background image

COSMOSFFE Frequency

1-1

1

Introduction

Introduction

COSMOSFFE Frequency is a fast, robust, and accurate finite element program 
for the analysis of dynamic structural problems. The program exploits a new 
technology developed at Structural Research for the solution of large systems 
of simultaneous equations using sparse matrix technology along with iterative 
methods combined with novel database management techniques to substantially 
reduce solution time, disk space, and memory requirements.

COSMOSFFE Frequency has been written from scratch using state of the art 
techniques in FEA with two goals in mind: 1) to address basic design needs, and 2) 
to use the most efficient possible solution algorithms without sacrificing accuracy. 
The program is particularly suitable to solve large problems.

COSMOSFFE Frequency is not meant to be a replacement for DSTAR, the 
COSMOSM conventional dynamic structural analysis module. The capabilities 
of FFE Frequency are a subset of the capabilities of DSTAR. Problems that can 
be solved by FFE Frequency can also be solved by DSTAR. The advantage is 
that FFE Frequency for the class of problems it supports is far superior in terms of 
robustness, speed, and use of computer resources. Clear messages of unsupported 
capabilities and options are given whenever encountered. Appendix A gives a list of 
error messages along with suggestions to fix the problem.

In

de

x

In

de

x

background image

Chapter 1   Introduction

1-2

COSMOSFFE Frequency

Theoretical Background

Frequency Analysis (Modal Analysis)

The computation of natural frequencies and mode shapes is known as modal or 
normal modes analysis. The finite element system of equations for dynamical 
systems can be written as:

where [M] is the mass matrix, and [C] is the damping matrix. For free vibrations, 
the above equation takes the form:

When undamped linear elastic structures are initially displaced into a certain shape, 
they will oscillate indefinitely with the same mode shape but varying amplitudes. 
The oscillation shapes are called the mode shapes and the corresponding frequencies 
are called natural frequencies. The term modal analysis has been used throughout 
this manual for the study of natural frequencies and mode shapes. For undamped 
linear elastic structures, the above equation reduces to:

With no externally applied loads, the structure is assumed to vibrate freely in a 
harmonic form defined by:

which leads to the eigenvalue problem:

where 

ω is the natural frequency and φ is corresponding mode shape of the structure.

Brief Overview

Element Library

Two and three dimensional trusses (TRUSS2D and TRUSS3D)

Spring and mass elements (SPRING and MASS)

Three dimensional beam elements (BEAM3D)

In

de

x

In

de

x

background image

COSMOSFFE Frequency

1-3

Chapter 1   Introduction

First and second order triangular plane stress, plane strain and axisymmetric 
elements (TRIANG)

First and second order quad plane stress, plane strain and axisymmetric 
elements (PLANE2D)

First order triangular and quad shell elements (SHELL3 and SHELL4)

First and second order hexahedral elements (SOLID)

First and second order tetrahedral elements (TETRA4 and TETRA10)

Displacement Constraints

Displacement constraints in the global Cartesian, cylindrical, and spherical 
coordinate systems

Displacement constraints in any local Cartesian, cylindrical, or spherical 
coordinate system

Material Properties

In this release only isotropic materials are supported. Use DSTAR for orthotropic or 
anisotropic materials.

Analysis Capabilities

Analysis options are specified through the 

A_FEEFREQ

 (Analysis > Frequency/

Buckling > 

FFE Frequency Options

) command. The following choices are 

available:

1. Element order in analysis:

Use first order elements with first order mesh

Use second order elements with first order mesh

Use first order elements with second order mesh

Use second order elements with second order mesh

2. Number of natural frequencies to be calculated.

3. Lower bound of the desired frequency range.

4. Upper bound of the desired frequency range.

5. Rigid connection flag which controls the continuity between solid and shell and 

solid and beam elements connected to each other. You may choose rigid or 
hinge connection along the interface. 

In

de

x

In

de

x

background image

Chapter 1   Introduction

1-4

COSMOSFFE Frequency

Results

Mode shape plots.

Frequency lists.

The output file (problem-name.out) contains frequency results and useful infor-
mation on resources used during analysis.

Consistent Systems of Units

In COSMOSM modules including FFE Frequency, you are free to adopt standard or 
non-standard systems of units, but you are responsible for consistency and the 
interpretation of the units of results. The table below shows consistent standard 
systems of units for the physical quantities used in the FFE Frequency module.

Table  1-1. Table of Consistent Units for COSMOSFFE Frequency

* Units are consistent with the COSMOSM material library.
 1 FPS refers to the U.S. customary system of units.
 2 SI refers to the International system of units.
 3 MKS refers to the Metric system of units.
 4 CGS refers to the French system of units.

Description

COSMOS 

Name

* FPS

1

(gravitational)

* SI

2

(absolute)

* MKS

3

(gravitational)

CGS

4

(absolute)

Measure

Length

X, Y, Z

in

m

cm

cm

Material Properties

Elastic 
Modulus

EX, EY, EZ

lbs/in

2

Newton/m

2

 

or Pascal

kg/cm

2

dyne/cm

2

Shear Modulus

GXY, GYZ, 
GXZ

lbs/in

2

N/m

2

 or Pa

kg/cm

2

dyne/cm

2

Poisson's Ratio

NUXY, NUYZ, 
NUXZ

in/in 
(no units)

m/m 
(no units)

cm/cm 
(no units)

cm/cm

Mass 
Density

DENS

lbs sec

2

/in

4

kg/m

3

 kg 

sec

2

/cm

4

 g/cm

3

Loads and Boundary Conditions

Translational 
Displacements

UX, UY, UZ

in

m

cm

cm

Rotational 
Displacements

RX, RY, RZ

radians

radians

radians

radians

Results

Frequency

FREQ

Hz or rad/sec Hz or rad/sec Hz or rad/sec Hz or rad/sec

In

de

x

In

de

x

background image

COSMOSFFE Frequency

2-1

2

Element Library

Introduction

This chapter lists the elements currently supported by COSMOSFFE Frequency. 
Most of 2D and 3D continuum elements are programmed on first and second order 
hierarchical basis. You may mesh your model with linear or parabolic elements but 
you can still control the order to be used in the analysis through the 

A_FFEFREQ

 

(Analysis > Frequency/Buckling > 

FFE Frequency Options

) command. As an 

example, you may mesh your model with TETRA10 elements but specify first 
order in the 

A_FFEFREQ

 command (equivalent to TETRA4). In this case the 

middle node information for elements on the boundary will still be used for the 
geometry. Similarly, you may define TETRA4 elements in GEOSTAR and specify 
second order in the 

A_FFEFREQ

 command.

Plane 2D Continuum Elements

First order (3-node) triangular plane stress elements (TRIANG)

Second order (6-node) triangular plane stress elements (TRIANG)

First order (3-node) triangular plane strain elements (TRIANG)

Second order (6-node) triangular plane strain elements (TRIANG)

First order (3-node) triangular axisymmetric elements (TRIANG)

Second order (6-node) triangular axisymmetric elements (TRIANG)

First order (4-node) quadratic plane stress elements (PLANE2D)

In

de

x

In

de

x

background image

Chapter 2   Element Library

2-2

COSMOSFFE Frequency

Second order (8-node) quadratic plane stress elements (PLANE2D)

First order (4-node) quadratic plane strain elements (PLANE2D)

Second order (8-node) quadratic plane strain elements (PLANE2D)

First order (4-node) quadratic axisymmetric elements (PLANE2D)

Second order (8-node) quadratic axisymmetric elements (PLANE2D)

Continuum 3D Solid Elements

First order (8-node) hexahedral elements (SOLID)

Second order (20-node) hexahedral elements (SOLID)

First order (8-node) pentahedral elements (SOLID with a face collapsed to an 
edge)

Second order (20-node) pentahedral prism-shaped elements (SOLID with a face 
collapsed to an edge)

First order tetrahedral elements (TETRA4)

Second order tetrahedral elements (TETRA10)

Structural Elements

Two and three dimensional truss elements (TRUSS2D and TRUSS3D)

Three dimensional beam elements (BEAM3D)

First order triangular (3-node) shell elements (SHELL3)

First order quad (4-node) shell elements (SHELL4)

The elements given above are to be defined using the 

EGROUP

 (Propsets > 

Element Group

) command shown in the Table 2-1. The Table also lists other 

commands for the manipulation of the associated element properties. These 
commands can be issued by following the menu path given in the table between 
parenthesis.

In

de

x

In

de

x

background image

COSMOSFFE Frequency

2-3

Chapter 2   Element Library

Table  2-1. Commands for Element Group Definition, Modification, and Listing

Every element has several analysis and modeling options (maximum of eight 
entries), designated as OP1, …, OP8. When you execute the 

EGROUP

 command, 

you are prompted for these options with description relevant to the selected element 
type.

The following figure shows pictorial representations of all elements available in the 
COSMOSFFE Frequency module. COSMOSM User’s Guide (Volume 1) presents a 
detailed description of all elements in Chapter 4, Element Library.

The 

RCONST

 (Propsets > 

Real Constant

) command should be used to specify the 

cross-sectional dimensions of some elements such as thickness for SHELL3 
elements. Material properties may be specified using 

MPROP

PICK_MAT

, or 

R_MATLIB

 commands found in the Propsets menu. The 

R_MATLIB

 command 

requires the installation of the InfoDex Mil 5 material library.

Command

Function

Comments

EGROUP (Propsets > 
Element Group)

Defines element groups and 
the associated element 
analysis options.

The maximum number of 
element groups permitted in a 
model is 20.

EPROPSET (Propsets > 
New Property Set)

Assigns the existing element 
group, material property, and 
real constant groups as well as 
element coordinate system to 
newly created elements.

EPROPCHANGE 
(Propsets > Change 
El-Prop
)

Changes the association 
between element groups, real 
constants sets, and material 
property sets.

EGLIST (Edit > LIST > 
Element Groups)

Lists specified element groups 
and the associated element 
analysis options.

The on-screen listing can be 
piped to a text file if desired, 
using the LISTLOG (Control > 
MISCELLANEOUS > List 
Log
) command.

EGDEL (Edit > DELETE 
Element Groups)

Deletes specified element 
groups and the associated 
element analysis options.

In

de

x

In

de

x

background image

Chapter 2   Element Library

2-4

COSMOSFFE Frequency

Figure 2-1. Supported Elements

3 - Node  Thin 
S he ll
Element: SHELL3 
Nodes:     3

4 - Node   S he ll
Element: SHELL4 
Nodes:    4

4 - Node   P la ne   or 
Ax is y mme t ric  
Q ua drila t e ra l
Element: PLANE2D
Nodes:    4

8 - Node   P la ne   or 
Ax is y mme t ric  
Q ua drila t e ra l
Element: PLANE2D
Nodes:     8

6 - Node   P la ne   or 
Ax is y mme t ric  
Tria ngle
Element: TRIANG
Nodes:     6

3 - Node   P la ne   or 
Ax is y mme t ric  
Tria ngle
Element: TRIANG
Nodes:     3

8 - Node  S olid
Element: SOLID
Nodes:     8

2 0 - Node  S olid
Element: SOLID
Nodes:     20

Trus s / S pa r
Element: TRUSS2D or
                   TRUSS3D
Nodes:     2

Be a m
Element: BEAM2D or
                   BEAM3D
Nodes:    2 or 3

Firs t  O rde r
P ris m- S ha pe d  S olid
Element: SOLID
Nodes:  

S e c ond O rde r 
P ris m- S ha pe d  S olid
Element: SOLID
Nodes:   

4 - Node  
Te t ra he dra l S olid
Element: TETRA4
Nodes:     4

1 0 - Node  
Te t ra he dra l S olid
Element: TETRA10
Nodes:     10

Line a r S pring
Element: SPRING
Nodes:  2

Conc e nt ra t e d 
Ma s s
Element: MASS
Nodes: 1

8 with a face
collasping to
an edge

20 with a face
collasping to
an edge

In

de

x

In

de

x

background image

COSMOSFFE Frequency

2-5

Chapter 2   Element Library

Top and Bottom Faces of Shell Elements

Only the mid surface of a shell element is shown in GEOSTAR. Each shell element 
has a top and a bottom face determined by the order of the connectivity in the 
element definition. Shell elements must be aligned properly for the stress results to 
be averaged correctly. Use the 

ELIST

 (Edit > LIST > 

Elements

) command to list 

the connectivity of elements. The direction of the thumb when using the right-hand 
rule points to the direction of the top face.

Figure 2-2. Top and Bottom Faces of Shell Elements

Elements generated by meshing a surface will have their top face in the direction of 
the outside normal of the surface determined by the right-hand rule. The direction 
of the outer contour of a region is used to determine the top face of elements 
generated by meshing regions. The 

ACTMARK

 (Control > ACTIVATE > 

Entity 

Mark

) command may be used to show the parametric directions of surfaces. 

ACTMARK

 may also be activated from the 

STATUS1

 table.

Full integration is always used for the TRIANG, PLANE2D, SOLID, TETRA4, 
and TETRA10 elements. The corresponding option in the element group 
definition is ignored. Results from FFE Frequency should compare with results 
from DSTAR when the full integration option is used.

Visualizing Shell Faces 

Use the 

SHADE

 command (Display > DISPLAY OPTIONS > Shaded Element 

Plot) and plot elements. See Help for this command for the details. You may also 
use the 

ALIGNSHELL

 command (Meshing > ELEMENTS > Align Shell Elements) 

to align shell elements automatically.

S HE LL4

S HE LL4

S HE LL3

S HE LL3

1

3

2

Top face (Face 5) is 
directed towards you.

Bottom face (Face 5) is 
directed towards you.

Bottom face (Face 5) is 
directed towards you.

Top face (Face 5) is 
directed towards you.

1

2

3

3

4

2

1

3

2

4

1

In

de

x

In

de

x

background image

2-6

COSMOSFFE Frequency

In

de

x

In

de

x

background image

COSMOSFFE Frequency

3-1

3

Input Data

Introduction

Proper modeling and analysis specifications are crucial to the success of any finite 
element analysis. Irrespective of the type of analysis, numerical solution using 
finite element analysis requires complete information of the model under con-
sideration. The finite element model you submit for analysis must contain all the 
necessary data for each step of numerical simulation - geometry, elements, loads, 
boundary conditions, solution of system of equations, visualization and output of 
results, etc. This chapter attempts to conceptually illustrate the procedure for 
building a model for analysis in the COSMOSFFE Frequency module.

The COSMOSM User Guide (Volume 1) presents in-depth information on the pre- 
and postprocessing procedures in GEOSTAR. This chapter therefore will not repeat 
the information here but will offer a brief overview of those commands which are 
relevant to the COSMOSM FFE Frequency module.

For a detailed description of all commands, refer to the on-line help or the 
COSMOSM Command Reference Manual (Volume 2).

In

de

x

In

de

x

background image

Chapter 3   Input Data

3-2

COSMOSFFE Frequency

Modeling and Analysis Cycle in the 
COSMOSFFE Frequency Module

The basic steps involved in a finite element analysis are:

1. Create the problem geometry.

2. Define the appropriate element group.

3. Define material properties.

4. Define real constants for truss, beam, plane stress and shell elements.

5. Mesh the desired part of geometry with appropriate type of elements.

6. Repeat steps 2 through 5 as desired if needed.

7. Merge coinciding nodes along the common boundaries of different geometric 

entities using the 

NMERGE

 (Meshing > Nodes > 

Merge

) command.

8. Apply constraints on the finite element model.

9. Use the 

A_FFEFREQ

 (Analysis > Frequency/Buckling > 

FFE Frequency 

Options

) command to specify desired options including element order and 

number of frequencies. If you have solid and shell or beam elements in your 
model, decide whether a rigid or hinged connection is to be used along the 
interface.

10. Submit the completed finite element model for analysis using the 

R_FREQUENCY

 (Analysis > Frequency/Buckling > 

Run Frequency Analysis

command. 

11. Use the Results menu to postprocess the results. Results may be displayed in 

text or graphical formats. Use the 

LISTLOG

 (Control > Miscellaneous > 

List 

Log

) command to direct list screens to a file. 

In

de

x

In

de

x

background image

COSMOSFFE Frequency

3-3

Chapter 3   Input Data

R_FREQUENCY

 runs either DSTAR or FFE Frequency. The following factors 

determine which one will run: 

1.  If you have not issued the 

A_FREQUENCY

 nor the 

A_FFEFREQ

 commands, 

R_FREQUENCY

 will run DSTAR (the direct solver). 

2.  If both of the two commands have been issued, the later one will determine 

which solver to run. DSTAR will run if 

A_FREQUENCY

 has been issued later, 

and FFE Frequency if 

A_FFEFREQ

 has been issued later. 

3. If only one of the two commands has been issued, then DSTAR will run if 

A_FREQUENCY

 has been issued, and FFE Frequency will run if 

A_FFEFREQ

 

has been issued.

These steps can be schematically represented as shown in the figure below.

Figure 3-1. Finite Element Modeling and Analysis Steps

Preprocessing refers to the operations you perform prior to submitting the model 
for analysis. Such operations include defining the model geometry, mesh genera-
tion, applying boundary conditions, and other information needed. The term 
analysis in the above figure refers to the phase of specifying the analysis options 
and executing the actual analysis. Postprocessing refers to the manipulation of the 
analysis results for the visualization and interpretation in graphical and tabular 
environment.

The commands summarized in the table below provide you with information on the 
input of element groups, material properties, loads and boundary conditions, 
analysis options, and output specifications.

START

PREPROCESSING

POSTPROCESSING

STOP

Analysis and

Design Decisions

Problem Definition

ANALYSIS

In

de

x

In

de

x

background image

Chapter 3   Input Data

3-4

COSMOSFFE Frequency

Table  3-1. Commands for FFE Frequency Analysis

Frequency Analysis Options

The 

A_FFEFREQ

 command is used to specify several frequency analysis options to 

be used for subsequent analysis. The syntax and help for the 

A_FFEFREQ

 and 

R_FREQUENCY

 commands are given below.

Function

Using COSMOSM Menu

Typing the Command

Property 
Definition

Propsets
           > Element Group
           > Material Property
           > Real Constant
           > Pick Material Lib
           > User Material Lib
           > Material Browser
           > AISC Sect Table
           > Change El-Prop
           > New Property Set
           > Beam Section

. . .
EGROUP
MPROP
RCONST
PICK_MAT
USER_MAT
R_MATLIB
PICK_SEC
EPROPCHANGE
EPROPSET
BMSECDEF

Boundary 
Conditions

LoadsBC
   > STRUCTURAL
       > DISPLACEMENT

. . .
. . .
D_ commands for prescribed displacements

Model 
Verification

Meshing
   > ELEMENTS
           > Check Element
Analysis
           > Data Check
           > Run Check

. . .
. . .
E_CHECK
. . .
DATA_CHECK
R_CHECK

Specifying 
Analysis 
Options

Analysis
   > Frequency/Buckling
           > FFE Frequency 
Options

. . .
. . .
A_FFEFREQ

Executing 
Frequency 
Analysis

Analysis
   > Frequency/Buckling
           > Run Frequency 
Analysis

. . .
. . .
R_FREQUENCY

Post-
processing

Results
   > PLOT
           > Deformed Shape
   > LIST
           > Frequency

. . .
. . .
DEFPLOT
. . .
FREQLIST

In

de

x

In

de

x

background image

COSMOSFFE Frequency

3-5

Chapter 3   Input Data

The A_FFEFREQ Command

Geo Panel:   Analysis > Frequency/Buckling > FFE Frequency Options

The 

A_FFEFREQ

 command specifies analysis options for frequency analysis 

using the FFE Frequency module. Note that the 

A_FREQUENCY

 command 

specifies analysis options for frequency analysis using the DSTAR module. The 
most recently issued command out of the two commands (

A_FREQUENCY

 and 

A_FFEFREQ

) determines whether the 

R_FREQUENCY

 command will run DSTAR 

or FFE Frequency. The default is to run DSTAR.

Entry and Option Description

element-order

Order of the element to be used. In spite of the element group name in the 
database, you may specify through this option whether first (linear) or second 
(parabolic) elements will be used. As an example, if you define TETRA4 
elements and use second order, middle nodes on straight edges will be consid-
ered during analysis. On the other hand you may define TETRA10 elements and 
specify to use first order.

first

use first order for continuum elements.

second

use second order for continuum elements.
(default is second)

number of frequencies

Number of natural frequencies to be calculated. Enter 0 if unknown number of 
frequencies is to be calculated in a given range.

N; 

calculate N natural frequencies.

0; 

calculate all frequencies in the specified range.

lower bound value

Lower bound of the frequency range. This option is currently not used, it is 
always set to zero. 
(default is 0)

upper bound value 

Upper bound of the frequency range. Enter 0 if you specified the number of fre-
quencies to be calculated.

In

de

x

In

de

x

background image

Chapter 3   Input Data

3-6

COSMOSFFE Frequency

rigid connections flag

This flag controls the continuity between solid and shell or beam elements 
connected to each other. Solid elements like TETRA4, TETRA10), and SOLID 
do not have explicit rotational degrees of freedom (DOF). Rotations of solid 
elements can be expressed in terms of the translational DOF. Beam and shell 
elements on the other hand have explicit rotational DOF.

Traditionally, you need to introduce some coupling constraints when connecting 
such incompatible elements to ensure continuity. This flag, when active, takes 
care of this condition automatically and rigid connections between all such 
incompatible elements in the model are assumed.

When you want to specify hinge connections or you need to compare 
COSMOSFFE results to results from traditional finite element systems which 
assume hinge connections between solid and shell or beam elements, you must 
turn this flag off before running the analysis.

YES; activate 

rigid 

connections.

NO; 

deactivate rigid connections. 
(default is YES)

Notes:

1.  Either the number of frequencies or the upper limit must be non-zero.

2.  The actual number of frequencies calculated will be the number specified + 1 

if the specified number is not zero. If the number of frequencies is set to zero, 
all frequencies in specified range + 1 frequency (outside range) will be 
calculated.

The R_FREQUENCY Command

Geo Panel:   Analysis > Frequency/Buckling > Run Frequency Analysis

The 

R_FREQUENCY

 command performs dynamic analysis to calculate frequencies 

and mode shapes. The command runs FFE Frequency if the 

A_FFEFREQ

 com-

mand has been issued and was not followed by the 

A_FREQUENCY

 command. On 

the other hand, the command runs DSTAR module if the 

A_FFEFREQ

 command 

has not been issued or was issued but followed by the 

A_FREQUENCY

 command.

In

de

x

In

de

x

background image

COSMOSFFE Frequency

3-7

Chapter 3   Input Data

Notes:

1. Use flags specified by the 

A_FREQUENCY

 command or the 

A_FFEFREQ

 

command depending on your choice of solver.

2. Recommended steps for performing analysis:

a. Create the model.

b. Plot, list and examine the model.

c. Execute the 

R_CHECK

 (Analysis > 

Run Check

) command to check input 

data.

d. Issue the 

A_FFEFREQ

 (Analysis > Frequency/Buckling > 

FFE Frequency 

Options

) command to specify the element order and frequency number 

flags or the 

A_FREQUENCY

 (Analysis > Frequency/Buckling > 

Frequency 

Analysis Options

) command to specify DSTAR options. Use equivalent 

commands for other types of analyses.

e. Issue the 

R_FREQUENCY

 (Analysis > Frequency/Buckling > 

Run 

Frequency Analysis

) command to perform dynamic analysis. Use the 

equivalent command for other types of analyses.

f. If the run is not successful, a clear message will be given. For FFE 

messages, refer to Appendix A of this manual for explaining and fixing the 
problem. The message is also written to the output file (extension OUT).

3. The command will calculate frequencies and mode shapes.

Postprocessing

An output file (problem-name.OUT) is generated by FFE Frequency. The file is an 
ASCII file that can be viewed and edited as desired. The results in the database can 
be viewed in both text and graphical formats in GEOSTAR. The following table 
gives a brief description of the postprocessing commands related to FFE Frequency.

Table  3-2. Postprocessing Commands Related to FFE Frequency

Command *

Description

DEFPLOT (Results, Plot, Deformed Shape)

DISPLOT (Results, Plot, Displacement)

DISLIST (Results, List, Displacement)

FREQLIST (Results, List, Displacement)

LISTLOG (Control, Miscellaneous, List Log)

Plots mode shapes

Plots displacement contours of mode shapes

Lists mode shapes

Lists natural (resonance) frequencies

Can be used to write the list screens to a file

In

de

x

In

de

x

background image

Chapter 3   Input Data

3-8

COSMOSFFE Frequency

Verification of Model Input Data

Avoiding errors in the modeling and input data is important. Some of the errors can 
be detected by plotting the model in various views, listing the elements, nodes, 
element groups, material properties and real constant sets, and plotting or listing 
loads and constraints. For small problems, it is often easier to perform these checks 
to see if all required input data have been properly generated and defined. However, 
you may still miss some errors that are not easily identifiable. For these types of 
situations and also for larger problems, it is preferred to perform model checks in 
an automated environment.

The 

R_CHECK

 (Analysis > 

Run Check

) command performs rigorous checks on 

the validity, compatibility, and completeness of the input data and gives messages 
for any warnings and errors encountered. The 

ECHECK

 (Meshing > Elements > 

Check Element

) performs a quick check on the elements in the model and deletes 

any degenerate elements. 

You are strongly recommended to run the 

R_CHECK

 command and fix all errors 

before submitting the model for analysis.

Note that the 

R_CHECK

 command is a general model verification tool. You may 

still find some errors that are not detected by the use of this command. In most 
cases, the error messages either printed on the screen or written to the output file 
(problem_name.CHK) provide further information as to the nature of errors and 
their remedies. In addition, the FFE Frequency module will give you clear 
messages if any problems are encountered during the analysis process. Refer to 
Appendix A for more information about error messages. 

In

de

x

In

de

x

background image

COSMOSFFE Frequency

4-1

4

Examples

Introduction

This chapter presents step-by-step examples for performing frequency analysis 
using the FFE Frequency module. The examples discussed in this chapter are 
practical problems that demonstrate the savings in time and resources when 
using FFE Frequency compared to using the conventional solvers. Chapter 5 
includes a number of small size problems that demonstrate most of the capabilities 
of FFE Frequency and that are suitable for verification purposes and academic 
studies.

The input files for the examples in this chapter and the verification problems 
in Chapter 5 are compressed in the archive file FFEPROBS.LZH in your 
COSMOSM directory. It is suggested to create a new subdirectory and extract 
the input files.

Table  4-1. Frequency Examples

 Analysis of a Bridge. 

(See page 5-2.)

FFEFX1.GEO

 Analysis of an Airplane Entertainment TV Casing. 

(See page 5-7.)

FFEFX2.GEO

In

de

x

In

de

x

background image

Chapter 4   Examples

4-2

COSMOSFFE Frequency

Model Information

Length Units:

Feet (ft)

Element Type:

Shell, Beam

Number of Elements:

352

Number of Corner Nodes:

255

Number of Degrees of Freedom:

1530

The bridge is made of a combination of Beam and Shell elements as shown in the 
figure. The span of the bridge is 1000 feet long and it is rigidly supported by 4 
points at each end of the bridge.

The finite element model and 
its boundary conditions have 
already been completed.

The file needed to create 
the geometry is called 
FFEFX1.GEO and may 
be retrieved from the 
FFEPROBS.LZH file in your 
COSMOSM directory. You 
could read in the FFEFX1.GEO 
file, or you may choose to input 
the commands and construct the 
database step-by-step by issuing 
the commands. 

Loading GEO File

1. Start GEOSTAR. The Open Problem 

Files dialog box opens.

2. Type the problem name, for example, 

bridge in the File Name field, and 

Example 1 – Analysis of a Bridge

See 

Page 

5-2

Figure 4-1. Model of Bridge

In

de

x

In

de

x

background image

COSMOSFFE Frequency

4-3

Chapter 4   Examples

click OK. It is recommended that you save the 
problem to a working directory different from 
where COSMOSM is installed.

3. From the File menu, choose Load. The FILE 

dialog box opens.

4. Click the Find button by the Input Filename field.

5. Navigate to the directory where you retrieved the 

FFEPROBS.LZH archive file.

6. Choose FFEFX1.GEO and click OK.

7. Click OK in the FILE dialog box. The model will 

be created and displayed on the screen.

Specifying Analysis Option

Now the model has been created, we are ready to 
specify analysis options and run the analysis.

1. From the ANALYSIS menu, select 

Frequency/

Buckling

FFE Frequency Option

 or type 

A_FFEFREQ

 command at the GEO> prompt in the 

GEO panel. The 

A_FFEFREQ

 dialog box opens.

2. From the Element Order drop-down menu, choose 

Second.

3. Enter 30 in the Number of Frequencies field.

4. Click the OK button.

It is always recommended to use the second order 
option for more accurate solutions.

In

de

x

In

de

x

background image

Chapter 4   Examples

4-4

COSMOSFFE Frequency

Running Frequency Analysis

1. From the ANALYSIS menu, select 

Frequency/Buckling

Run Frequency

 

or type R_Frequency at the GEO > 
prompt.

The COSMOSFFE Frequency Solver 
window will open and the program starts 
the analysis. You will see the progress of 
the analysis procedure. After finishing the 
analysis, FFE Dynamic gives control back 
to GEOSTAR to continue with 
postprocessing.

Postprocessing

All postprocessing commands are included in the Results menu.

Listing Frequencies

1. From the RESULTS menu, choose 

List

Natural Frequency

. The FREQLIST 

window opens and lists all the frequencies.

In

de

x

In

de

x

background image

COSMOSFFE Frequency

4-5

Chapter 4   Examples

Plotting Mode Shape

1. From the RESULTS menu, choose 

Plot

Deformed Shape

. The 

DEFPLOT dialog box opens.

2. Enter 1 in the Mode 

Shape Number field.

3. Click OK. The Scale 

Factor will be displayed 
in the field.

4. Click OK again. The 

mode shape is plotted. 

Animating Deformed 
Shape

1. From the RESULTS 

menu, select 

Plot

Animate

. The ANIMATE 

dialog box opens.

2. Set the Mode Shape Number to 1.

Figure 4-3.The fundamental Mode Shape of Bridge

In

de

x

In

de

x

background image

Chapter 4   Examples

4-6

COSMOSFFE Frequency

3. Click OK. The program will calculate and display the scale factor.

4. Click OK again. The animation is generated on the screen.

5. Press Esc key to stop the animation.

6. Click OK to abort the Animate command.

7. Repeat the above steps to animate other mode shapes.

You can save the animation in the AVI format by selecting YES from the Save 
and play as AVI
 pull-down menu.

You may activate the element shading using the 

SHADE

 (Display > Display 

Option > 

Shaded Element Plot

) command and accept all default entries.

In

de

x

In

de

x

background image

COSMOSFFE Frequency

4-7

Chapter 4   Examples

Model Information

Length Units:

Inches (in)

Element Type:

Shells

Element Order:

First

Number of Elements:

796

Number of Corner Nodes:

850

Number of Degrees of Freedom:

5100

In this example, you will perform a 
frequency analysis of an entertainment 
casing. The finite element mesh of the 
model is shown below.

The file needed to create the geometry is 
called FFEFX2.GEO and may be retrieved 
from the FFEPROBS.LZH file in your 
COSMOSM directory. You could read in 
the FFEFX2.GEO file, or you may choose 
to input the commands and construct the 
database step-by-step by issuing the 
commands. 

Loading GEO File

1. Start GEOSTAR. The Open Problem 

Files dialog box opens.

2. Type the problem name, for example, 

Casing in the File Name field, and 
click OK. It is recommended that 
you save the problem to a working 
directory different from where 
COSMOSM is installed.

3. From the FILE menu, choose 

Load

. The FILE dialog box opens.

Example 2 – Analysis of an Airplane 
Entertainment TV Casing

See 

Page 

5-2

Figure

4-9.

Meshed Model with 
Boundary Conditions

In

de

x

In

de

x

background image

Chapter 4   Examples

4-8

COSMOSFFE Frequency

4. Click the Find button by the Input 

Filename field.

5. Navigate to the directory where 

you retrieved the FFEPROBS.LZH 
archive file.

6. Choose FFEFX2.GEO and click 

OK.

7. Click OK in the FILE dialog box. 

The model will be created and displayed on the screen.

Specifying Analysis Option

Now the model has been created, we are ready to specify analysis options and run 
the analysis.

1. From the ANALYSIS menu, select 

Frequency/Buckling

FFE Frequency 

Option

 or type 

A_FFEFREQ

 command at the GEO> prompt in the GEO panel. 

The A_FFEFREQ dialog box opens.

2. From the Element Order drop-down menu, choose Second.

3. Enter 5 in the Number of Frequencies field.

4. Click the OK button.

It is always recommended to use the second order option for more accurate 
solutions.

In

de

x

In

de

x

background image

COSMOSFFE Frequency

4-9

Chapter 4   Examples

Running Frequency Analysis

1. From the ANALYSIS menu, select 

Frequency/Buckling

Run Frequency

 

or type 

R_FREQUENCY

 at the GEO> 

prompt.

The COSMOSFFE Frequency Solver 
window will open and the program starts 
the analysis. You will see the progress of 
the analysis procedure. After finishing the 
analysis, FFE Dynamic gives control back 
to GEOSTAR to continue with 
postprocessing.

Postprocessing

All postprocessing commands are included in the Results menu.

Listing Frequencies

1. From the RESULTS menu, choose 

List

Natural 

Frequency

. The FREQLIST window opens and 

lists all requested frequencies.

Plotting Mode Shape

1. From the RESULTS menu, choose 

Plot

Deformed Shape

. The DEFPLOT 

dialog box opens.

2. Enter 1 in the Mode Shape Number field.

In

de

x

In

de

x

background image

Chapter 4   Examples

4-10

COSMOSFFE Frequency

3. Click OK. The default scale Factor will be displayed in the field.

4. Click OK again. The mode shape is plotted.

5. Repeat the above steps to generate other mode shapes.

Figure 4-3. Mode Shapes of Casing

In

de

x

In

de

x

background image

COSMOSFFE Frequency

4-11

Chapter 4   Examples

Animating Deformed Shape

1. From the RESULTS menu, select 

Plot

Animate

. The ANIMATE 

dialog box opens.

2. Set the Mode Shape Number to 1.

3. Click OK. The program will 

calculate and display the default 
scale factor.

4. Click OK again. The animation is 

generated on the screen.

5. Press Esc key to stop the animation.

6. Click OK to abort the Animate 

command.

7. Repeat the above steps to animate other mode shapes.

You can save the animation as AVI format by selecting YES from the Save and 
play as AVI pull-down menu.

You can activate the element shading using the 

SHADE

 (Display > DISPLAY 

OPTION > 

Shaded Element Plot

) command.

In

de

x

In

de

x

background image

4-12

COSMOSFFE Frequency

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-1

5

Verification Problems

Introduction

This chapter includes a set of verification problems that check various elements and 
features of the FFE Frequency module. The problems are carefully selected to 
check the numerical answers versus theoretical results.

The input files for theses verification problems are compressed in an archive file 
called “...\Vprobs\FFE” in your COSMOSM directory.

To extract the input files for the verification problems:

1. Create a new working directory.

2. Copy the FFEPROBS.BAT batch file from COSMOSM directory to that 

directory.

3. Double-click the FFEPROBS.BAT to extract all the input files.

To run a verification problem:

1. Start GEOSTAR and create a new problem.

2. From the File menu, choose Load to import the GEO file.

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-2

COSMOSFFE Frequency

The table below lists the verification problems in this chapter.

Table  6-1. List of Verification Problems 

Problem

Element

Title

FFEF1

TRUSS, MASS

Natural Frequencies of a Two-Mass Spring 
System 

(See page 5-3.)

FFEF2

PLANE2D

Frequencies of a Cantilever Beam 

(See page 5-4.)

FFEF3

BEAM3D

Frequency of a Simply Supported Beam 

(See page 5-5.)

FFEF4

BEAM3D

Natural Frequencies of a Cantilever Beam 

(See page 5-6.)

FFEF5

BEAM3D, MASS

Frequency of a Cantilever Beam with Lumped 
Mass 

(See page 5-7.)

FFEF6

SHELL4

Dynamic Analysis of a Simply Supported Plate 

(See page 5-8.)

FFEF7

SHELL4

Frequencies of a Cylindrical Shell 

(See page 5-9.)

FFEF8

SHELL4

Symmetric Modes and Natural Frequencies 
of a Ring 

(See page 5-10.)

FFEF9

SHELL3

Eigenvalues of a Triangular Wing

(See page 5-11.)

FFEF10

BEAM3D

Vibration of an Unsupported Beam 

(See page 5-12.)

FFEF11

SOLID

Frequencies of a Solid Cantilever Beam 

(See page 5-13.)

FFEF12

TRUSS2D

Natural Frequency of Fluid 

(See page 5-14.)

FFEF13A, B, C, D, 
E, F, & G

PLANE2D, SOLID, 
TRIANG, TETRA10

Dynamic Analysis of Cantilever Beam 

(See page 5-15.)

FFEF14

SHELL4

Natural Frequencies of a Simply-Supported 
Square Plate 

(See page 5-16.)

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-3

Chapter 5   Verification Problems

TYPE: 

Mode shape and frequency, truss and mass element (TRUSS3D, MASS).

REFERENCES: 

Thomson, W. T., “Vibration Theory and Application,” Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 2nd printing, 1965, p. 163.

PROBLEM: 

Determine the normal modes and natural frequencies of the system shown below for 
the values of the masses and the springs given.

MODELING HINTS:

Truss elements with very small density are used as springs. Two dynamic degrees of 
freedom are selected at nodes 2 and 3 and masses are input as concentrated masses 
at nodes 2 and 3.

Figure FFEF1-1

FFEF1: Natural Frequencies  of a Two-Mass 

Spring System

(See 

page 

5-2.)

GIVEN:

m

2

= 2m

1

 = 1 lb-sec

2

/in

k

2

= k

1

 = 200 lb/in

k

c

= 4k

1

 = 800 lb/in

COMPARISON OF RESULTS:

F

1

, Hz

F

2,

 Hz

Theory

2.581

8.326

COSMOSFFE

2.581

8.326

Problem Sketch

2

k

1

k

c

k

m

1

m

2

1st

D.O.F.

2nd

D.O.F.

1

2

3

4

X

1

2

3

Y

Finite Element Model

5

4

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-4

COSMOSFFE Frequency

TYPE:

Mode shape and frequency, plane element (PLANE2D).

REFERENCE: 

Flugge, W., “Handbook of Engineering Mechanics,” McGraw-Hill Book Co.,

 

Inc., 

New York, 1962, pp. 61-6, 61-9.

PROBLEM: 

Determine the fundamental frequency, f, of the cantilever beam of uniform cross 
section A.

Figure FFEF2-1

FFEF2: Frequencies of a Cantilever Beam

(See 

page 

5-2.)

GIVEN:

E

= 30 x 10

6

 psi

L

=  50  in

h

= 0.9 in

b

= 0.9 in

A

= 0.81 in

2

ν

= 0

ρ

= 0.734E-3 lb sec

2

/in

4

COMPARISON OF RESULTS

F

1

, Hz

F

2

, Hz

F

3

, Hz

Theory

11.79

74.47

208.54

COSMOSFFE

11.72

73.14

206

y

x

Finite Element Model

L

Problem Sketch

 Front View

Cross 

Section

b

h

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-5

Chapter 5   Verification Problems

TYPE:

Mode shapes and frequencies, beam element (BEAM3D).

REFERENCE: 

Thomson, W. T., “Vibration Theory and Applications,” Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 2nd printing, 1965, p. 18.

PROBLEM: 

Determine the fundamental frequency, f, of the simply supported beam of uniform 
cross section A.

GIVEN: 

E

= 30 x 10

6

 psi

L

=  80  in

ρ

= 0.7272E-3 lb-sec

2

/in

4

 

A

=  4  in

2

I

= 1.3333 in

4

h

=  2  in

ANALYTICAL 
SOLUTION:

F

i

 = 

(i

π)

2

 (EI//mL

4

)

(1/2)

= Number of frequencies

COMPARISON OF RESULTS:

FFEF3: Frequency of a Simply Supported Beam

(See 

page 

5-2.)

F

1

, Hz

F

2

, Hz

F

3

, Hz

Theory

28.78

115.12

259.0

COSMOSFFE

28.78

114.3

242.7

Figure  FFEF3-1

1

2

3

1

2

Y

3

4

4

5

X

6

Finite Element Model

L

h

Problem Sketch

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-6

COSMOSFFE Frequency

TYPE:

Mode shapes and frequencies, beam element (BEAM3D).

REFERENCE: 

Thomson, W. T., “Vibration Theory and Applications,” Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 2nd printing, 1965, p. 278, Ex. 8.5-1, and p. 357.

PROBLEM: 

Determine the first three 
natural frequencies, f, of a 
uniform beam clamped at 
one end and free at the 
other end.

GIVEN: 

E

= 30 x 10

6

 psi

= 1.3333 in

4

 

A

=  4  in

2

h

=  2  in

L

=  80  in

ρ

= 0.72723E-3 lb sec

2

/in

4

COMPARISON OF RESULTS:

FFEF4: Natural Frequencies of a Cantilever Beam

(See 

page 

5-2.)

F

1

, Hz

F

2

, Hz

F

3

, Hz

Theory

10.25

64.25

179.9

COSMOSFFE

10.24

63.95

178.5

L

h

Problem Sketch

1 2 3 4

19

1 2

18

X

Z

Y

20

Finite Element Model

Figure  FFEF4-1

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-7

Chapter 5   Verification Problems

TYPE:

Mode shape and frequency, beam and mass elements (BEAM3D, MASS).

REFERENCE: 

William, W. Seto, “Theory and Problems of Mechanical Vibrations,” Schaum’s 
Outline Series, McGraw-Hill Book Co., Inc., New York, 1964, p. 7.

PROBLEM: 

A steel cantilever beam of 
length 10 in has a square cross-
section of 1/4 x 1/4 in A weight 
of 10 lbs is attached to the free 
end of the beam as shown in the 
figure. Determine the natural 
frequency of the system if the 
mass is displaced slightly and 
released.

GIVEN: 

E

= 30 x 10

6

 psi

W =  10  lb

L

=  10  in

COMPARISON OF RESULTS:

FFEF5: Frequency of a Cantilever Beam with 

Lumped Mass

(See 

page 

5-2.)

F, Hz

Theory

5.355

COSMOSFFE

5.359

L

W

Problem Sketch

Y

X

1

2

3

1

3

4

2

Finite Element Model

Figure  

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-8

COSMOSFFE Frequency

TYPE:

Mode shapes and frequencies, shell element (SHELL4).

REFERENCE:

Leissa, A.W. “Vibration of Plates,” NASA, sp-160, p. 44.

PROBLEM:

Obtain the first natural 
frequency for a simply 
supported plate.

GIVEN:

E

= 30,000 kips

ν

= 0.3

h

=  1  in

a

=  b  =  40  in

ρ

= 0.003 kips sec

2

/in

4

NOTE:

Due to double symmetry in geometry and the required mode shape, a quarter of the 
plate is taken for modeling.

COMPARISON OF RESULTS:

FFEF6: Dynamic Analysis of a Simply Supported 

Plate

(See 

page 

5-2.)

F, Hz

Theory

5.94

COSMOSFFE

5.929

Z

Y

X

h

b

a

Problem Sketch and Finite Element Model

Figure  FFEF6-1

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-9

Chapter 5   Verification Problems

TYPE: 

Mode shapes and frequencies, shell element (SHELL4).

REFERENCE: 

Kraus, “Thin Elastic Shells,” John Wiley & Sons, Inc., p. 307.

PROBLEM: 

Determining the first three 
natural frequencies.

GIVEN:

E

= 30 x 10

6

 psi 

ν

= 0.3

ρ

= 0.00073 (lb-sec

2

)/in

4

L

=  12  in

R

=  3  in

t = 

0.01 

in

NOTE:

Due to symmetry in geometry and the mode shapes of the first three natural 
frequencies, 1/8 of the cylinder is considered for modeling.

COMPARISON OF RESULTS:

FFEF7: Frequencies of a Cylindrical Shell

(See 

page 

5-2.)

F

1

, Hz

F

2

, Hz

F

3

, Hz

Theory

552

736

783

COSMOSFFE

539.6

710.2

779.9

t

L

R

Problem Sketch 

and Finite Element Model

Figure  FFEF7-1

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-10

COSMOSFFE Frequency

TYPE: 

Mode shapes and frequencies, shell element (SHELL4).

REFERENCE: 

Flugge, W. “Handbook of Engineering Mechanics,” First Edition, McGraw-Hill, 
New York, p. 61-19.

PROBLEM: 

Determine the first two natural 
frequencies of a uniform ring in 
symmetric case.

GIVEN:

E

= 30E6 psi

ν

= 0

L

=  4  in

h

=  1  in

R

=  1  in

ρ

= 0.25E-2 (lb sec

2

)/in

4

COMPARISON OF RESULTS:

FFEF8: Symmetric Modes and  Natural 

Frequencies of a Ring

(See 

page 

5-2.)

F

1

, Hz

F

2

, Hz

Theory

135.05

134.92

COSMOSFFE

134.8

720.1

Z

h

L

Y

X

R

Problem Sketch

Figure  FFEF8-1

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-11

Chapter 5   Verification Problems

TYPE:

Mode shapes and frequencies, triangular shell elements (SHELL3).

REFERENCE: 

“ASME Pressure Vessel and Piping 1972 Computer Programs Verification,” ed. by 
I. S. Tuba and W. B. Wright, ASME Publication I-24, Problem 2.

PROBLEM: 

Calculate the natural 
frequencies of a triangular 
wing as shown in the figure.

GIVEN:

= 6.5 x 10

6

 psi

ν

= 0.3541

ρ

= 0.166E-3 lb sec

2

/in

4

L

=  6  in

Thickness = 0.034 in

COMPARISON OF RESULTS:

Natural Frequencies (Hz):

FFEF9: Eigenvalues of a Triangular Wing

(See 

page 

5-2.)

Frequency 

No.

Reference

COSMOSFFE

1

55.9

55.76

2

210.9

206.5

3

293.5

285.5

Finite Element Model

Problem Geometry

L

Figure  FFEF9-1

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-12

COSMOSFFE Frequency

TYPE: 

Mode shapes and frequencies, rigid body modes, beam element (BEAM3D).

REFERENCE: 

Timoshenko, S. P., Young, O. H., and Weaver, W., “Vibration Problems in 
Engineering,” 4th ed., John Wiley and Sons, New York, 1974, pp. 424-425.

PROBLEM: 

Determine the elastic and 
rigid body modes of vibration 
of the unsupported beam 
shown below.

GIVEN:

L

= 100 in

E

= 1 x 10

8

 psi

r

= 0.1 in

ρ

= 0.2588E-3 lb sec

2

/in

4

ANALYTICAL SOLUTION:

The theoretical solution is given by the roots of the equation Cos KL Cosh KL = 1 
and the frequencies are given by:

COMPARISON OF RESULTS:

NOTE:

First two modes are rigid body modes.

FFEF10: Vibration of an Unsupported Beam

(See 

page 

5-2.)

fi

= Ki

2

 (EI/

ρA)

(1/2)

/(2

π)

= Number of natural frequencies

K

i

= (i + 0.5)

π/L

A

= area of cross-section

ρ

= Mass Density

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Theory F, Hz

0

0

11.07

30.51

59.81

98.86

Theory (ki)

(0)

(0)

(4.73)

(7.853)

(10.996) (14.137)

COSMOSFFE F, Hz

0

0

10.92

29.82

57.94

94.94

Figure  FFEF10-1

1

1

2

3

15 16

2

Finite Element Model

15

L

Problem Sketch

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-13

Chapter 5   Verification Problems

TYPE:

Mode shapes and frequencies, hexahedral solid element (SOLID).

REFERENCE: 

Thomson, W. T., “Vibration Theory and Applications,” Prentice-Hall, Inc., 
Englewood Cliffs, N. J., 2nd printing, 1965, p.275, Ex. 8.5-1, and p. 357.

PROBLEM: 

Determine the first 
three natural 
frequencies of a 
uniform beam 
clamped at one 
end and free at 
the other end.

GIVEN:

E

= 30 x 10

6

 psi

a

=  2  in

b

=  2  in

L

=  80  in

ρ

= 0.00072723 
   lb-sec

2

/in

4

COMPARISON OF RESULTS:

FFEF11: Frequencies of a  Solid Cantilever Beam

(See 

page 

5-2.)

F

1

, Hz

F

2

, Hz

F

3

, Hz

Theory

10.25

64.25

179.91

COSMOSFFE

10.24

63.81

177.4

L

x

y

z

Problem Sketch

b

a

Finite Element 

Model

Figure  FFEF11-1

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-14

COSMOSFFE Frequency

TYPE: 

Mode shapes and frequencies, truss elements (TRUSS2D).

REFERENCE: 

William,

 

W.

 

Seto,

 

“Theory and Problems of Mechanical

 

Vibrations,”

 

Schaum’s 

Outline Series, McGraw-Hill Book Co., Inc., New York, 1964, p. 7.

PROBLEM: 

A manometer used in a fluid mechanics laboratory has a uniform bore of cross-
section area A. If a column of liquid of length L and weight density 

ρ 

is set into 

motion, as shown in the figure, find the frequency of the resulting motion.

NOTE: 

The mass of fluid is lumped at nodes 2 to 28. The boundary elements are applied at 
nodes 6 to 24.

Figure FFEF12-1

FFEF12: Natural Frequency of Fluid

(See 

page 

5-2.)

GIVEN:

COMPARISON OF RESULTS

A

=  1  in

2

ρ  = 9.614E-5 lb sec

2

/in

4

L

= 51.4159 in

E

= 1E5 psi

F, Hz

Theory

0.617

COSMOSM

0.6172

y

y

y

Problem Sketch

Finite Element Model

1.0"

10"

10"

X

Y

In

de

x

In

de

x

background image

COSMOSFFE Frequency

5-15

Chapter 5   Verification Problems

TYPE:

Mode shapes and frequencies, multifield elements, 4- and 8-node PLANE2D, 6-
node TRIANG, TETRA10, and 8- and 20-node SOLID.

PROBLEM: 

Compare the first two natural frequencies of a cantilever beam modeled by each of 
the above element types.

GIVEN: 

E

=  10

7

 psi

ρ

= 245 x 10

–3

 lb-sec

2

/in

4

b

= 0.1 in

h

= 0.2 in

L

=  6  in

n

= 0.3 

COMPARISON OF RESULTS:

The theoretical solutions for the first and second mode are: 181.17 and 1136.29 Hz.

FFEF13A, FFEF13B, FFEF13C, FFEF13D, 

FFEF13E, FFEF13F: Dynamic Analysis of 

Cantilever Beam

(See 

page 

5-2.)

Input File

Element 

1st Mode

Difference 

(%)

2nd Mode

Difference 

(%)

FFEF13A

PLANE2D 4-node

180.49

0.37

1118.17

1.59

FFEF13B

PLANE2D 8-node

178.91

1.24

1107.59

2.52

FFEF13C

TRIANG 6-node

180.52

0.36

1121.60

1.29

FFEF13D

TETRA10

182.64

0.81

1139.23

0.26

FFEF13E

SOLID 8-node

180.98

0.10

1121.70

1.28

FFEF13F

SOLID 20-node

179.78

0.77

1112.17

2.12

b

L

h

Problem Sketch

Figure  FFEF13-1

In

de

x

In

de

x

background image

Chapter 5   Verification Problems

5-16

COSMOSFFE Frequency

TYPE:

Frequency analysis, SHELL4 elements.

PROBLEM:

Natural frequencies of a simply-supported plate are calculated. Utilizing the 
symmetry of the model, only one quarter of the plate is modeled and the first three 
symmetric modes of vibration are calculated. The mass is lumped uniformly at 
master degrees of freedom.

Theoretical results can be 
obtained from the equation:

ω

mn

 = r

2

D/L

2

 (m

2

 + n

2

)

Where:

D = Eh

3

/12(1 - 

ν

2

)

U = 

ρh

FFEF14: Natural Frequencies of a Simply-

Supported Square Plate

(See 

page 5-

2.)

GIVEN:

L

=  30  in

h

= 0.1 in

ρ

= 8.29 x 10

-4

   (lb sec

2

)/in

4

ν

= 0.3

E

= 30.E6 psi

ANALYTICAL 
SOLUTION:

COMPARISON OF RESULTS:

Normalized mode shape displacements for the nodes 
connected by the rigid bar.

Natural Frequency (Hz)

First 

Second 

Third 

Theory

5.02

25.12

25.12

COSMOSM

5.023

25.11

25.11

Total Mass = 

ρ 

∗  

ν

 =

 8.29

 

 10

-4

 

 0.1 

 30 

 30 =.07461

Lumped Mass at Master Nodes =.07461/64 = 1.16E-3

L

Problem Sketch

961

931

1

31

Simply 
Supported 
Plate

Figure  

In

de

x

In

de

x

background image

COSMOSFFE Frequency

A-1

A

Troubleshooting

Introduction

When you use the COSMOSFFE Frequency module, you may sometimes come 
across the following error messages, listed alphabetically. Diagnostics and 
corrective measures for each error message are provided.

PROBLEM:

Bonding is not supported

You have specified bonding of two bodies in your model using the 

BONDDEF

 

command. Bonding is not supported in this version of FFE Thermal. Delete 
bonding or use the conventional HSTAR module.

PROBLEM:

Cannot restart because previous results are not compatible

Some changes in the model were introduced after the results existing in the 
database have been calculated. Use the 

RESTART

 (Analysis > 

Restart

) com-

mand to deactivate the restart option and try again.

PROBLEM:

Cannot restart without previous results

You have activated the restart option for transient thermal analysis. Results of 
the analysis were not found in the database. Use the 

RESTART

 (Analysis > 

Restart

) command to deactivate the restart option and try again.

In

de

x

In

de

x

background image

Appendix A   Troubleshooting

A-2

COSMOSFFE Frequency

PROBLEM:

Cannot restart without results for the starting point

You have activated the restart option for transient thermal analysis. Results of 
the analysis at the starting solution step were not found in the database. 

PROBLEM: 

Coordinate system <number> is referenced but not defined

Define the missing coordinate system and try again or modify your input such 
that the named coordinate system is not referred to.

PROBLEM: 

Degenerate element <number>

Degenerate elements were detected in your model. Degenerate elements are bar 
elements with 0-length, area elements with 0-area, or solid elements with 0-vol-
ume. Use the 

ECHECK

 (Meshing > ELEMENTS > 

Check Element

) command 

to correct the problem and automatically delete bar elements whose length is 
less than 

PTTOL

, area elements whose area is less than 

PTTOL

 square, and solid 

elements whose volume is less than 

PTTOL

 cubed. The point tolerance is 

defined by the 

PTTOL

 (Geometry > POINTS > 

Merge Tolerance

) command.

PROBLEM:

 

Element <number> has unsupported type

The given element is associated with an element group that is not supported in 
this release of FFE Thermal. Use the conventional solver, or redefine the ele-
ment group if possible.

PROBLEM:

 

Element <number> is pyramid shaped, which is not supported

The named element belongs to a SOLID element group. The nodes defining a 
face of the solid have collapsed to a single location. This type of collapsed ele-
ment is not currently supported by FFE Thermal. This element may have been 
defined manually or resulted from the parametric meshing of a volume with a 
collapsed face. Delete the mesh, define a TETRA4, or TETRA10 element 
group, and use automatic meshing instead of parametric meshing. Prism-shaped 
elements are automatically supported by FFE Thermal.

PROBLEM: 

Error while closing a temporary file

An I/O error occurred while closing a temporary file.

PROBLEM:

 

Error while positioning a temporary file

An I/O error has occurred while reading information from a temporary working 
file.

In

de

x

In

de

x

background image

COSMOSFFE Frequency

A-3

Appendix A   Troubleshooting

PROBLEM: 

Error while reading file <filename>

An I/O error has occurred while reading from the named file which is part of the 
COSMOSM database. The file may have been corrupted. Check the integrity of 
your hard disk, reconstruct the model by creating a new problem and using the 

FILE

 (File > 

Load...

) command, and try again.

PROBLEM:

 

Error while reading from a temporary file

An I/O error has occurred while reading information from a temporary working 
file.

PROBLEM:

 

Error while writing to a temporary file

An error occurred while writing data to the temporary file. Check the available 
disk space, and the integrity of your system, especially the hard disk. Recon-
struct the database and try again. 

PROBLEM:

Error while writing to file <filename>

An error occurred while writing data to the named file. Check the integrity of 
your system, especially the hard disk. Reconstruct the database and try again.

PROBLEM:

File <filename> does not contain necessary data

The named file name does not contain the expected data in the expected format. 
Either the file is corrupted, overwritten, or created by a different COSMOSM 
version. 

PROBLEM:

 

File <filename> has invalid format

The format of the data in the named file is not as expected. Either the file is cor-
rupted, overwritten, or created by a different COSMOSM version. 

PROBLEM:

 Improper 

axisymmetric 

model

The defined axisymmetric model is improper. Axisymmetric elements must be 
defined in the global X-Y plane with the Y-axis as the axis of symmetry. 

PROBLEM:

 

Improper mesh near element <number>

The mesh elements are not compatible in the neighborhood of the named ele-
ment. This can be the result of improper node merging, invalid parametric tetra-
hedral mesh, or invalid manually created elements.

In

de

x

In

de

x

background image

Appendix A   Troubleshooting

A-4

COSMOSFFE Frequency

PROBLEM:

 

Improper mesh, properties, or boundary conditions

Either the mesh, material properties, or boundary conditions of the model have 
been improperly defined. Use the 

R_CHECK 

(Analysis > 

Run Check

) com-

mand to check the elements. Also list and examine the material properties and 
boundary conditions. 

PROBLEM:

 Incompatible 

element groups

The generated mesh connects elements with incompatible element groups to 
each other. Try to use other alternatives such that connected elements have com-
patible degrees of freedom.

PROBLEM:

 

Internal error # <number>

An internal error has occurred. Record the error number and report to S.R.A.C.

PROBLEM:

Invalid combination of first and second order elements

First order (linear) and second order (parabolic) elements are connected to each 
other resulting in incompatible common edges. An example is connecting 
TETRA4 elements to TETRA10 elements. Use the 

ECHANGE

 (Meshing > 

Ele-

ment Order

) command to fix the problem by raising the order of first order ele-

ments or lowering the order of second order elements. It is recommended, 
though not necessary to change the element group(s).

PROBLEM:

Invalid curve

An invalid temperature or time curve has been found. Verify your input. The 

ACTXYPRE

 (Display XY PLOTS > 

Activate Pre-Proc

) and 

XYPLOT

 (Display 

XY PLOTS > 

Plot Curves

) commands may be used to plot time and tempera-

ture curves. Redefine the invalid curves using the 

CURDEF 

(LoadsBC > FUNC-

TION CURVE > Time/Temp Curve) command and try again. A corruption in 
the database is possible.

PROBLEM:

Invalid order of nodes for element <number> 

The number of nodes used to define the specified element is invalid. Use the 
(Edit > LIST > 

Element Groups

) and 

ELIST

 (Edit > LIST > 

Elements

) com-

mands to find the error. The 

R_CHECK

 (Analysis > 

Run Check

) command will 

also detect such errors.

In

de

x

In

de

x

background image

COSMOSFFE Frequency

A-5

Appendix A   Troubleshooting

PROBLEM:

Invalid time interval for the analysis <start>, <end>

The time interval specified for the transient thermal analysis is invalid. Use the 

TIMES

 (LoadsBC > LOAD OPTIONS > 

Time Parameter

) command to correct 

the error.

PROBLEM:

Maximum number of nonlinear iterations <number> exceeded

The maximum allowable number of nonlinear iterations has been exceeded 
without conversion. Check your input. Allow a higher number of iterations if no 
errors are found. Use a smaller time interval for transient analysis.

PROBLEM:

Not enough boundary conditions

None or inadequate boundary conditions specified. Use commands in the 
LoadsBC > HEAT TRANSFER menu to check your input. Specify more bound-
ary conditions and try again.

PROBLEM:

 

Out of memory or swap space

Available virtual memory is not sufficient to run this problem.

On UNIX systems contact your system administrator to increase size of the 
swap space.

PROBLEM:

Too many time steps

The number of time steps for transient thermal analysis exceeded the maximum 
allowed number which is currently 2400.

PROBLEM:

 

Unable to create a temporary file

FFE Thermal could not create a temporary file. Check the integrity of your sys-
tem and verify that adequate disk space is available.

PROBLEM:

 

Unable to create file <filename>

FFE Thermal could not create the named file. Check the integrity of your sys-
tem and verify that adequate disk space is available.

PROBLEM: 

Unable to open file <filename>

FFE Thermal could not open the named file which is part of the COSMOSM 
database. The file may have been deleted. Check the integrity of your hard disk, 
reconstruct the model by creating a new problem and using the 

FILE

 (File > 

Load...

) command.

In

de

x

In

de

x

background image

Appendix A   Troubleshooting

A-6

COSMOSFFE Frequency

PROBLEM: 

Unable to open problem database

FFE Thermal could not open the database for this problem. Verify that the data-
base files for this problem exist in the proper path and directory specified and 
that the correct version is being used. Also check the integrity of your system 
and verify that adequate disk space is available.

PROBLEM:

 

Unexpected end of file while reading <filename>

An end-file mark was found before reading all needed data from the named file. 
Check related input, fix the problem if any, and try again. Regenerate the file if 
possible, check the integrity of your system and reconstruct the database 
through the 

FILE

 (File > 

Load...

) command if the problem could not be fixed 

otherwise.

PROBLEM:

 

You are not authorized to use this type of analysis

You are not authorized to use this type of analysis. Use the 

PRODUCT_INFO

 

(Control > MISCELLANEOUS > 

Product Info

) command to get a list of the 

modules you are authorized to use. Contact S.R.A.C. 

PROBLEM:

Zero or negative cross section area for element <number>

The cross sectional area of the specified element is zero or negative. Use the 

ELIST

 (Edit > LIST > 

Elements

) command to find the associated real constant 

set and then use the 

RCLIST

 (Edit > LIST > 

Real Constants

) command to list 

the cross sectional area. Use the 

RCONST

 (Propsets > 

Real Constant

) com-

mand to specify a positive value.

PROBLEM:

Zero or negative heat conductivity for element <number>

The heat conductivity specified for this element is zero or negative. Use the 

ELIST

 (Edit > LIST > 

Elements

) command to find the associated material prop-

erty set and then use the 

MPLIST

 (Edit > LIST > 

Material Props

) command to 

list the material properties in the associated set. Use the 

MPROP

 (Propsets > 

Material Property

) command to specify a positive value.

PROBLEM:

Zero or negative real constant for radiation link element <number>

An invalid value has been specified in the real constant associated with the spec-
ified element. Use the 

ELIST

 (Edit > LIST > 

Elements

) command to find the 

associated real constant set and then use the 

RCLIST

 (Edit > LIST > 

Real

In

de

x

In

de

x

background image

COSMOSFFE Frequency

A-7

Appendix A   Troubleshooting

Constants

) command to list the set and check your input for the radiating sur-

face area, the view factor, emissivity, and the Stefan-Boltzman constant. Use the 

RCONST

 (Propsets > 

Real Constant

) command to fix the error.

PROBLEM:

Zero or negative thickness for element <number>

The thickness of the specified element is zero or negative. Use the 

ELIST

 (Edit > 

LIST > 

Elements

) command to find the associated real constant set and then 

use the 

RCLIST

 (Edit > LIST > 

Real Constants

) command to list the thickness. 

Use the 

RCONST

 (Propsets > 

Real Constant

) command to specify a positive 

value.

PROBLEM:

Zero or negative time increment

The time increment specified by the 

TIMES

 command is invalid. Use the 

TIMES

 

(LoadsBC > LOAD OPTIONS > 

Time Parameter

) command to specify a posi-

tive value.

In

de

x

In

de

x

background image

A-8

COSMOSFFE Frequency

In

de

x

In

de

x

background image

COSMOSFFE Frequency

I-1

Index

A

A_FEEFREQ 1-3
Align Shell Elements 2-5
analysis options 3-5, 4-8
anisotropic 1-3
axisymmetric 2-1

B

basic steps 3-2
beam elements 2-2
BEAM3D 1-2
bottom face 2-5

D

damping matrix 1-2
DSTAR 3-5

E

EGROUP 2-3
eigenvalue problem 1-2
element order 1-3, 3-5, 4-3, 4-8
error messages 3-8, A-1

F

FFE Frequency Options 1-3, 3-2

3-5

full integration 2-5

H

hexahedral 2-2

I

isotropic 1-3

L

lower bound 1-3
lower bound value 3-5

M

MASS 1-2
mass matrix 1-2
material properties 2-3
mid surface 2-5
modal analysis 1-2
mode shape 4-5, 4-9
mode shapes 1-2, 3-6

N

natural frequencies 1-2, 1-3
number of frequencies 3-5, 3-6

4-3, 4-8

O

orthotropic 1-3
output file 3-7

P

pentahedral 2-2
plane strain 2-1
plane stress 2-1
PLANE2D 1-3, 2-1

R

R_MATLIB 2-3
RCONST 2-3
Real Constant 2-3
rigid connection 1-3
rigid connections flag 3-6
Run Check 3-8

S

second order 4-3, 4-8
SHADE 2-5
shell elements 2-2
SHELL3 1-3
SHELL4 1-3
SOLID 1-3
, 2-2
sparse matrix 1-1
SPRING 1-2
step-by-step examples 4-1
stress results 2-5

In

de

x

In

de

x

background image

Index   

I-2

COSMOSFFE Frequency

T

TETRA10 1-3
TETRA4 1-3
tetrahedral 2-2
top face 2-5
TRIANG 1-3, 2-1
truss elements 2-2
TRUSS2D 1-2
TRUSS3D 1-2

U

units 1-4
upper bound 1-3
upper bound value 3-5
upper limit 3-6

V

verification problems 5-1

In

de

x

In

de

x


Document Outline