortion and misplaced wires .  

 

 

FIGURE C8: AN OPEN KINK AND EXAMPLES OF DAMAGE CAUSED   

background image

Appendix D 

1

Appendix D 

 

Guidelines for Inspection and Removal 

from Service of Fibre Ropes 

 

D.1  INSPECTION OF ROPES

 

 

D.1.1  General 

One of the most frequent, as well as the most important, questions asked about ropes is how to 
visually inspect the rope in order to estimate the useful residual strength. 
 

 

FIGURE D1: NEW ROPE 

 

 

FIGURE D2: USED ROPE 

 

 

FIGURE D3: DAMAGED ROPE 

 
If there is no actual fibre damage or distortion, there is no positive method by which the residual 
strength of a used rope can be determined visually. A laboratory analysis and tensile test is the 
best way to establish residual strength. 
 
D.1.2  Estimating Damage and Strength Degradation with Different Rope Constructions 

The following guidelines are suggested for use in estimating damage and strength degradation, 
brought on by normal wear: 
 
It is important to understand that a rope will lose strength during use in any application. Ropes 
are serious working tools and used properly will give consistent and reliable service. The cost of 
replacing a rope is extremely limited when compared to the physical damage or personnel injury 
a worn out rope can cause. 
 

•  Before inspection, identify the rope by its label or permanent marking, and consult any 

previous inspection records. 

background image

Appendix D 

2

 

•  Visually inspect the rope over its entire length, identifying any areas requiring in-depth 

investigation. 

 

•  Splice terminations should also be inspected to ensure they are in 'as-made' condition. 

 
In synthetic fibre ropes, the amount of strength loss due to abrasion and/or flexing is directly 
related to the amount of broken fibre in the rope's cross-section. After each use, look and feel 
along the length of the rope inspecting for abrasion, glossy or glazed areas, inconsistent 
diameter, discoloration, inconsistencies in texture and stiffness. 
 
It is important to understand the design of the rope in use. Most ropes are designed to have 
features specifically tailored to their application. These features can lead to misconceptions 
during visual inspections. When a rope has a braided cover, it is only possible to visually inspect 
the cover. 
 
In laid and 8-strand rope constructions, all strands have an intermittent prominent surface 
exposure, usually referred as the “crowns". Thus, they are susceptible to damage.  
 
12-strand braided ropes are similar to the 8-strand rope mentioned above. However the “crowns” 
of the strands are less prominent and therefore less susceptible to surface damage. 
 
Double-braided rope construction has an independent inner-core, possessing approximately 50% 
of the total rope strength. This core, since it is not subjected to surface abrasion and wear, tends 
to retain a larger percentage of its original strength, over a longer period of time. Thus, wear on 
surface strands does not constitute as large a percentage of strength loss as in other 
constructions. 
 
In a parallel strand rope construction, the core represents 100% of the rope strength. The outer 
braided jacket acts as a protection against external abrasion for the strength member and 
therefore massive damage to this outer braid does not dramatically reduce the overall strength of 
the rope.  
 
Ropes are also subject to internal abrasion. 

 

D.1.3  Rope Retirement 

There are so many variables that affect rope life that only a continuous process of examination by 
a competent person, during and after each use, will give them the ability to retire the rope before 
it reaches a critical point. 
 
Many factors affect a rope in service and all should be taken into consideration in assessing the 
remaining rope life.  Factors such as load history, abrasion, bending radius and chemical attack 
all need to be considered when assessing retirement criteria. 
 
It is recommended that, in the absence of any other information, mooring ropes are replaced 
when their residual strength has reduced to 75% of the original MBL This reduction can be 
ascertained either by destructive testing or by visual examination, as indicated in the attached 
inspection check-list. (See Section D2). Tails should be retired when their residual strength has 
reduced to 60% of the original MBL.  
 
The amount of strength loss due to abrasion and/or flexing relates to the percentage of yarns 
broken in the rope's cross-section. For a conventional mooring rope, a 25% reduction will equate 
to at least a 25% loss of strength in the rope. For high modulus synthetic fibre mooring lines, the 
proportional loss of strength is greater than the percentage of the damage. Figure D4 provides a 
graphical depiction of the relationship between rope damage and residual strength for 8 strand 
polyamide/polyester and 12 strand HMPE moorings. 
 
 

background image

Appendix D 

3

 

FIGURE D4: RESIDUAL STRENGTH TO ROPE DAMAGE RELATIONSHIPS 

Note – 'nylon' to change to 'polyamide' 

 
  
D.1.3.1  External Abrasion 

When a rope is first put into service the outer filaments will quickly take on a furry appearance.  
This is a normal occurrence as the surface filaments break due to slight abrasion in service.  This 
furry surface however acts to protect the underneath fibres in the rope construction. 
 
This surface abrasion needs to be examined regularly to ensure what is a normal occurrence is 
not mistaken for more serious damage being caused to the rope by other means. A rope left lying 
in the water for instance will suffer from 'water wash', where the action of the sea works the rope 
continuously under very low load, resulting in flex fatigue which also causes fibre damage and 
furring.  Another cause of abrasion can be from rust build up on untreated surfaces. 
 
D.1.3.2  Internal Abrasion 

Abrasion can also occur between strands and yarns in a rope and is indicative of the amount of 
work the rope has done. Therefore, a rope should be opened up, where this is practical, to 
inspect for internal wear. One of the signs to look for is powdered fibre which is indicative of 
internal wear and will indicate a reduction in rope strength 
 
D.1.3.3  Other Damage 

Ropes can be damaged by heat and on the surface this is indicated by glazed areas where the 
fibres have melted together. The strength loss can be much greater than the surface appearance 
would indicate. This is the case with most conventional ropes. 
 
With HMPE ropes, there can be another non-damaging form of glazing resulting from the 
compression which typically occurs when the rope is wound on to a winch drum, around bitts or 
fairleads, etc. This type of glazing will disappear when the rope is flexed. 

background image

Appendix D 

4

 
Ropes should be inspected for inconsistency in diameter which can be either increases or 
reductions. With ropes which have separate core and sheath constructions, inconsistency in 
diameter can indicate internal damage from overloading or shock loads and can indicate that a 
rope needs to be replaced. 
 
All ropes become dirty in use but patches of discolouration along a ropes length need to be 
investigated in order to determine the cause as this could indicate chemical contamination. 
 
Localised areas of stiffness along a rope normally indicate that the rope has been subjected to 
shock loads. Shock loads are simply a sudden change in tension from a state of relaxation or low 
load to one of high load. The rope should be considered for retirement. 
 
Excessive dirt or grit may have embedded in the rope causing localised stiffness. This stiffness 
should not be confused with glazing as described earlier. 
 
An occasional pulled or cut yarn will have very little detrimental effect on the strength of the rope.  
However this damage is usually caused by localised external forces, which very rarely damage 
only one yarn, and therefore the cumulative effect of the damage needs to be assessed by 
regarding a pulled yarn as broken. 
 
 
 
 
 
 

background image

Appendix D 

5

D.2  MOORING ROPE INSPECTION CHECK-LIST

 

 
If any one of the following criteria are observed, the rope should be discarded or the damaged 
area should be cut out and the rope re-spliced.  
 
HMPE mooring lines should not be spliced on board as they require specialist splicing ashore.  
 
Generally, a conventional mooring line should be discarded if it has more than two splices within 
its length and an HMPE mooring should be splice-free. 
 
 
 

DISCARD CRITERIA FOR MOORING LINES 

 

MATERIAL LOSS THROUGH ABRASION: 

 Construction 

Conventional 

Fibre 

 HMPE  

4 strand construction  

 

25% 

15% 

6 strand/7 strand construction  

 

25% 

15% 

 

8 strand construction  

 

25% 

15% 

 

12 strand construction 

 

25% 

15% 

 

Double braid construction sheath 

 

50% 

n/a 

 

Parallel strand rope and jacketed construction sheath 

100%  100% 

 

 

 

 

INCONSISTANT DIAMETER: 

Localised reduction in diameter 

 

 

 

Localised increases in diameter 

 

 

 

 

 

INCONSISTENT FLEXIBILITY: 

Localised areas of stiffness 

 

 

 

 

 

HEAT FUSION: 

Extended areas of heat fusion 

 

 

 

 

DISCOLOURATION: 

Areas caused by chemical contamination 

 

 

 

 
 
 
The following figures show fibre ropes in various conditions.

background image

Appendix D 

6

 

 

FIGURE D5: 

FIGURE D6: 

   SURFACE ABRASION 

PLUCKED STRAND IN COVER 

 
 
 
 

                    FIGURE D7: 

 

 

 

 

         FIGURE D8: 

 

SINGLE CUT STRAND 

MULTIPLE CUT STRANDS 

 

 

 

 

FIGURE D9: GLAZED, NO FIBRE DAMAGE (BENT ROPE) 

 

 

 

FIGURE D10: GLAZED, NO FIBRE DAMAGE (FLAT ROPE) 

background image

Appendix D 

7

 
 

 

 

FIGURE D11: SAME ROPE AS IN FIGURES D9 AND D10: AFTER FLEXING NO 

PERMANENT DAMAGE 

 
 

 

 

FIGURE D12: ACTUAL MELTING DAMAGE, OFTEN BLACK HARDENED YARN END THAT 

CAN NOT BE FLEXED BACK. IN THIS PICTURE APPROX. 50% OF ONE STRAND IS 

ACTUALLY MELTED AWAY. 

 

background image

Appendix E 

1

Appendix E 

 
 

Tanker Mounted SPM Fittings

 

 
 
The recommendations apply to the number of mooring connections used, the safe working loads 
of fittings, the dimension of chafe chains and attendant fittings and the type and location of 
securing devices and fairleads on board. The recommendations only deal with those features that 
are necessary to ensure the correct matching of equipment used for mooring at SPMs.  
 
These recommendations are extracted from the fourth edition of the OCIMF publication 
‘Recommendations for Equipment Employed in the Bow Mooring of Conventional Tankers at 
Single Point Moorings' which should be referred to for additional information.  

 

 

E.1  BOW CHAIN STOPPERS 

 

Existing ships delivered before 2009 likely to trade to SPMs should be equipped with bow chain 
stoppers designed to accept 76 mm chafe chain in accordance with the following table: 
 
 

Ship Size 

 

Number of 

Bow Chain  

Stoppers 

Minimum 

SWL 

(tonnes) 

150,000 tonnes DWT or less 

 

 

(approx. 175,000 displacement) 
 
Note that ship in this size range may elect to 
fit two stoppers to ensure full range terminal 
acceptance. 
 

200 

Over 150,000 but not greater 

 

 

than 350,000 tonnes DWT 

200 

(approx. 175,000 – 400,000 displacement) 

 

 

Over 350,000 tonnes DWT 

250 

(approx. 400,000 displacement) 

 

 

 

Note: The safety factor on yield of bow chain stoppers on existing ships should be a minimum of 

1.50 SWL.  

New ships delivered during or after 2009 likely to visit SPMs should be equipped with bow chain 
stoppers designed to accept 76 mm chafe chain in accordance with the following table. Owners 
of ships under construction before 2009 are encouraged to consider fitting bow chain stoppers in 
accordance with the recommendations for new ships. 

background image

Appendix E 

2

 

Ship Size 

 

Number of 

Bow Chain 

Stoppers 

Minimum 

SWL 

(tonnes) 

100,000 tonnes DWT or less 
(approx. 120,000 displacement) 
 
Note that ship in this size range may elect to 
fit two stoppers to ensure full range terminal 
acceptance. 
 

200 

Over 100,000 but not greater 

than 150,000 tonnes DWT 
(approx. 120,000 – 175,000 displacement) 
 
Note that ship in this size range may elect to 
fit two stoppers to ensure full range terminal 
acceptance. 
 

250 

 

Over 150,000 tonnes DWT 
(approx. 175,000 displacement) 
 

350 

 

Note: The safety factor on yield of bow chain stoppers on new ships should be a minimum of 2.0 

SWL.  

Bow chain stoppers, their foundations and associated ship supporting structure should be 
demonstrated as adequate for the loads imposed. The ship should hold a copy of the 
manufacturer's type approval certificate for the bow chain stopper(s) confirming that the bow 
chain stopper(s) are constructed in strict compliance with a recognised standard that specifies 
SWL, yield strength and safety factors. The ship should also hold a certificate attesting to the 
strength of the bow chain stopper foundations and associated ship supporting structure 
substantiated by detailed engineering analysis or calculations and an inspection of the 
installation. An independent authority such as a Classification Society should issue both 
certificates. Bow chain stoppers, associated foundations and supporting structures should be 
subject to periodic survey at least once every five years and maintained in good order. Bow chain 
stoppers should be permanently marked with the SWL and appropriate serial numbers so that 
certificates can be easily cross-referenced to the fitted equipment. 
 
Bow chain stopper manufacturers should provide basic operating, maintenance and inspection 
instructions. Where appropriate, manufacturers should also provide guidance on maximum 
component wear limits.  At many terminals, common malpractice with one particular design of 
bow chain stopper is the use of wedges between the retaining pin and the tongue.   
 
Shuttle tankers with bow mooring systems designed for specialised offshore terminals may be 
fitted with specialised hydraulic bow chain stoppers with interlocks and emergency shutdown 
systems integral to the bow loading system. It is recommended that owners of shuttle tankers  
assess the suitability of specialised bow chain stoppers for use at conventional terminals and 
provide procedures and crew training to prevent accidental or inadvertent release of the chafe 
chain.  

 

These recommendations are based strictly on ship size as being the only general criteria that can 
be used. Although terminal operators may change the chafe chain and equipment to take account 
of local environmental conditions, it is essential that the dimensions of the material remain as 
detailed in Section 5 of Reference 1 in order that it matches shipboard equipment. 

 

In practice, bow chain stoppers have been found to be safe and easy to use and maintain.  The 
bow chain stopper should be designed to secure standard 76 mm diameter stud-link chain when 
the chain engaging pawl or bar is in the closed position. The bow chain stopper should be 
designed to freely pass a standard 76mm diameter stud-link chain and associated fittings when 
the chain engaging pawl or bar is in the open position.  

background image

Appendix E 

3

 

FIGURE E1: TYPICAL TONGUE-TYPE BOW CHAIN STOPPER 

 
 
The following recommendations regarding positioning of the bow chain stoppers should be 
complied with: - 
 

• 

Bow chain stoppers should be located between 2.7 and 3.7 metres inboard from the 
bow fairlead (see Figure E2). 

 

• 

When positioning, due consideration must be given to the correct alignment of bow 
chain stoppers relative to the direct lead between bow fairlead, the winch storage 
drum and, if necessary, pedestal rollers (see Section E3). 

 

• 

Bow chain stopper support structures should be trimmed to compensate for any 
camber and/or rake of the deck. The leading edge of the bow chain stopper base 
plate should be faired to allow for the unimpeded entry of the chafe chain. 

 

• 

Improperly sited bow chain stoppers and/or ancillary equipment will hamper mooring 
operations and may result in ships being rejected from terminals until the 
arrangements have been modified to conform with these recommendations. 

 

 

background image

Appendix E 

4

 

FIGURE E2:  POSITIONING OF FORWARD FAIRLEADS, BOW CHAIN STOPPERS AND 

PEDESTAL ROLLER LEADS 

 

 

background image

Appendix E 

5

E.2   BOW FAIRLEADS 

 

Bow fairleads should be of at least equivalent SWL to the bow chain stoppers that they serve.  
The safety factor on yield of bow fairleads on existing ships delivered before 2009 should be at 
least 1.50 SWL. For new ships delivered during or after 2009, it is recommended that the safety 
factor on yield of bow fairleads is increased to at least 2.0 SWL. Owners of ships under 
construction before 2009 are encouraged to consider upgrading the safety factor to 2.0 SWL. 
The load position should be based on hawser angles up to 90 degrees from the ship's centreline 
both starboard and port in the horizontal plane and to 30 degrees above and below horizontal in 
the vertical plane.   

Bow fairleads, their foundations and associated ship supporting structure should be 
demonstrated as adequate for the loads imposed. The ship should hold a copy of the 
manufacturer's type approval certificate for the bow fairleads confirming that the bow fairleads  
are constructed in strict compliance with a recognised standard that specifies SWL and safety 
factors. The ship should also hold a certificate attesting to the strength of the bow fairlead 
foundations and associated ship supporting structure that is substantiated by detailed 
engineering analysis or calculations and an inspection of the installation. An independent 
authority, such as a Classification Society, should issue both certificates. Bow fairleads, 
associated foundations and supporting structure should be maintained in good order and subject 
to periodic survey at least once every five years.   

In practice, it has been found that the use of a single central bow fairlead often creates problems 
when attempting to heave the second chafe chain inboard, as the first chain tends to obstruct the 
direct line of pull. A certain amount of interaction between mooring hawsers, thimbles and 
hawser floats also occurs with this arrangement, frequently resulting in chafing and damage to 
flotation material. As a result, two bow fairleads are recommended for ships fitted with two bow 
chain stoppers.  

The following recommendations refer to the size, location and type of bow fairleads (See Figure 
E2): 

•  All bow fairleads should measure at least 600 x 450 mm.  

•  Bow fairleads should be spaced 2.0 metres centre-to-centre apart, if practicable, and in 

no case be more than 3.0 metres apart. Ships of 150,000 tonnes DWT or less at 
maximum summer draft fitted with only one bow chain stopper, need only provide one 
bow fairlead, which should be on the centre line. 

• 

Bow fairleads should be oval or round in shape and adequately faired when fitted in 
order to prevent chafe chains from fouling on the lower lip when heaving inboard or 
letting go.  Square bow fairleads are not suitable. 

 

 

E.3 POSITION OF PEDESTAL ROLLERS  AND 

WINCH STORAGE DRUMS 

 

See Figure E2 for drawings of the various arrangements described in this section. 

Existing ships delivered before 2009 likely to visit SPMs should be equipped to safely handle 
pick-up ropes taking into consideration safety and protection from risk of whiplash injury to 
mooring personnel. It is recognised that existing ship mooring arrangements will normally require 
the use of pedestal rollers to achieve the desired lead through the bow fairlead and bow chain 
stopper to the winch storage drum. It is essential that pedestal roller(s) are correctly positioned, 
relative to the winch storage drum and the centre of the bow chain stopper to enable a direct 
lead from the centre of the bow fairlead to the centre of the bow chain stopper while allowing the 
pick-up rope to be stowed evenly on the storage drum. There should be at least 3 metres 
distance between the bow chain stopper and the closest pedestal roller to allow for the pick-up 

background image

Appendix E 

6

rope eye, connecting shackle, shipboard-end oblong plate and a number of chafe chain links. 

Owners of existing ships and ships under construction before 2009 are encouraged to consider 
the practicality of adopting the recommendations for new ships. 

New ships delivered during or after 2009 likely to visit SPMs, wherever possible, it is  
recommended that winch storage drums used to recover the pick-up ropes are positioned in a 
direct straight lead with the bow fairlead and bow chain stopper without the use of pedestal 
rollers. This relative positioning of the tanker SPM mooring equipment in a direct straight lead is 
considered the safest and most efficient arrangement for handling the pick-up ropes. However, 
recognising that not all new mooring arrangement designs will permit direct straight leads to a 
winch storage drum, consideration of safety and protection from risk of whiplash injury to 
mooring personnel should take priority in determining number and positioning of pedestal rollers. 
In addition to the pedestal roller arrangement recommendations for existing ships, the number of 
pedestal rollers used for each bow chain stopper should not exceed two and the angle of change 
of direction of the pick-up rope lead should be minimal. 

Remote operated winch storage drums may afford some additional whiplash injury protection for 
the winch operator. 

Winch stowage drums used to stow the pick-up rope for existing and new ships should be 
capable of lifting at least 15 tonnes and be of sufficient size to accommodate 150 metres of 80 
mm diameter rope. Use of winch drum ends (warping ends) to handle pick-up ropes is considered 
unsafe and should be avoided. 

 

background image

Appendix F 

1

Appendix F 

Strength of Chain Tensioned 

over a Curved Surface

 

 

 

The chafing chain at the end of a tow line or SPM hawser normally is guided through a chock at 
the edge of the tanker deck. This chock restrains the chain from excessive lateral movement and 
provides a curved surface for the chain to bear against. The diameter of this curved surface must 
be large enough to prevent overstressing of the chain when it is subjected to high towing or 
mooring loads. The problem of defining a criteria for the minimum diameter of chock surfaces 
was addressed by both analysis and experiment in this study. 

 

F.1  THREE CASES OF CHAIN ON A CURVED SURFACE 

 
Analysis of the stresses in a chain tensioned over a curved surface is more complex than first 
appears. Three cases of chains tensioned over curved surfaces are illustrated in Figure FI. Case 
1 is that of an ungrooved surface, such as a chock. The chain links lie at angles to the surface, 
alternatively lying to one side and then the other, with all links bearing against the surface. This 
is the case of primary interest in this study. 

The second and third cases apply to grooved surfaces, such as anchor chain windlasses and 
chain sheaves. On grooved surfaces, every second chain link projects into a groove in the 
surface and has its transverse axis perpendicular or upright to the surface. Intervening links lie 
with their transverse axis parallel or flat on the surface. In case the groove is so shallow that the 
upright link rests on the bottom of the groove and the flat link is lifted free of the surface. In this 
case bending stresses are exerted on the upright links only. In case 3, the groove is so deep that 
the upright links do not touch bottom, and the flat links bear against the curved surface. Only the 
flat links are subjected to bending stresses in this case. 

Grooved surfaces are discussed to distinguish them from the ungrooved case and to allow 
discussion of other analyses and recommendations. An intermediate case can exist in which 
both the flat and upright links touch the surface. In the case of chain lying over a very small 
ungrooved surface with only one or several links in contact, alternating links may lie flat and 
upright to the surface as in the second and third cases. 

 

F.2  DEFINITION OF ANGLES AND OTHER TERMS 

 
Dimension and angles of chain links lying on a curved surface are shown in Figure FI. The chain 
diameter, d, is the nominal diameter of the bar from which the common stud link is formed. For 
common stud links the overall link length is 6 times and the link width is 3.6 times d. 

The diameter of the curved surface over which the chain is bent will be defined as D. This should 
not be confused with the diameter of the opening in the bow chock. For case 2, the shallow-
grooved surface with contact at the bottom of the groove, D, is analysed as the diameter to the 
bottom of the groove. 

The ratio of bending surface diameter to chain diameter D/d will be used as a criteria for surface 
diameter. This diameter ratio should not be confused with the ratio of the surface radius to chain 
diameter which is sometimes referred to in recommendations made by others. 

 

background image

Appendix F 

2

 

FIGURE F1:  THREE CASES OF A CHAIN BENT OVER A CURVED SURFACE 

 

Certain angles, shown in Figure F2, are of interest in analysing chain tensioned over a curved 
surface. The angle between the centre lines of two adjacent chain links will be defined as

 α. This 

is also the angle subtended by rays from the centre of surface curvature to the centres of 
adjacent links. The angle between the transverse axis of a chain link and the surface will be 
defined as ß. The angle α can be found as a function of the diameter ratio D/d and the angle ß by 
the following equation: 

 

background image

Appendix F 

3

 

FIGURE F2:  GEOMETRY OF A CHAIN BENT OVER A CURVED SURFACE 

 

Unfortunately, the angle ß cannot be determined by a closed-form analytical solution. The 
problem is a very complex solid geometry problem involving the interlocking of two toroids 
intersecting at an angle which depends on angles α  and ß. As α  increases then the angle ß 
decreases. Figure F3 shows the approximate relationship between the angle ß and the angle α
These values were measured with small chain having proportions similar to large stud link chain. 
The angle ß decreases slowly from approximately 40° to approximately 30° as α  increases to 
about 70°, and then it drops rapidly as α

 increases to 90 °   

background image

Appendix F 

4

 

FIGURE F3:  APPROXIMATE RELATION BETWEEN ANGLE 

α

 

AND ANGLE 

ß

  

The angle α as a function of the diameter ratio D/d and various angles ß is shown in Figure F4. 
The angle α cannot, therefore, be uniquely determined without first having determined ß, and ß 
unfortunately depends on α. Thus a closed form solution is not possible. 
 

F.3  FORCES ON THE CHAIN LINK 

 

A free-body diagram of half a chain link, showing the forces and moments applied when bent 
over a curved surface, is given in Figure F5. The effect of the stud is ignored in this analysis. 

The force is the tension in the chain. For the purpose of analysis, it is assumed the tension 
force is applied at the centreline of the chain. In the case of chain on an ungrooved surface, 
the tension force P  between chain links acts at an angle α/2 to the chain centreline, because 
every chain link bears on the surface. This is an important distinction from the case of chain on a 
grooved surface, in which every other chain link is not in contact with the surface and thus is 
under tension only. The angle at which the tensile force P  acts on the bent chain link in the 
grooved surface case is α.  Only the solution of the ungrooved surface case will be addressed 
here. 

The reaction force of the surface against the chain link is R.  For the half chain link free body 
shown, only half this reaction force applies. Because the chain lies at an angle to the surface, the 

 

background image

Appendix F 

5

 

 

FIGURE F4:  ANGLE 

α

 

AS FUNCTION OF D/d FOR VARIOUS ANGLES 

ß

  

 

 

FIGURE F5:  FREE BODY ALALYSIS OF HALF CHAIN LINK  

background image

Appendix F 

6

reaction applies a moment about the centreline, which must be resisted by the interlocking chain 
link. The manner in which this resisting moment is applied is complicated. For the purpose of 
analysis, a resisting moment between chain links will be assumed to act about the chain link 
centreline. 

The vertical component of the interlink tension is sin α /2. This force applies a bending moment 
at the centre of the chain link. From the dimensions of the link, this moment is 

 

Considering the chain link as a beam consisting of two cylinders, each with its centreline a 
distance from the centroid, the moment of inertia is 

 

 
The maximum tensile stress in the chain is at the top centre of the link. The distance to the outer 
fibre at that point is 

 

 

 
By superposition of the tensile force which is exerted by the horizontal component of acting on 
the area of the link and the maximum tensile force which is produced by the vertical component 
of applying a moment M, the total stress at this point is 
 

 

 

 

To facilitate plotting and comparison of the stress level, a non-dimensional stress parameter is 
defined by multiplying the above equation by d

2

 

 

 

 
This factor has been plotted in Figure F6 as a function of the diameter ratio for various angles ß. 
For convenience the surface diameter corresponding to 76 mm (3 in.) chain is also indicated on 
the abscissa of the figure. 
 
 

F.4  INCREASE IN MAXIMUM STRESS 

 

Marsh and Thurston (Reference 8) analysed the stress distribution in a stud link chain under 
straight tension using stress equations which are more sophisticated than those used here. They 
measured these stresses by strain gauging chain links. The results of their analysis (Figure 3 of 
Marsh and Thurston reference) show the maximum tension stress in straight tension occurs at 
the outside of the link at a position about 70º from the end of the link. The non-dimensional value 
of this stress, αd

 is 2. 

                       

 
This non-dimensional stress value is plotted as a horizontal dashed line in Figure F6. It indicates 

that the maximum stress due to straight tension is higher than that due to being tensioned over 
the surface for surface to chain diameter ratios greater than about 7 when ß = 25º. The actual 
diameter ratio at which stress due to tensioning over the surface becomes greater than that due 
to tensioning over the surface becomes greater than that due to straight tension depends on the 
angle ß, which is undetermined. 

background image

Appendix F 

7

 

 

FIGURE F6:  NON-DIMENSIONAL STRESS FACTOR AS A FUNCTION OF D/d FOR 

VARIOUS ANGLES 

ß

  

 

 

F.5  COMPARISON OF GROOVED 

AND NON-GROOVED CASES 

 

The two cases of chain tensioned over a curved surface with a groove can be analysed by the 

stress equations given in the preceding section by replacing α/2  by  α.  Also, recall that for the 
case of the upright link supported at the bottom of the groove, the surface diameter must be 
defined as the radius to the bottom of the groove. Figure F7 shows the non-dimensional stress 
parameter αd

 plotted for these two cases, together with the non-grooved surface case for ß=25º     

.                 P   

As reported by Buckle (Reference 9), the two grooved surface cases were analysed by Lloyds 
Register of Shipping. The analysis was done for stud-link chain with a finite-element technique.  
 

background image

Appendix F 

8

 

FIGURE F7:  COMPARISON OF GROOVED AND UNGROOVED SURFACE CASES 

 

 

The inter-link angle α was approximately 30°. The non-dimensional stress factors, as defined 
above, were approximately 2 and 4.6 for the upright link (ß = 90°) and flat link (ß = 0°) cases 
respectively (Figure 12 of Buckle reference). 
 
Comparing the Buckle results with those of the present analysis gives some indication of the 
adequacy of the present calculations. For the 0° case (flat link), Buckle gives a stress only 
slightly lower than the present analysis. For the 90° case (upright link) Buckle gives a stress 
approximately  70%  higher. This higher value may be due to the action of the stud putting a 
concentrated load on the middle section of the link. 

The comparison indicates the simplified analysis done here may not be as accurate as the finite 
element analysis performed by Buckle. Correlation is good for the 0° case, but poor for the 90° 
case. The intermediate cases of interest, i.e. ß 25°, may be less inaccurate. 

In the present study, a more accurate analysis of the case of a chain tensioned over an 
ungrooved curved surface could have been obtained using finite-element methods. However, a 
more exact analysis of the forces between two interlocking links would be necessary. A precise 
definition of the inter-link forces is a major problem. Further analysis does not appear to be 
warranted. 

 

background image

Appendix F 

9

F.6  TESTS OF CHAIN TENSIONED 

OVER CURVED SURFACE 

 

An experimental programme was conducted to determine the load at which stud link chain 
breaks when tensioned over a curved surface. Specimens from two samples of flash-welded 
grade-2 steel stud-link chain from different manufacturers were tensioned around pins having 
surface diameters ranging from 2.3 to 14 times the chain diameter. They were loaded until they 
failed. Properties of the chain specimens are given in Table F .1. 
 

 

TABLE F1:  CHAIN TENSIONED OVER CURVED SURFACE, PROPERTIES OF CHAIN SAMPLES 

 

 

A typical test set up is shown in Figure F8. Load was applied by a large hydraulic cylinder 
mounted horizontally. One end of the chain specimen was attached to the cylinder head by a 
detachable link. 

The other end was run over the test pin, mounted with its axis horizontal between two plates 
extending from a stationary frame and connected through a detachable link to a chain swivel 
bolted to a strong rail in the test floor. 

A total of 24 tests were conducted. The set-up and results of each test is summarised in Table 
F.2. The first 17 tests were conducted with chain A. The results of these tests indicated the chain 
specimens might be untypically ductile. Therefore chain B was obtained and specimens from it 
were tested. 

 

F.7  RESULTS CHAIN TESTS 

 

When loaded in straight tension, both chain samples broke at loads significantly higher than their 
rated break test loads. These straight break strengths were used as the basis for defining 
percent of strength for those chains loaded on the curved surfaces. There was very good 
agreement between identical tests with chain A. Thus tests were not repeated with chain B. 

There was wide scatter of results depending on the geometry of the chain in relation to the 
surface. When interlocking chain links were arranged to contact the surface at angles near 45º, 
the chains broke at the interlocking point at loads somewhat lower than the straight break test 
load. When the interlocking chain links were alternating upright and flat to the surface, as 
happens with smaller surface diameters, chain strength was not significantly reduced. 
Sometimes the straight chain links free of the surface broke before the bent chain links did. 

Figure F9 shows the tests results. The lowest breaking load obtained for each diameter ratio 
divided by the straight breaking strength is plotted as a function of the surface diameter to chain 
diameter ratio. In the case of identical tests, the average of the two loads is plotted. 

background image

Appendix F 

10

 

 

TABLE F8:  TEST SET-UP. TEST 15, 

α

 = 135º,  D/d = 4,  8 LINKS 

 

 

Although chain A was at first thought to break at untypically high loads, because of greater than 
normal ductility, chain B performed even better and appeared to be even more ductile. 

It was thought that links which were deformed around the curved surface would have lower 
strength when loaded in straight tension. This did not occur. In the tests in which deformed links 
were loaded in straight tension, the chains broke at points other than the deformed links. 

The results of the chain tests should be generally applicable over a wide range of chain sizes, 
even though only 32 and 35 mm (1

1

/

9

 

 ~ and 1⅜ in.) chains were tested. The diameter ratio 

results have

  been treated as non-dimensional quantities. Percent reduction in strength as a 

function of the ratio of surface diameter to chain diameter chain link proportions is independent of 
the experiment scale. Also, material properties and manufacturing processes are the same for 
the chains tested as for larger chains. The findings of the chain tests generally agree with those 
of the analytical study. Therefore, the results of these studies should be applicable to larger 
chains. 

The curve in Figure F9 is believed to be a reasonable indication of the manner in which surface 
diameter to chain diameter ratio affects chain strength. The results indicate that strength 
reduction due to tensioning chain over a curved surface is not significant for surface diameter to 
chain diameter ratios greater than about 6. 

 

background image

Appendix F 

11

 

 

TABLE F2:  SUMMARY OF TEST RESULTS, CHAIN TENSIONED OVER CURVED SURFACE 

 
 
 
 
 
 
 
 
 

background image

Appendix F 

12

 

*Indicates break occurred in straight chain link which was not in contact with curved surface. 
 

TABLE F2:  (continued) 

 

 

 

 

FIGURE F9:  RESULTS OF TESTS OF CHAIN TENSIONED OVER CURVED SURFACE 

 

background image

Appendix F 

13

F.8  RECOMMENDATIONS FOR CHOCK 

SURFACE DIAMETER 

 

Practicality must be considered in specifying a chock diameter for SPM and towing chains. 
Retrofitting or modification might be necessary on many tankers. If an impractical or too large 
diameter is required, many operators and owners may choose to resist or defer making 
modifications. 

Many recommendations have been made in the past regarding the safe diameter for surfaces on 
which chains bear. Review of these past recommendations indicates that only some of them 
apply to chain tensioned over an ungrooved surface, the case of interest in SPM and towing 
chain chocks. The Lloyds investigation reported by Buckle, the only other known analysis, 
applies only for a grooved surface. No other experimental work of chain tensioned over 
ungrooved surfaces is known. Thus most past recommendations are apparently only 
conservative assumptions based on experience in various dissimilar services. 

In the present investigation, both analytical and experimental findings indicate that stud link 
chain will not be significantly weakened provided the diameter of the surface over which it is 
tensioned is not less than 7 times the diameter of the chain. 

Chocks with a 600 by 450 mm (24 by 18 in.) opening and a surface diameter of 560 mm (22 in.) 
are available. Such chocks are known as Mississippi fairleads, and are manufactured and 
marketed by several companies. When used with the 76 mm (3 in.) chain, recommended for 
SPM and towing chafing chain, the 560 mm surface curvature of such chocks provides a surface 
diameter ratio of 7.4. Thus, the recommended surface diameter to chain diameter ratio of 7 is 
practical. 

Many tankers are already fitted with bow chocks which comply with this recommendation. Some 

tankers probably have chocks with smaller surface diameters. The most common commercially 
available 600 by 450 mm (24 by 18 in.) opening chock has a surface diameter of 360 mm. Such 
chocks provide a surface diameter to chain diameter ratio of only 4.7 with 76 mm chain. However, 
such chocks can be readily replaced with larger surface diameter chocks. 

background image

Index 

 

 

 

A

 

 
Aramid fibre 

characteristics   6.4.3.2 

Automatic tension winch 

method of operation   7.1.1 

B

 

Barge mooring 

requirements   3.7 

Berth design 

recommendations for mooring facilities   1.12.1 

Bitts (Double bollard) 

- Definitions 
connection to deck structure   5.5 
design loads, safety factors and strength   4.4.1, 8.2, Table 8.1 
impact of method of belaying on load  4.4.1, 8.2 
methods of belaying   Table 8.1 
used for harbour towing   3.6 

Band brake 

condition of linings   7.4.2.2 
effect of applied torque on holding power   7.4.2.1, Fig 7.5 
friction coefficient   7.4.2.4 
general   7.4.2 
holding capacity   7.4.6 
sensitivity in reeling direction   7.4.2.6 
spring applied   7.4.2.5, Fig 7.6, Fig 7.7 
testing   7.4.5 

Breasting dolphin 

positioning   1.12.1 

Breast line 

arrangement at piers and sea islands   3.2.2 
function   1.3 
orientation   1.5 

C

 

Canal transit 

requirements   3.8 

Certification and inspection 

of mooring fitting support structure   1.7 

Chock 

- Definitions 
connection to rounded gunnel   5.9 
design loads, safety factors and strength   4.4.4 
 
 
 

background image

 
 
for harbour towing   3.6 
for ship-to-ship transfer   3.9    
for tug escort/pull-back use   3.4.1 
for use with emergency towing arrangement  3.4 
general description  8.4, Fig 8.2 
Panama   8.4 
securing to hull structure   5.3, 8.4 

Coefficient 

wind and current drag coefficients   App. A, 

Connecting shackle 

for attaching tails   6.5.4, Fig 6.7 

Conventional buoy mooring 

see Multi buoy moorings   

Conventional fibre mooring line 

bend radius   6.3.3 
characteristics of materials   Table 6.1 
combinations of materials   6.3.1.4 
construction   6.3.2, Table 6.4 
general   6.3.1 
handling   6.3.4, App D 
inspection and removal from service   App D 
load extension characteristics   Fig 6.5 
minimum breaking forces   Table 6.2 
polyamide   6.3.1.2 
polyester   6.3.1.1 
polypropylene   6.3.1.3 
safety factors   Table 6.6 
stoppering-off   6.3.4 
storage   6.3.4 

Cow hitch 

for attaching tails   6.5.4, Fig 6.8 

Cruciform bollard 

design loads, safety factors and strength   4.4.2, 8.3 

Current 

calculation of forces   2.3 
force   1.2.1, Fig 1.3 

Design Basis Load 

description   4.1 

Berth Design 

recommendations for mooring facilities   1.12.1 

Disc brake 

general   7.4.3 

 

background image

 

E

 

Elasticity 

- Definitions 
effect on restraint capacity   Fig 1.6 
of lines   1.4 
of mooring system   2.4.1.3 
use of tails   6.5.1 

Emergency 

unberthing of ship   1.11 

Emergency towing arrangement 

equipment requirements   3.4 

Emergency towing-off pennant 

- Definitions 
recommendations   3.12 

Environmental data 

standard environmental criteria   2.2 
site-specific data   2.5    
 

Fairlead 

- Definitions 
see 'Chock', 'Pedestal fairlead' or 'Universal fairlead' 

Fire wire    

-  see ‘Emergency towing-off pennant’ 

First line ashore  

- Definitions 
contribution to restraint capacity   1.5 
description   3.2.2 

Fleet angle 

- Definitions 
for mooring winches   3.15, Fig  3.17 

Forces 

acting on the ship   1.2 
wind and current   1.2.1  

G

 

Geometric factor 

- Definitions 
application   4.2, 4.4, 
description   4.1 
 

H

 

background image

Harbour towing 

equipment requirements   3.6 

Head line    

effectiveness   1.3, 1.5 
 

High modulus fibre mooring line 

- Definitions 
aramid fibres   6.4.3.2 
chafe protection   6.4.7.2 
chemical resistance   6.4.5.3 
coefficient of friction   6.4.6.4 
construction   6.4.4, 6.4.6.2 
data concerning MBL   Table 6.5 
elasticity   6.4.5.2, 6.4.6.3 
general   6.4.1 
high modulus polyethylene   6.4.3.4 
inspection and removal from service   App C 
installation   6.4.7 
liquid crystal polymer   6.4.3.2 
load extension characteristics   Fig 6.5 
properties   6.4.2, Table 6.3 
safety factors   Table 6.6 
strength   6.4.5.1, 6.4.6.1 
trade names   6.4.3.1  
use on mooring winches   6.4.7.3 
 

High modulus polyethylene, HMPE 

- Definitions 
characteristics   6.4.3.4 

High mooring load condition 

precautions applicable   1.9 

Input brake 

general   7.4.4 

Instrumented mooring hook 

function   1.7.4 

L

 

Line load measurement apparatus 

- see Instrumented mooring hooks 

Line tending 

checks on effectiveness   1.7, 1.7.4 
effect of line length on tending requirements   Fig 1.8 
objective   1.8.1 

Line-up 

of equipment and fittings   3.15 
 

Liquid crystal polymer 

characteristics   6.4.3.3 

background image

Load/deflection characteristics 

of mooring lines and breasting dolphins   2.4.1.2 

M

 

Mixed moorings 

in similar service   1.4 

Mooring 

arrangements and layouts  Section 3 
augmentation in exceptional conditions   3.11 
calculations   see Mooring restraint calculations 
pattern   Fig 1.1, 1.3, Fig 1.4 
principal objectives   3.1 
principles   Section 1 
management by ship   1.8 

Mooring boats 

operating limits   1.10 

Mooring fittings 

basic strength philosophy   4.2 
certification and inspection   5.10 
design loads, safety factors and strength   Section 4 
recommended design criteria   4.4 
selection of fitting type   8.8 
standards   8.1 
special installation considerations   5.9  
strength testing   4.5 
SWL related to line MBL   4.1 

Mooring lines 

analysis, examples   Table 1.2, Table 1.3 
calculation of forces   2.4.1.3 
certificates   6.1.2 
conventional fibre   6.3    
effectiveness   1.3 
fatigue and service life   6.4.7.5 
general considerations for selection   6.1 
general safety hazards   6.1.1 
high modulus fibre   6.4 
number, size and type   3.2.1 
optimum length   1.6, 1.12.1 
pre-tensioning   1.8.1 
record keeping   6.1.2 
safety factors   Table 6.6 
wire   6.2 

Mooring plans and diagrams 

mooring layout plans   4.6 
preparation by terminal   1.7 

Mooring restraint calculation 

basic principles of mooring calculations   2.4.1    
dynamic analysis   2.5 

Mooring system 

elasticity   2.4.1.3 

background image

Mooring winch 

acceptance tests   7.7 
brakes   7.4 
design loads, safety factors and strength   4.4.x 
drives   7.3 
drum capacity   6.4.7.3, 7.5.5 
foundations   5.2    
function   7.1 
marking   7.6, 7.8 
strength requirements   7.6 
summary of recommendations   7.8 

Most probable maximum load 

calculation of   2.5.1     

MSC Circ. 1175 

minimum requirements for mooring fittings   4.3    

Multi-buoy mooring 

- Definition 
mooring requirements   3.5 
operating limits of boats   1.10 
 
 

N

 

O

 

Operating limits 

mooring limits   1.7.2 
terminal responsibility   1.7.1 

Orientation  

effect on restraint capacity   Fig 1.5 
general guidelines   1.5 

P

 

Pedestal roller fairlead 

- Definitions 
connection to deck structure   5.4, Fig 5.5, Fig 5.6, Fig 5.7 
design loads, safety factors and strength   4.4.x 
general description   8.5 

Piers and Sea Islands 

mooring arrangement   3.2,  

Polyamide  

characteristics   6.3.1.2, Table 6.1 
minimum breaking force   Table 6.2 

Polyester 

characteristics   6.3.1.1, Table 6.1 
minimum breaking force   Table 6.2 

Polypropylene 

characteristics   6.3.1.3, Table 6.1 

background image

minimum breaking force   Table 6.2 

Precautions 

applicable in high mooring load conditions   1.9 

Pre-tensioning 

of lines   1.8.1 

Principles of Mooring    

Section 1   

 

Q  

Quick release hook 

SWL   1.12.1 

R

 

Recessed bitt 

design loads, safety factors and strength   4.4.3 
on gas carriers for harbour towing   3.6 
structural arrangements   5.6 

Record keeping 

of mooring lines   6.1.2 

Responsibility 

terminals   1.7 

Restraint requirements 

calculation of  2.4 
standard requirements   2.4.1.4 

Rounded gunnel 

connection of chocks   5.9.1 

S

 

Safe working load 

- Definitions 
marking on fittings   1.12.2, 1.12.3, 3.4.1, 3.6, 4.4, 4.6 
of mooring fittings   4.4 

Safety factors 

of mooring fittings   4.1 

Ship design 

summary of recommendations for moorings   1.12.3 

Ship-to-ship transfer 

mooring requirements   3.9 
offtaker   3.9.1 
discharge ship   3.9.2 

Single Point Mooring (SPM) 

- Definitions 
connection of fittings to hull structure   5.7 
handling of pick-up ropes   7.2.3 

background image

mooring requirements   3.3 
required fittings for mooring at   3.3, App.E    
 

Ship/shore safety checklist 

checking of moorings   1.7 
detailing operating limits   1.7.1 
joint terminal/ship meeting   1.7.3 

Shore moorings 

for augmenting mooring system   3.11.1 
pulley system   3.11.2 

Smit bracket 

- Definitions 
connection to hull structure   5.7 

Snap-back 

of broken mooring lines   6.1.1, Fig 6.1 

SOLAS 

emergency towing requirements  3.4 

Specified minimum yield stress 

- Definitions 
use for establishing stress limits of fittings   Section 4 

Split winch drum 

brake holding capacity   7.4.1 
description   7.2, Fig 7.1, Fig 7.2 
drum capacity   7.5.5 
operation   7.2.1 
use with high modulus synthetic fibre lines   6.4.7.3, Figs 6.6 

Spring lines 

- Definitions 
arrangement at piers and sea islands   3.2.1 
function   1.3 
orientation   1.5 
tending   1.8.1 

Standard environmental criteria 

details   2.2 

 
Static equilibrium 

principle   2.4.1.1 
 

Stern lines 

- Definitions 
effectiveness   1.3, 1.5 
 

Stopper 

- Definitions 
carpenter's   Fig 8.6 
chain   Fig 8.6 
for synthetic fibre lines   6.3.4, Fig 8.6 
 

Structural reinforcement 

basic considerations   5.1 
 

background image

Synthetic tail 

see 'Tails' 
 

T

 

Tail 

- Definitions 
general   6.5.1 
impact on elasticity of assembly   1.5, Fig 1.7 
length   6.5.2 
methods of connecting   6.5.4, Fig 6.7 
retirement criteria   6.5.3 
use for STS operations   3.9.1, 6.5.1 

Terminal  

layout of mooring facilities   1.12.1 
marking of mooring equipment   1.7, 1.12.2 
mooring system management   1.7 
responsibilities   1.7, 1.7.1 

Testing of winch brake 

frequency   7.4.5.2 
general   7.4.5.1 
method of testing   7.4.5.6 
simplified brake test kit   7.4.5.6, Fig 7.9 
supervision of testing   7.4.5.4 
test equipment   7.4.5.5, Fig 7.8, Fig 7.9   
test specification   7.4.5.3 

Tug push points 

shell reinforcement   5.8 

Tugs 

fittings for tug escort duties   3.4.1 
limitations on use   1.10 

 

U

 

Underkeel Clearance 

effect on current force   1.2.1, Fig 1.3 

Undivided winch drum 

brake holding capacity   7.4.2 
description   7..2 

Universal fairlead 

construction   8.6, Fig 8.3, Fig 8.4, Fig 8.5 
design loads, safety factors and strength   4.4.x, 4.4.x 
securing to hull structure   5.3, Fig 5.1, Fig 5.2 
 

V

 

W

 

background image

Wave frequency vessel motions 

general description   2.5 

Winch brake 

band brakes   7.4.2 
description  7.4 
disc brakes   7.4.3 
effect of applied torque on holding power   7.4.2.1, Fig 7.5 
holding capacity   7.4.1, 7.4.6 
input brakes   7.4.4 
rendering   4.2, 7.4 
testing   7.4.5 

Winch drive 

general   7.3 
electric   7.3.3 
hydraulic   7.3.1 
self-contained electro-hydraulic   7.3.2 
steam   7.3.4 

Winch drum 

capacity   7.5.5 
marking of reeling or pay-out direction   7.8.2  
minimum drum diameter   7.2 
split and undivided drums   7.2 
use for stowing SPM pick-up ropes   7.2.3 

Winch performance 

drum capacity   7.5.5 
general   7.5, Table 7.1 
light-line speed   7.5.3 
rated pull   7.5.1 
rated speed   7.5.2 
stall heaving capacity   7.5.4    

Wind 

calculation of wind forces   2.3, App.A 
force   1.2.1, Fig 1.2  

Wire mooring line 

bend radius   6.2.4    
construction   6.2.2, Fig 6.2 
corrosion protection   6.2.3 
effects of bending on strength   Fig 6.3 
handling, inspection and removal from service   6.2.5, App C 
load extension characteristics   Table 6.5 
material   6.2.1 
safety factors   Table 6.6 
standard specifications   6.2.6 

Z

 


Document Outline