background image

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

Contents

 

lists

 

available

 

at

 

ScienceDirect

Thermochimica

 

Acta

j o u r n a

 

l

 

h

 

o

 

m e

 

p a g e :

 

w w w . e l s e v i e r . c o m / l o c a t e / t c a

Crystal

 

polymorphism

 

of

 

poly(

l-lactic

 

acid)

 

and

 

its

 

influence

 

on

 

thermal

properties

Maria

 

Laura

 

Di

 

Lorenzo

,

 

Mariacristina

 

Cocca,

 

Mario

 

Malinconico

Istituto

 

di

 

Chimica

 

e

 

Tecnologia

 

dei

 

Polimeri

 

(CNR),

 

c/o

 

Comprensorio

 

Olivetti,

 

Via

 

Campi

 

Flegrei,

 

34,

 

80078

 

Pozzuoli

 

(NA),Italy

a

 

r

 

t

 

i

 

c

 

l

 

e

 

i

 

n

 

f

 

o

Article

 

history:

Received

 

15

 

October

 

2010

Received

 

in

 

revised

 

form

16

 

December

 

2010

Accepted

 

22

 

December

 

2010

Available online 12 January 2011

Keywords:
Poly(

l-lactic

 

acid)

Polymorphism
Cold

 

crystallization

Rigid

 

amorphous

 

fraction

Thermal

 

analysis

a

 

b

 

s

 

t

 

r

 

a

 

c

 

t

The

 

influence

 

of

 

crystal

 

polymorphism

 

on

 

the

 

thermal

 

properties

 

of

 

poly(

l-lactic

 

acid)

 

(PLLA)

 

is

 

discussed

in

 

this

 

contribution.

 

Crystallization

 

of

 

PLLA

 

at

 

high

 

temperatures

 

yields

 

the

 

stable

 

 

form,

 

whereas

 

at

 

low

temperatures

 

the

 

metastable

 



modification

 

develops,

 

which

 

is

 

characterized

 

by

 

slightly

 

larger

 

lattice

dimensions

 

compared

 

to

 

the

 

 

counterpart,

 

and

 

by

 

some

 

degree

 

of

 

conformational

 

disorder.

 

Quantitative

analysis

 

with

 

conventional

 

and

 

temperature-modulated

 

calorimetry

 

revealed

 

a

 

three-phase

 

structure

of

 

PLLA

 

composed

 

of

 

a

 

crystal

 

phase

 

and

 

two

 

amorphous

 

fractions

 

with

 

different

 

mobility,

 

for

 

all

 

the

analyzed

 

thermal

 

histories.

 

A

 

higher

 

coupling

 

of

 

the

 

amorphous

 

chain

 

segments

 

with

 

the

 

crystal

 

phase

was

 

found

 

in

 

the

 

presence

 

of

 

 

crystals,

 

probably

 

due

 

to

 

the

 

slightly

 

larger

 

lattice

 

dimensions

 

and

 

the

looser

 

arrangements

 

of

 

PLLA

 

chains

 

in

 

the

 



structure.

 

Some

 

peculiarities

 

in

 

the

 

thermal

 

behavior

 

were

rationalized,

 

like

 

an

 

unusual

 

frequency-dependence

 

of

 

the

 

reversing

 

apparent

 

heat

 

capacity

 

upon

 

the

solid–solid

 

transition

 

from

 

the

 



to

 

the

 

 

crystals.

 

Devitrification

 

of

 

the

 

rigid

 

amorphous

 

segments

 

seems

also

 

to

 

be

 

differently

 

affected

 

by

 

the

 

coupled

 

crystal

 

structure

 

for

 

the

 

two

 

analyzed

 

crystal

 

modifications

of

 

PLLA.

© 2011 Elsevier B.V. All rights reserved.

1.

 

Introduction

Poly(

l-lactic

 

acid)

 

(PLLA)

 

is

 

a

 

biodegradable

 

and

 

biocompati-

ble

 

polyester

 

that

 

can

 

be

 

produced

 

by

 

renewable

 

resources,

 

like

corn.

 

Being

 

non-toxic

 

to

 

human

 

body,

 

PLLA

 

is

 

used

 

in

 

biomedical

applications,

 

like

 

surgical

 

sutures,

 

bone

 

fixation

 

devices,

 

or

 

con-

trolled

 

drug

 

delivery.

 

Moreover,

 

the

 

good

 

mechanical

 

properties

and

 

easy

 

of

 

processability

 

make

 

PLLA

 

a

 

good

 

candidate

 

to

 

substitute

petroleum-based

 

polymers

 

in

 

selected

 

and

 

commodity

 

application,

with

 

the

 

added

 

value

 

of

 

biodegradability.

Similar

 

to

 

other

 

biodegradable

 

polyesters,

 

PLLA

 

displays

 

crystal

polymorphism,

 

as

 

three

 

main

 

different

 

crystal

 

modifications

 

can

develop,

 

named

 

␣,

 

␤,

 

and

 

 

forms,

 

depending

 

on

 

preparation

 

con-

ditions.

 

The

 

 

form

 

of

 

PLLA

 

grows

 

upon

 

melt

 

or

 

cold

 

crystallization,

as

 

well

 

as

 

from

 

solution.

 

The

 

 

form

 

has

 

two

 

antiparallel

 

chains

in

 

a

 

left-handed

 

10

3

helical

 

conformation

 

(or

 

distorted

 

10

3

helix)

packed

 

in

 

an

 

orthorhombic

 

(or

 

pseudo-orthorhombic)

 

unit

 

cell

 

with

a

 

=

 

1.066

 

nm,

 

b

 

=

 

0.616

 

nm,

 

c

 

=

 

2.888

 

[1–3]

.

 

Hot-drawing

 

melt-spun

or

 

solution-spun

 

PLLA

 

fibers

 

to

 

a

 

high-draw

 

ratio

 

leads

 

to

 

the

 

form.

 

An

 

orthorhombic

 

unit

 

cell

 

with

 

six

 

chains

 

in

 

the

 

3

1

helical

conformation,

 

with

 

axes

 

a

 

=

 

1.031

 

nm,

 

b

 

=

 

1.821

 

nm

 

and

 

c

 

=

 

0.900

 

nm

was

 

first

 

proposed

 

for

 

the

 

 

modification

 

[4]

.

 

Similar

 

to

 

 

crystals,

∗ Corresponding

 

author.

 

Tel.:

 

+39

 

081

 

867

 

5059;

 

fax:

 

+39

 

081

 

867

 

5230.

E-mail

 

address:

 

dilorenzo@ictp.cnr.it

 

(M.L.

 

Di

 

Lorenzo).

the

 

molecular

 

chains

 

of

 

the

 

 

form

 

crystals

 

have

 

a

 

nearly

 

hexago-

nal

 

packing,

 

as

 

the

 

b/a

 

is

 

very

 

close

 

to

3

 

[3]

.

 

Puiggalí

 

et

 

al.

 

later

suggested

 

that

 

the

 

␤-form

 

rests

 

on

 

a

 

frustrated

 

packing

 

of

 

three

 

3

1

helix

 

chains

 

in

 

a

 

trigonal

 

unit

 

cell

 

with

 

parameters

 

a

 

=

 

b

 

=

 

1.052

 

nm,

c

 

=

 

0.880

 

nm,

 

˛

 

=

 

ˇ

 

=

 

90

,

 



 

=

 

120

,

 

with

 

a

 

space

 

group

 

P3

2

[5]

.

 

This

frustrated

 

structure

 

seems

 

to

 

be

 

formed

 

to

 

accommodate

 

the

 

ran-

dom

 

up-down

 

orientation

 

of

 

neighbor

 

chains

 

associated

 

with

 

the

rapid

 

crystallization

 

under

 

stretching

 

[5]

.

The

 

 

form

 

is

 

obtained

 

via

 

epitaxial

 

crystallization

 

on

 

hex-

amethylbenzene

 

substrate.

 

It

 

is

 

characterized

 

by

 

two

 

antiparallel

helices

 

with

 

3

1

conformation

 

packed

 

in

 

an

 

orthorhombic

 

unit

 

cell

with

 

a

 

=

 

0.995

 

nm,

 

b

 

=

 

0.625

 

nm,

 

c

 

=

 

0.880

 

nm

 

[6]

.

 

The

 

a

 

(0.892

 

nm)

and

 

b

 

(0.886

 

nm)

 

axes

 

of

 

hexamethylbenzene

 

crystals

 

are

 

close

 

to

the

 

chain

 

axis

 

repeat

 

distance

 

of

 

the

 

 

form

 

of

 

PLLA

 

in

 

the

 

3

1

heli-

cal

 

conformation

 

(0.880

 

nm).

 

This

 

matching

 

favors

 

the

 

epitaxial

growth

 

of

 

 

form

 

crystals

 

of

 

PLLA

 

on

 

hexamethylbenzene

 

crystal

surface.

Besides

 

these

 

three

 

main

 

crystal

 

polymorphs,

 

a

 

disordered

 

mod-

ification

 

of

 

the

 

 

form,

 

named

 



form,

 

was

 

recently

 

proposed

 

for

PLLA.

 

The

 

WAXD

 

patterns

 

of

 

the

 

 

and

 



forms

 

of

 

PLLA

 

are

 

very

similar,

 

with

 

small

 

differences

 

seen

 

in

 

the

 

shift

 

to

 

higher

 

2



 

val-

ues

 

of

 

the

 

two

 

strongest

 

reflections,

 

assigned

 

to

 

the

 

(1

 

1

 

0)/(2

 

0

 

0)

and

 

(2

 

0

 

3)

 

planes,

 

and

 

in

 

the

 

appearance

 

of

 

a

 

weak

 

reflection

 

at

2



 

=

 

≈24.5

in

 

the

 



modification.

 

This

 

corresponds

 

to

 

a

 

similar

packing

 

of

 

the

 

two

 

polymorphs,

 

as,

 

analogous

 

to

 

the

 

 

form,

 

the

PLLA

 

chains

 

in

 

the

 



modification

 

have

 

a

 

10

3

helix

 

conformation

and

 

orthorhombic

 

(or

 

pseudo-orthorhombic)

 

unit

 

cell

 

[7–9]

.

 

The

0040-6031/$

 

 

see

 

front

 

matter ©

 

 2011 Elsevier B.V. All rights reserved.

doi:

10.1016/j.tca.2010.12.027

background image

M.L.

 

Di

 

Lorenzo

 

et

 

al.

 

/

 

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

111

lattice

 

spacings

 

for

 

the

 

(1

 

1

 

0)/(2

 

0

 

0)

 

and

 

(2

 

0

 

3)

 

planes

 

of

 



form

crystals

 

are

 

somewhat

 

larger

 

than

 

those

 

of

 

their

 

 

counterparts,

indicating

 

that

 

the

 



form

 

has

 

slightly

 

larger

 

lattice

 

dimensions

[7,10]

.

 

Upon

 

melt

 

or

 

cold

 

crystallization

 

conditions,

 

the

 



form

is

 

known

 

to

 

grow

 

at

 

low

 

temperatures,

 

whereas

 

crystallization

 

at

high

 

temperatures

 

leads

 

to

 

formation

 

of

 

the

 

 

modification.

 

The

exact

 

temperature

 

range

 

where

 

each

 

of

 

the

 

two

 

polymorphs

 

pre-

vails

 

depends

 

on

 

the

 

specific

 

PLLA

 

grade.

 

Upon

 

heating,

 

the

 

less

stable

 



crystals

 

transform

 

to

 

the

 

 

form,

 

which

 

results

 

in

 

the

appearance

 

of

 

multiple

 

endotherms

 

and

 

possible

 

exotherms

 

when

PLLA

 

is

 

analyzed

 

by

 

calorimetry

 

[8–10]

.

Crystal

 

polymorphism

 

is

 

known

 

to

 

have

 

a

 

large

 

influence

 

on

thermal

 

properties

 

of

 

semicrystalline

 

polymers.

 

The

 

variation

 

in

melting

 

behavior

 

caused

 

by

 

different

 

thermal

 

stability

 

of

 

the

 

crystal

modifications,

 

and

 

the

 

possible

 

interconversion

 

among

 

the

 

various

crystal

 

forms,

 

as

 

reported

 

for

 

PLLA,

 

are

 

the

 

most

 

commonly

 

ana-

lyzed

 

effects.

 

In

 

some

 

cases,

 

a

 

variation

 

in

 

the

 

crystal

 

modification

may

 

affect

 

not

 

only

 

the

 

crystal

 

phase,

 

but

 

also

 

the

 

thermal

 

prop-

erties

 

of

 

the

 

amorphous

 

segments.

 

This

 

is

 

the

 

case,

 

for

 

instance,

of

 

isotactic

 

poly(1-butene)

 

(PB-1),

 

as

 

the

 

spontaneous

 

transforma-

tion

 

of

 

the

 

metastable

 

form

 

II

 

to

 

the

 

more

 

stable

 

form

 

I

 

results

in

 

a

 

slight

 

increase

 

of

 

the

 

glass

 

transition

 

temperature

 

and

 

in

 

a

large

 

increase

 

of

 

the

 

rigid–amorphous

 

to

 

mobile–amorphous

 

ratio,

despite

 

an

 

unchanged

 

crystallinity

 

[11]

.

 

These

 

effects

 

are

 

due

 

not

only

 

to

 

a

 

shrink

 

of

 

the

 

crystals

 

associated

 

to

 

the

 

solid–solid

 

phase

transformation,

 

caused

 

by

 

a

 

much

 

higher

 

density

 

of

 

form

 

I

 

packing,

but

 

also

 

to

 

the

 

different

 

mobility

 

of

 

PB-1

 

chains

 

within

 

the

 

crystals,

as

 

the

 

large-amplitude

 

intramolecular

 

chain

 

motion

 

of

 

the

 

tetrag-

onal

 

form

 

II

 

makes

 

it

 

a

 

conformational

 

disordered

 

(condis)

 

crystal

[12]

.

Some

 

varied

 

degree

 

of

 

order

 

of

 

the

 

different

 

crystal

 

polymorphs

was

 

also

 

proposed

 

for

 

poly(

l-lactic

 

acid):

 

the

 

molecular

 

packing

within

 

the

 

unit

 

cell

 

of

 



form

 

PLLA

 

is

 

looser

 

and

 

disordered,

 

with

larger

 

lattice

 

dimension

 

and

 

weaker

 

interchain

 

interaction

 

[7,9,10]

.

A

 

preliminary

 

analysis

 

by

 

Zhang

 

et

 

al.

 

[13]

 

suggested

 

that

 

the

 

chain

conformation

 

of

 

 

and

 



crystal

 

modifications

 

are

 

somewhat

 

dif-

ferent,

 

but

 

quantitative

 

results

 

have

 

not

 

been

 

reported

 

yet.

 

The

disorder

 

of

 

the

 

chains

 

within

 

the

 



crystals

 

is

 

conformational,

which

 

makes

 

this

 

crystal

 

modification

 

a

 

mesophase

 

(condis

 

crys-

tal)

 

[14]

.

 

As

 

discussed

 

in

 

this

 

contribution,

 

the

 

varied

 

disorder

 

of

 

the

crystal

 

packing

 

in

 

PLLA

 

affects

 

the

 

thermal

 

properties

 

not

 

only

 

of

the

 

crystal

 

phase,

 

but

 

also

 

of

 

the

 

coupled

 

amorphous

 

portions.

 

Two

types

 

of

 

amorphous

 

fractions

 

are

 

usually

 

present

 

in

 

semicrystalline

polymers:

 

a

 

mobile

 

amorphous

 

phase

 

(MAF),

 

made

 

of

 

the

 

poly-

mer

 

chains

 

that

 

mobilize

 

at

 

the

 

glass

 

transition

 

temperature

 

(T

g

),

and

 

a

 

rigid

 

amorphous

 

fraction

 

(RAF),

 

made

 

of

 

the

 

polymer

 

chains

coupled

 

with

 

the

 

crystal

 

phase

 

that

 

usually

 

devitrify

 

at

 

higher

 

tem-

peratures

 

[15,16]

.

 

The

 

influence

 

of

 

crystal

 

polymorphism

 

on

 

the

relative

 

ratio

 

of

 

the

 

crystal

 

and

 

of

 

the

 

two

 

amorphous

 

fractions

is

 

also

 

analyzed

 

in

 

this

 

contribution.

 

As

 

the

 

thermal

 

properties

 

of

poly(lactic

 

acid)

 

are

 

highly

 

affected

 

by

 

the

 

stereochemistry

 

of

 

the

repeating

 

unit

 

[17]

,

 

a

 

polymer

 

with

 

a

 

very

 

high

 

amount

 

of

 

l-lactic

acid

 

was

 

used.

2.

 

Experimental

2.1.

 

Materials

 

and

 

sample

 

preparation

Poly(

l-lactic

 

acid)

 

(PLLA),

 

Biomer

 

L9000,

 

was

 

purchased

 

from

Biomer

 

Biopolyesters,

 

Germany.

 

Before

 

use

 

PLLA

 

was

 

dried

 

in

 

a

 

vac-

uum

 

oven

 

at

 

60

C

 

for

 

24

 

h

 

to

 

avoid

 

hydrolysis

 

of

 

the

 

polymer

 

during

melt-processing.

After

 

drying,

 

the

 

PLLA

 

chips

 

were

 

compression-molded

 

with

 

a

Carver

 

Laboratory

 

Press

 

at

 

a

 

temperature

 

of

 

185

C

 

for

 

4

 

min,

 

with-

out

 

any

 

applied

 

pressure,

 

to

 

allow

 

complete

 

melting.

 

After

 

this

period,

 

a

 

pressure

 

of

 

150

 

bar

 

was

 

applied

 

for

 

2

 

min.

 

Successively

the

 

press

 

plates,

 

equipped

 

with

 

cooling

 

coils,

 

were

 

quickly

 

cooled

to

 

room

 

temperature

 

by

 

cold

 

water.

The

 

as-prepared

 

PLLA

 

films

 

were

 

crystallized

 

in

 

oven

 

at

 

different

crystallization

 

temperatures

 

(T

c

=

 

85,

 

95,

 

105,

 

115,

 

125,

 

145,

 

165

C)

for

 

18

 

h.

 

At

 

low

 

T

c

(85

C)

 

the

 

crystallization

 

time

 

was

 

extended

 

to

66

 

h

 

because

 

of

 

the

 

slow

 

crystallization

 

rate,

 

as

 

discussed

 

below.

2.2.

 

Wide

 

angle

 

X-ray

 

analysis

The

 

crystalline

 

structure

 

of

 

PLLA

 

crystallized

 

at

 

different

 

T

c

was

 

investigated

 

by

 

wide-angle

 

X-ray

 

diffraction

 

analysis

 

(WAXS).

WAXS

 

investigations

 

were

 

carried

 

on

 

PLLA

 

films

 

by

 

means

 

of

 

a

Philips

 

(PW

 

1050

 

model)

 

powder

 

diffractometer

 

(Ni-filtered

 

CuK

radiation)

 

equipped

 

with

 

a

 

rotative

 

sample

 

holder.

 

The

 

high

 

voltage

was

 

40

 

kV

 

and

 

the

 

tube

 

current

 

was

 

30

 

mA.

The

 

degree

 

of

 

crystallinity

 

(

w

C

)

 

of

 

PLLA

 

films

 

was

 

evaluated

according

 

to

 

the

 

Hermans–Weidinger

 

method,

 

as

 

w

C

is

 

given

 

by

the

 

ratio

 

between

 

the

 

diffraction

 

due

 

to

 

the

 

crystalline

 

phase

 

(I

c

)

and

 

the

 

total

 

diffraction

 

intensity

 

arising

 

from

 

both

 

the

 

amorphous

(I

a

)

 

and

 

crystal

 

parts

 

[18]

:

w

C

=

I

c

I

c

+

 

I

a

(1)

The

 

crystallinity

 

values

 

shown

 

below

 

are

 

averaged

 

from

 

seven

different

 

PLLA

 

films

 

for

 

each

 

T

c

.

2.3.

 

Calorimetry

The

 

thermal

 

properties

 

of

 

PLLA

 

films

 

were

 

measured

 

with

 

a

Perkin–Elmer

 

Pyris

 

Diamond

 

DSC,

 

equipped

 

with

 

Intracooler

 

II

 

as

cooling

 

system

 

and

 

with

 

a

 

Mettler

 

DSC

 

822

e

calorimeter

 

equipped

with

 

a

 

liquid-nitrogen

 

cooling

 

accessory.

 

Both

 

the

 

instruments

were

 

calibrated

 

in

 

temperature

 

with

 

high

 

purity

 

standards

 

(indium

and

 

cyclohexane)

 

and

 

in

 

energy

 

with

 

heat

 

of

 

fusion

 

of

 

indium.

 

Dry

nitrogen

 

was

 

used

 

as

 

purge

 

gas

 

at

 

a

 

rate

 

of

 

48

 

ml/min.

 

To

 

obtain

precise

 

heat

 

capacity

 

data,

 

each

 

measurement

 

was

 

accompanied

by

 

an

 

empty

 

pan

 

run,

 

and

 

a

 

calibration

 

run

 

with

 

sapphire

 

under

identical

 

conditions

 

[19]

.

 

All

 

the

 

measurements

 

were

 

repeated

 

at

least

 

three

 

times

 

to

 

improve

 

accuracy.

The

 

conventional

 

differential

 

scanning

 

calorimetry

 

(St-DSC)

analyses

 

were

 

conducted

 

with

 

the

 

Perkin–Elmer

 

Pyris

 

Diamond

DSC

 

at

 

the

 

scanning

 

rate

 

of

 

20

C/min.

 

Temperature-modulated

calorimetry

 

(TMDSC)

 

at

 

the

 

underlying

 

heating

 

rate

 

of

 

2

C

 

was

conducted

 

with

 

the

 

Perkin–Elmer

 

Pyris

 

Diamond

 

DSC

 

using

 

a

modulation

 

amplitude

 

of

 

0.4

C

 

and

 

periods

 

of

 

temperature

 

oscilla-

tions

 

ranging

 

from

 

60

 

to

 

120

 

s.

 

Quasi-isothermal

 

TMDSC

 

data

 

were

gained

 

with

 

the

 

Mettler

 

DSC

 

822

e

calorimeter,

 

using

 

a

 

sawtooth

oscillation

 

with

 

a

 

temperature

 

amplitude

 

of

 

0.4

C

 

and

 

a

 

modula-

tion

 

period

 

of

 

60

 

s

 

about

 

a

 

base

 

temperature

 

T

o

,

 

which

 

was

 

raised

stepwise

 

in

 

temperature

 

increments

 

of

 

5

C

 

after

 

16

 

min

 

at

 

each

 

T

o

.

From

 

TMDSC

 

measurements

 

the

 

reversing

 

specific

 

heat

 

capac-

ity

 

was

 

obtained

 

from

 

the

 

ratio

 

of

 

the

 

amplitudes

 

of

 

modulated

heat

 

flow

 

rate

 

and

 

temperature,

 

both

 

approximated

 

with

 

Fourier

series

 

[20,21]

.

 

The

 

reversing

 

specific

 

heat

 

capacity

 

values

 

reported

in

 

this

 

contribution

 

were

 

obtained

 

from

 

the

 

first

 

harmonics

 

of

 

the

Fourier

 

series.

 

Similar

 

to

 

conventional

 

DSC

 

analyses,

 

each

 

TMDSC

measurement

 

was

 

accompanied

 

by

 

an

 

empty

 

pan

 

run,

 

and

 

a

 

cali-

bration

 

run

 

with

 

sapphire

 

under

 

identical

 

conditions

 

[19]

.

 

The

 

good

agreement

 

between

 

the

 

experimental

 

data

 

and

 

the

 

thermodynamic

heat

 

capacity

 

of

 

solid

 

and

 

liquid

 

PLLA

 

[22]

 

proves

 

that

 

the

 

modula-

tion

 

periods

 

used

 

are

 

long

 

enough

 

to

 

be

 

corrected

 

satisfactorily

 

by

the

 

calibration

 

with

 

sapphire.

background image

112

M.L.

 

Di

 

Lorenzo

 

et

 

al.

 

/

 

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

150

100

50

1.5

2.0

2.5

150

100

50

2

4

6

8

  85°C 66 h

  95°C 18 h

 105°C 18 h

 115°C 18 h

 125°C 18 h

 145°C 18 h

 165°C 18 h

 Temperature (°C)

 c

p

 [J/(K g)]

Fig.

 

1.

 

Specific

 

heat

 

capacity

 

of

 

PLLA

 

after

 

isothermal

 

cold

 

crystallization

 

at

 

the

 

indi-

cated

 

temperatures.

 

The

 

dashed

 

lines

 

are

 

the

 

solid

 

and

 

liquid

 

specific

 

heat

 

capacities

of

 

PLLA,

 

as

 

taken

 

from

 

Ref.

 

[22]

.

3.

 

Results

 

and

 

discussion

The

 

thermal

 

analysis

 

of

 

poly(

l-lactic

 

acid)

 

after

 

isothermal

 

cold

crystallization

 

at

 

various

 

temperatures

 

is

 

shown

 

in

 

Fig.

 

1

.

 

The

apparent

 

heat

 

capacity

 

(c

p

)

 

data

 

measured

 

upon

 

heating

 

at

 

the

 

con-

stant

 

linear

 

rate

 

of

 

20

C/min

 

are

 

compared

 

to

 

thermodynamic

 

c

p

values

 

of

 

solid

 

and

 

liquid

 

PLLA,

 

as

 

taken

 

from

 

Ref.

 

[22]

.

 

The

 

multiple

melting

 

and

 

recrystallization

 

behavior

 

of

 

PLLA

 

is

 

largely

 

affected

 

by

the

 

thermal

 

history,

 

which

 

in

 

turn

 

determines

 

its

 

polymorphism

[8–10,23–25]

.

 

At

 

high

 

crystallization

 

temperatures

 

(T

c

 

145

C)

only

 

the

 

 

form

 

is

 

present,

 

as

 

proven

 

by

 

the

 

WAXS

 

data

 

shown

below,

 

and

 

one

 

single

 

melting

 

peak

 

is

 

observed,

 

as

 

the

 

material

goes

 

on

 

fusion

 

directly

 

from

 

the

 

fully

 

ordered

 

crystal

 

to

 

the

 

melt,

without

 

changing

 

its

 

crystal

 

modification

 

[8,10,24]

.

 

PLLA

 

films

 

crys-

tallized

 

at

 

lower

 

temperatures,

 

where

 

either

 

 

and

 



forms

 

coexist,

or

 



is

 

the

 

only

 

crystal

 

modification

 

present

 

in

 

the

 

film

 

before

 

the

DSC

 

scan,

 

display

 

multiple

 

thermal

 

events,

 

the

 

most

 

notable

 

ones

include

 

a

 

major

 

exotherm

 

after

 

partial

 

melting,

 

followed

 

by

 

a

 

large

endothermic

 

peak.

 

This

 

complex

 

melting

 

behavior

 

is

 

to

 

be

 

linked

 

to

metastability

 

of

 



crystals,

 

that

 

convert

 

to

 

the

 

stable

 

 

modification

during

 

heating

 

[10]

.

The

 

polymorphic

 

composition

 

of

 

PLLA

 

in

 

dependence

 

of

 

ther-

mal

 

history

 

was

 

determined

 

by

 

wide-angle

 

X-ray

 

diffraction.

 

Fig.

 

2

shows

 

the

 

WAXS

 

patterns

 

of

 

PLLA

 

after

 

crystallization

 

at

 

various

temperatures.

 

For

 

easier

 

comparison,

 

all

 

the

 

diffraction

 

patterns

were

 

normalized

 

using

 

the

 

strongest

 

(2

 

0

 

0)/(1

 

1

 

0)

 

reflection

 

inten-

sity

 

[24]

.

 

Indexing

 

of

 

the

 

observed

 

reflections

 

is

 

based

 

on

 

the

 

crystal

structure

 

reported

 

for

 

the

 

ordered

 

 

modification

 

[26,27]

.

 

With

increasing

 

T

c

the

 

reflections

 

of

 

(2

 

0

 

0)/(1

 

1

 

0)

 

and

 

(2

 

0

 

3)

 

planes

 

shift

to

 

higher

 

2

,

 

together

 

with

 

an

 

increase

 

of

 

(0

 

1

 

0)

 

and

 

(0

 

1

 

5)

 

reflec-

tions

 

intensities,

 

evidenced

 

in

 

the

 

enlarged

 

WAXS

 

profiles

 

reported

in

 

Fig.

 

2

b.

 

Moreover,

 

small

 

diffraction

 

peaks

 

at

 

2



 

=

 

12.5

,

 

20.8

,

24.1

,

 

and

 

25.1

appear

 

at

 

high

 

T

c

,

 

which

 

are

 

assigned

 

to

 

the

 

reflec-

tions

 

of

 

(0

 

0

 

4)/(1

 

0

 

3),

 

(2

 

0

 

4),

 

(1

 

1

 

5),

 

(0

 

1

 

6),

 

and

 

(2

 

0

 

6)

 

planes

 

of

 

crystals,

 

respectively,

 

while

 

they

 

are

 

absent

 

in

 

the

 

samples

 

crystal-

lized

 

at

 

T

c

 

95

C.

 

At

 

low

 

T

c

a

 

reflection

 

at

 

2



 

=

 

24.6

,

 

characteristic

of

 



crystals,

 

can

 

be

 

detected

 

[2,28]

.

 

These

 

results

 

suggest

 

that

 

at

T

c

 

95

C

 

the

 

analyzed

 

PLLA

 

grade

 

crystallizes

 

only

 

in

 

the

 



form;

at

 

105

C

 

 

T

c

 

125

C

 

both

 



and

 

 

forms

 

coexist;

 

at

 

T

c

 

145

C

only

 

the

 

 

modification

 

is

 

present,

 

which

 

is

 

in

 

good

 

agreement

 

with

the

 

available

 

literature

 

data

 

on

 

the

 

temperature-dependence

 

of

 

for-

mation

 

of

 

the

 

two

 

different

 

polymorphs

 

of

 

PLLA

 

[7,8,10,13,24,29]

.

The

 

WAXS

 

data

 

shown

 

in

 

Fig.

 

2

 

were

 

used

 

to

 

determine

 

the

crystal

 

fraction

 

of

 

PLLA

 

after

 

each

 

thermal

 

treatment.

 

This

 

proce-

dure

 

was

 

preferred

 

to

 

integration

 

of

 

the

 

DSC

 

melting

 

endotherms

because

 

of

 

the

 

complex

 

melting

 

behavior

 

of

 

PLLA,

 

especially

 

in

 

cases

30

25

20

15

10

Intensity (a.u.)

(203)

(110/200)

165°C

145°C

125°C

115°C

105°C

95°C

85°C

30

28

26

24

22

20

14

12

10

(115)

Intensity (a.u.)

αα

'

(018)

(207)

(206)

(016)

(015)

(204)

(010)

(004)/(103)

165°C

145°C

125°C

115°C

105°C

95°C

85°C

2

θ (°)

2

θ (°)

a

b

Fig.

 

2.

 

(a)

 

WAXS

 

profiles

 

of

 

PLLA

 

samples

 

crystallized

 

at

 

different

 

T

c

.

 

(b)

 

Enlarged

WAXS

 

profile

 

of

 

PLLA

 

samples

 

crystallized

 

at

 

different

 

T

c

.

where

 

the

 

initial

 



crystals

 

transform

 

into

 

the

 

␣ structure

 

during

heating,

 

as

 

seen

 

in

 

Fig.

 

1

,

 

as

 

well

 

as

 

because

 

of

 

the

 

lack

 

of

 

precise

 

data

on

 

enthalpy

 

of

 

fusion

 

of

 

both

 

the

 

polymorphs

 

and

 

of

 

the

 

enthalpy

of

 

transition

 

from

 

the

 

metastable

 

to

 

the

 

stable

 

crystal

 

modification.

Besides

 

the

 

conventional

 

DSC

 

analyses

 

exhibited

 

in

 

Fig.

 

1

,

TMDSC

 

experiments

 

were

 

conducted

 

for

 

all

 

the

 

analyzed

 

crys-

tallization

 

temperatures.

 

Specific

 

examples

 

are

 

presented

 

for

 

two

selected

 

samples,

 

containing

 

only

 

one

 

of

 

the

 

two

 

analyzed

 

poly-

morphs,

 

to

 

illustrate

 

the

 

different

 

properties

 

of

 

the

 

two

 

crystal

modifications.

 

Fig.

 

3

a

 

reports

 

the

 

St-DSC

 

and

 

TMDSC

 

analyses

 

of

PLLA

 

after

 

isothermal

 

crystallization

 

at

 

85

C

 

for

 

66

 

h.

 

On

 

the

 

same

plot,

 

the

 

St-DSC

 

analysis

 

of

 

PLLA

 

crystallized

 

at

 

85

C

 

for

 

18

 

h

 

is

 

also

presented,

 

to

 

show

 

that

 

at

 

this

 

temperature

 

crystallization

 

of

 

PLLA

for

 

18

 

h

 

is

 

largely

 

incomplete.

 

This

 

is

 

confirmed

 

by

 

the

 

much

 

larger

heat

 

capacity

 

step

 

at

 

the

 

glass

 

transition,

 

that

 

indicates

 

a

 

higher

mobile

 

amorphous

 

fraction,

 

as

 

well

 

as

 

by

 

the

 

broad

 

exotherm

 

that

extends

 

from

 

about

 

85–90

C

 

up

 

to

 

145

C,

 

that

 

reveals

 

large

 

crys-

tallization

 

during

 

heating.

 

It

 

is

 

worth

 

to

 

note

 

that

 

in

 

the

 

poorly

crystallized

 

PLLA

 

the

 

glass

 

transition

 

of

 

the

 

MAF

 

is

 

located

 

at

 

lower

temperatures,

 

compared

 

to

 

the

 

polymer

 

maintained

 

at

 

T

c

for

 

much

longer

 

times,

 

which

 

reveals

 

the

 

marked

 

influence

 

of

 

the

 

semicrys-

talline

 

structure

 

on

 

the

 

amorphous

 

PLLA

 

chain

 

segments.

An

 

enlargement

 

of

 

the

 

PLLA

 

data

 

gained

 

after

 

crystallization

 

at

85

C

 

for

 

66

 

h

 

is

 

illustrated

 

in

 

Fig.

 

3

b.

 

Below

 

the

 

glass

 

transition

region

 

and

 

above

 

completion

 

of

 

melting,

 

St-DSC

 

and

 

TMDSC

 

exper-

imental

 

data

 

well

 

agree

 

with

 

thermodynamic

 

c

p

of

 

solid

 

and

 

liquid

PLLA,

 

respectively.

 

The

 

specific

 

heat

 

capacity

 

of

 

PLLA,

 

measured

 

by

St-DSC,

 

starts

 

to

 

deviate

 

from

 

thermodynamic

 

c

p

of

 

solid

 

PLLA

 

at

around

 

60

C,

 

in

 

correspondence

 

of

 

the

 

onset

 

of

 

the

 

glass

 

transition

background image

M.L.

 

Di

 

Lorenzo

 

et

 

al.

 

/

 

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

113

150

100

50

1.5

2.0

2.5

c

p

 [J/(K g)]

Temperature (°C)

 St-DSC 20°C/min
 TMDSC p=60s
 TMDSC p=90s
 TMDSC p=120s
 TMDSC Q-Iso

150

100

50

2

4

6

8

c

p

 [J/(K g)]

Temperature (°C)

 St-DSC 20°C/min
 TMDSC p=60s
 TMDSC p=90s
 TMDSC p=120s
 TMDSC Q-Iso
 Tc=85°C 18 h

a

b

Fig.

 

3.

 

(a)

 

Specific

 

heat

 

capacity

 

of

 

PLLA

 

after

 

cold

 

crystallization

 

at

 

85

C

 

for

 

66

 

h.

The

 

thick

 

black

 

solid

 

line

 

is

 

the

 

total

 

heat

 

capacity

 

by

 

St-DSC,

 

the

 

red,

 

green

 

and

 

blue

lines

 

are

 

the

 

reversing

 

specific

 

heat

 

capacity

 

measured

 

by

 

TMDSC

 

at

 

modulation

periods

 

p

 

=

 

60,

 

90,

 

120

 

s,

 

respectively,

 

the

 

yellow

 

circles

 

represent

 

the

 

reversing

 

heat

capacity

 

measured

 

in

 

quasi-isothermal

 

mode

 

of

 

modulation,

 

the

 

dashed

 

black

 

lines

are

 

the

 

solid

 

and

 

liquid

 

specific

 

heat

 

capacities,

 

as

 

taken

 

from

 

Ref.

 

[22]

.

 

The

 

St-DSC

data

 

of

 

PLLA

 

after

 

cold

 

crystallization

 

at

 

85

C

 

for

 

18

 

h

 

are

 

also

 

shown

 

as

 

thin

 

black

solid

 

line.

 

(b)

 

Enlargement

 

of

 

the

 

plot

 

shown

 

in

 

(a)

 

in

 

the

 

area

 

of

 

changing

 

baseline

c

p

.

 

(For

 

interpretation

 

of

 

the

 

references

 

to

 

color

 

in

 

this

 

figure

 

legend,

 

the

 

reader

 

is

referred

 

to

 

the

 

web

 

version

 

of

 

this

 

article.)

of

 

the

 

mobile

 

amorphous

 

fraction.

 

In

 

the

 

temperature

 

region

 

of

 

the

glass

 

transition,

 

a

 

minor

 

frequency-dependence

 

of

 

the

 

reversing

heat

 

capacity

 

can

 

be

 

observed.

 

The

 

dynamic

 

T

g

,

 

i.e.

 

the

 

glass

 

transi-

tion

 

originating

 

from

 

temperature

 

modulation

 

and

 

obtainable

 

from

the

 

reversing

 

c

p

curve,

 

is

 

observed

 

at

 

temperatures

 

slightly

 

higher

than

 

the

 

devitrification

 

process

 

deriving

 

from

 

linear

 

heating

 

(ther-

mal

 

glass

 

transition).

 

This

 

can

 

be

 

explained

 

considering

 

that

 

the

frequencies

 

related

 

to

 

the

 

ordinary

 

linear

 

heating

 

rates

 

are

 

different

from

 

those

 

used

 

in

 

TMDSC

 

measurements,

 

the

 

latter

 

being

 

gener-

ally

 

higher

 

[30–32]

.

 

The

 

experimental

 

data

 

of

 

Fig.

 

3

 

were

 

used

 

to

determine

 

the

 

three-phase

 

composition

 

of

 

PLLA.

 

The

 

heat

 

capac-

ity

 

step

 

at

 

T

g

accounts

 

for

 

a

 

mobile

 

amorphous

 

phase

 

content

 

(

w

A

)

of

 

0.43.

 

The

 

crystal

 

fraction,

 

measured

 

by

 

WAXS,

 

is

 

w

C

=

 

0

.33.

 

The

rigid

 

amorphous

 

fraction

 

is

 

quantified

 

by

 

difference

 

using

 

Eq.

 

(2)

:

w

C

+

 

w

A

+

 

w

RA

=

 

1

(2)

which

 

yields

 

a

 

value

 

of

 

w

RA

=

 

0

.24

 

for

 

PLLA

 

after

 

cold

 

crystallization

at

 

85

C

 

for

 

66

 

h.

A

 

notable

 

thermal

 

event

 

appears

 

in

 

Fig.

 

3

b

 

a

 

few

 

degrees

 

above

completion

 

of

 

the

 

glass

 

transition.

 

On

 

the

 

basis

 

of

 

St-DSC

 

data

 

only,

10

5

1.84

1.86

1.88

c

p

 [J/(K g)]

Time (min)

Fig.

 

4.

 

Time

 

dependence

 

of

 

the

 

reversing

 

specific

 

heat

 

capacity

 

of

 

PLLA

 

during

 

quasi-

isothermal

 

TMDSC

 

analysis

 

at

 

100

C.

this

 

thermal

 

event

 

may

 

be

 

interpreted

 

as

 

either

 

a

 

second

 

glass

 

tran-

sition,

 

followed

 

by

 

a

 

weak

 

and

 

broad

 

exotherm

 

that

 

extends

 

from

about

 

100

 

to

 

130–135

C,

 

or

 

as

 

a

 

weak

 

and

 

broad

 

endotherm

 

cen-

tered

 

around

 

100

C.

 

The

 

appearance

 

of

 

a

 

double

 

glass

 

transition

in

 

PLLA

 

was

 

reported

 

in

 

a

 

number

 

of

 

papers,

 

on

 

the

 

basis

 

of

 

St-

DSC

 

or

 

dynamical–mechanical

 

analyses

 

[33–35]

.

 

In

 

some

 

cases,

 

this

second

 

relaxation

 

was

 

ascribed

 

to

 

mobilization

 

of

 

the

 

rigid

 

amor-

phous

 

fraction.

 

From

 

above

 

the

 

glass

 

transition

 

temperature

 

up

 

to

about

 

100

C

 

the

 

apparent

 

c

p

curve

 

measured

 

by

 

St-DSC

 

increases

beyond

 

the

 

c

p

level

 

that

 

corresponds

 

to

 

vitrified

 

rigid

 

amorphous

fraction.

 

This

 

may

 

be

 

connected

 

to

 

a

 

partial

 

devitrification

 

of

 

the

RAF,

 

as

 

seen

 

by

 

comparison

 

of

 

the

 

St-DSC

 

trace

 

with

 

the

 

base-

line

 

heat

 

capacities

 

drawn

 

in

 

Fig.

 

3

b

 

on

 

the

 

basis

 

of

 

the

 

two-phase

model,

 

that

 

accounts

 

for

 

the

 

crystal

 

phase

 

and

 

a

 

single

 

amorphous

fraction,

 

and

 

of

 

the

 

three-phase

 

model,

 

that

 

takes

 

into

 

account

the

 

crystal

 

and

 

two

 

amorphous

 

fractions

 

with

 

different

 

mobility,

respectively.

 

Quantitative

 

analysis

 

by

 

TMDSC

 

in

 

Fig.

 

3

b

 

shows

 

a

frequency-dependence

 

of

 

the

 

reversing

 

heat

 

capacity,

 

starting

 

from

80

C,

 

which

 

may

 

indicate

 

some

 

reversing

 

exchange

 

of

 

latent

 

heat

in

 

this

 

temperature

 

range.

 

This

 

interpretation

 

may

 

be

 

not

 

unique,

since

 

during

 

devitrification

 

the

 

reversing

 

c

p

is

 

also

 

affected

 

by

 

the

periodicity

 

of

 

temperature

 

oscillation

 

[16]

,

 

as

 

also

 

seen

 

in

 

the

 

tem-

perature

 

range

 

of

 

the

 

glass

 

transition

 

of

 

the

 

MAF.

 

However,

 

the

two

 

processes

 

(fusion

 

and

 

devitrification)

 

have

 

different

 

response

to

 

small

 

oscillations

 

of

 

the

 

temperatures,

 

and

 

may

 

be

 

distinguished

by

 

quasi-isothermal

 

TMDSC

 

analysis,

 

which

 

usually

 

provides

 

differ-

ent

 

outputs

 

in

 

the

 

time

 

domain

 

when

 

a

 

polymer

 

is

 

analyzed

 

in

 

the

glass

 

transition

 

or

 

in

 

the

 

melting

 

range.

 

In

 

the

 

first

 

case

 

the

 

revers-

ing

 

c

p

remains

 

practically

 

constant

 

with

 

time,

 

whereas

 

a

 

slow

 

decay

is

 

observed

 

upon

 

reversing

 

melting

 

[16]

.

The

 

time-dependence

 

of

 

the

 

reversing

 

c

p

of

 

the

 

quasi-isothermal

TMDSC

 

analysis

 

of

 

Fig.

 

3

 

at

 

100

C,

 

i.e.

 

at

 

the

 

peak

 

temperature

of

 

the

 

apparent

 

small

 

endotherm,

 

or

 

at

 

the

 

end

 

of

 

the

 

apparent

T

g

in

 

the

 

St-DSC

 

plot

 

of

 

Fig.

 

3

b,

 

is

 

exhibited

 

in

 

Fig.

 

4

.

 

The

 

slight

decrease

 

of

 

the

 

reversing

 

c

p

with

 

time

 

reveals

 

the

 

occurrence

 

of

some

 

reversing

 

melting,

 

and

 

that

 

the

 

frequency-dependence

 

of

 

the

TMDSC

 

curves

 

measured

 

at

 

the

 

underlying

 

heating

 

rate

 

of

 

2

C/min

is

 

to

 

be

 

linked

 

to

 

latent

 

heat

 

exchanges

 

that

 

cause

 

an

 

increase

 

of

the

 

computed

 

reversing

 

c

p

beyond

 

the

 

reversible

 

c

p

values

 

[36–38]

.

The

 

thermal

 

event

 

under

 

analysis

 

can

 

therefore

 

be

 

linked

 

to

 

fusion

of

 

smaller

 

and/or

 

more

 

defective

 

crystals,

 

probably

 

grown

 

under

secondary

 

crystallization,

 

followed

 

by

 

crystallization

 

of

 

additional

chain

 

segments

 

above

 

100

C.

No

 

quantitative

 

information

 

on

 

devitrification

 

of

 

the

 

RAF

 

cou-

pled

 

with

 



crystals

 

can

 

be

 

derived

 

from

 

the

 

data

 

of

 

Fig.

 

3

,

 

due

 

to

the

 

overlapping

 

of

 

partial

 

melting

 

of

 



crystals

 

and

 

transformation

background image

114

M.L.

 

Di

 

Lorenzo

 

et

 

al.

 

/

 

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

of

 

the

 

metastable

 



structure

 

into

 

the

 

more

 

stable

 

 

crystals.

 

The

quasi-isothermal

 

TMDSC

 

data

 

intersect

 

the

 

two-phase

 

baseline

 

at

135

C,

 

but

 

the

 

temperature

 

at

 

which

 

the

 

reversing

 

heat

 

capacities

reaches

 

the

 

value

 

expected

 

for

 

full

 

devitrification

 

of

 

the

 

RAF

 

is

 

prob-

ably

 

affected

 

by

 

other

 

simultaneous

 

thermal

 

events,

 

which

 

may

increase

 

the

 

level

 

of

 

the

 

measured

 

reversing

 

c

p

.

 

Therefore,

 

it

 

is

 

likely

that

 

devitrification

 

of

 

the

 

RAF

 

reaches

 

completion

 

in

 

temperature

range

 

of

 

the

 

main

 

melting

 

endotherm

 

[39]

.

Another

 

noteworthy

 

feature

 

of

 

the

 

plots

 

shown

 

in

 

Fig.

 

3

a

 

is

 

the

unusual

 

frequency-dependence

 

of

 

the

 

reversing

 

heat

 

capacity

 

in

the

 

temperature

 

range

 

around

 

150

C,

 

in

 

correspondence

 

of

 

the

exothermic

 

peak

 

visible

 

in

 

the

 

St-DSC

 

traces.

 

This

 

uncommon

 

trend

was

 

observed

 

for

 

all

 

analyzed

 

crystallization

 

temperatures,

 

where

some

 

amounts

 

of

 



crystals

 

are

 

present

 

(85

 

 

T

c

 

125

C).

 

As

 

men-

tioned

 

above,

 

in

 

correspondence

 

of

 

polymer

 

melting,

 

a

 

decrease

 

of

modulation

 

frequency

 

(or

 

an

 

increase

 

of

 

amplitude

 

of

 

temperature

oscillation),

 

usually

 

leads

 

to

 

a

 

higher

 

apparent

 

reversing

 

heat

 

capac-

ity,

 

because

 

a

 

decrease

 

in

 

the

 

frequency

 

of

 

modulation

 

permits

a

 

larger

 

percentage

 

of

 

crystalline

 

material

 

to

 

follow

 

the

 

modula-

tion

 

within

 

a

 

single

 

temperature

 

cycle

 

[11,35,40–46]

.

 

Similarly,

 

an

increase

 

in

 

modulation

 

amplitude

 

implies

 

that

 

a

 

higher

 

fraction

 

of

the

 

crystallites

 

that

 

is

 

involved

 

in

 

the

 

melting

 

process

 

is

 

added

 

to

the

 

reversing

 

signal.

 

This

 

kind

 

of

 

dependency

 

of

 

the

 

reversing

 

c

p

on

the

 

frequency

 

of

 

modulation

 

is

 

seen

 

in

 

the

 

data

 

of

 

Fig.

 

3

a,

 

except

around

 

150

C,

 

where

 

the

 

data

 

gained

 

at

 

lower

 

modulation

 

period

display

 

a

 

higher

 

apparent

 

reversing

 

c

p

.

 

In

 

order

 

to

 

clarify

 

the

 

ori-

gin

 

of

 

this

 

unusual

 

trend,

 

the

 

raw

 

modulated

 

heat

 

flow

 

data

 

were

analyzed.

Fig.

 

5

 

reports

 

the

 

modulated

 

heat

 

flow

 

rate

 

of

 

PLLA

 

isothermally

crystallized

 

at

 

85

C

 

for

 

66

 

h,

 

analyzed

 

by

 

TMDSC

 

at

 

the

 

underlying

heating

 

rate

 

of

 

2

C/min

 

and

 

at

 

modulation

 

periods

 

of

 

60

 

and

 

120

 

s.

These

 

data

 

are

 

compared

 

in

 

Fig.

 

5

 

with

 

the

 

modulated

 

heat

 

flow

rate

 

with

 

the

 

same

 

modulation

 

parameters,

 

without

 

distortions

caused

 

by

 

the

 

occurrence

 

of

 

thermal

 

processes.

 

The

 

latter

 

curves

were

 

obtained

 

by

 

computer-simulation

 

from

 

the

 

experimental

 

raw

data

 

taken

 

above

 

completion

 

of

 

melting,

 

i.e.

 

in

 

absence

 

of

 

thermal

events,

 

using

 

the

 

procedure

 

detailed

 

in

 

Refs.

 

[38,47]

.

 

Comparison

of

 

experimental

 

and

 

simulated

 

heat

 

flow

 

rate

 

data

 

allows

 

to

 

deter-

mine

 

the

 

latent

 

heat

 

exchanged

 

during

 

each

 

oscillation

 

period.

Above

 

160

C,

 

in

 

the

 

region

 

of

 

the

 

main

 

melting

 

peak,

 

large

 

dis-

tortions

 

in

 

the

 

experimental

 

curves

 

can

 

be

 

observed

 

in

 

both

 

their

endothermic

 

and

 

exothermic

 

parts,

 

and

 

the

 

effect

 

is

 

much

 

larger

at

 

higher

 

modulation

 

period.

 

As

 

a

 

result,

 

the

 

modulated

 

heat-flow-

rate

 

amplitude,

 

and

 

in

 

turn

 

the

 

reversing

 

c

p

,

 

increases

 

with

 

the

period

 

of

 

temperature

 

oscillation.

 

At

 

lower

 

temperatures,

 

around

150

C,

 

the

 

modulated

 

heat-flow-rate

 

curves

 

are

 

deformed

 

to

 

a

lower

 

extent,

 

but

 

still

 

both

 

endothermic

 

and

 

exothermic

 

events

can

 

be

 

detected,

 

which

 

are

 

linked

 

to

 

partial

 

melting

 

and

 

to

 

the

ongoing

 

phase

 

transformation

 

from

 

the

 

metastable

 



structure

 

to

the

 

stable

 

 

form.

 

In

 

the

 

area

 

of

 

interest,

 

highlighted

 

by

 

the

 

arrow

in

 

Fig.

 

5

b,

 

in

 

the

 

experimental

 

curve

 

gained

 

at

 

p

 

=

 

120

 

s

 

endother-

mic

 

events

 

take

 

place

 

during

 

the

 

heating

 

segment

 

around

 

150

C.

The

 

initial

 

increase

 

in

 

the

 

heat-flow-rate,

 

caused

 

by

 

the

 

switch

 

to

a

 

different

 

scanning

 

rate

 

overlapping

 

partial

 

melting,

 

is

 

followed

by

 

exothermal

 

effects,

 

as

 

revealed

 

by

 

comparison

 

with

 

the

 

sim-

ulated

 

data.

 

The

 

initial

 

increase

 

of

 

amplitude

 

of

 

modulated

 

heat

flow

 

rate

 

linked

 

to

 

latent

 

heat

 

release

 

is

 

followed

 

by

 

a

 

decrease

of

 

the

 

oscillation

 

amplitude,

 

as

 

the

 

experimental

 

modulated

 

heat

flow

 

rate

 

curve

 

falls

 

below

 

the

 

simulated

 

plot

 

before

 

the

 

switch

to

 

the

 

next

 

oscillation

 

segment.

 

Such

 

a

 

decrease

 

of

 

the

 

experi-

mental

 

data

 

below

 

the

 

level

 

corresponding

 

to

 

the

 

simulated

 

curve

is

 

not

 

seen

 

in

 

the

 

curve

 

gained

 

at

 

p

 

=

 

60

 

s,

 

shown

 

in

 

Fig.

 

5

a,

 

due

to

 

the

 

short

 

modulation

 

period.

 

Similarly,

 

in

 

the

 

preceding

 

half-

cycle

 

at

 

p

 

=

 

120

 

s,

 

the

 

exotherm

 

overlaps

 

endothermic

 

latent

 

heat

exchange,

 

and

 

again,

 

crosses

 

the

 

simulated

 

curve

 

before

 

the

 

end

 

of

the

 

modulation

 

half-period.

 

The

 

overall

 

result

 

is

 

that,

 

in

 

the

 

case

160

150

140

-5

0

5

10

Modulated

Φ

 (W/g)

Temperature (°C)

 p=60s (exp)
 p=60s (calc)

160

150

140

-5

0

5

10

Modulated

Φ

 (W/g)

Temperature (°C)

 p=120s (exp)
 p=120s (calc)

a

b

Fig.

 

5.

 

Experimental

 

and

 

simulated

 

heat-flow

 

rates

 

of

 

PLLA,

 

obtained

 

after

 

isother-

mal

 

crystallization

 

at

 

85

C

 

for

 

66

 

h:

 

(a)

 

p

 

=

 

60

 

s

 

and

 

(b)

 

p

 

=

 

120

 

s.

of

 

long

 

period

 

of

 

oscillation,

 

p

 

=

 

120

 

s,

 

despite

 

the

 

larger

 

percentage

of

 

crystalline

 

material

 

that

 

follows

 

the

 

modulation

 

within

 

a

 

single

temperature

 

cycle,

 

the

 

neat

 

latent

 

heat

 

that

 

is

 

exchanged

 

in

 

each

modulation

 

cycle

 

(endothermic

 

minus

 

exothermic

 

heat)

 

is

 

lower

than

 

when

 

lower

 

periods

 

of

 

temperature

 

oscillation

 

are

 

used.

 

This

results

 

in

 

a

 

lower

 

amplitude

 

of

 

modulated

 

heat

 

flow

 

rate,

 

when

 

the

experimental

 

data

 

are

 

approximated

 

with

 

a

 

Fourier

 

series

 

in

 

each

modulation

 

cycle,

 

and

 

in

 

turn

 

in

 

a

 

lower

 

apparent

 

reversing

 

c

p

,

 

as

seen

 

in

 

Fig.

 

3

a

 

around

 

150

C.

The

 

thermal

 

analysis

 

of

 

PLLA

 

after

 

isothermal

 

cold

 

crystalliza-

tion

 

at

 

145

C

 

for

 

18

 

h

 

is

 

presented

 

in

 

Fig.

 

6

a,

 

with

 

an

 

enlargement

 

of

the

 

c

p

data

 

shown

 

in

 

Fig.

 

6

b.

 

As

 

revealed

 

by

 

the

 

WAXS

 

plots

 

of

 

Fig.

 

2

,

this

 

thermal

 

history

 

leads

 

to

 

development

 

of

 

the

 

␣ crystal

 

modifica-

tion

 

only,

 

and

 

a

 

single

 

major

 

melting

 

endotherm

 

appears

 

in

 

the

 

DSC

plots

 

of

 

Fig.

 

6

.

 

The

 

glass

 

transition

 

of

 

the

 

MAF

 

is

 

centered

 

at

 

64

C,

a

 

few

 

degrees

 

below

 

the

 

T

g

of

 

the

 

polymer

 

crystallized

 

at

 

85

C

 

for

66

 

h

 

(T

g

=

 

66

C).

 

This

 

slight

 

decrease

 

of

 

the

 

T

g

of

 

PLLA

 

at

 

increas-

ing

 

crystallization

 

temperatures,

 

very

 

close

 

to

 

the

 

experimental

uncertainty,

 

is

 

in

 

agreement

 

with

 

literature

 

data

 

[48]

.

 

From

 

the

heat

 

capacity

 

step

 

at

 

T

g

a

 

mobile

 

amorphous

 

fraction

 

w

A

=

 

0

.31

 

is

measured,

 

which,

 

compared

 

to

 

the

 

w

A

=

 

0

.43

 

computed

 

after

 

crys-

tallization

 

at

 

85

C

 

for

 

66

 

h,

 

indicates

 

that

 

crystallization

 

at

 

higher

temperatures

 

leads

 

to

 

a

 

reduction

 

of

 

the

 

MAF

 

content.

 

The

 

crys-

tal

 

fraction

 

measured

 

by

 

WAXS

 

after

 

crystallization

 

at

 

145

C

 

is

w

C

=

 

0

.45,

 

which

 

leads

 

to

 

a

 

rigid

 

amorphous

 

content

 

w

RA

=

 

0

.24.

Above

 

completion

 

of

 

the

 

glass

 

transition,

 

the

 

St-DSC

 

and

 

the

TMDSC

 

data

 

of

 

Fig.

 

6

,

 

including

 

the

 

quasi-isothermal

 

analysis,

 

over-

background image

M.L.

 

Di

 

Lorenzo

 

et

 

al.

 

/

 

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

115

150

100

50

2

4

6

8

c

p

 [J/(K g)]

Temperature (°C

 

)

 St-DSC 20°C/min
 TMDSC p=60s
 TMDSC p=90s
 TMDSC p=120s
 TMDSC Q-Iso

150

100

50

1.5

2.0

2.5

c

p

 [J/(K g)]

Temperature (°C

 

)

 St-DSC 20°C/min
 TMDSC p=60s
 TMDSC p=90s
 TMDSC p=120s
 TMDSC Q-Iso

a

b

Fig.

 

6.

 

(a)

 

Specific

 

heat

 

capacity

 

of

 

PLLA

 

after

 

cold

 

crystallization

 

at

 

145

C

 

for

 

18

 

h.

The

 

black

 

line

 

is

 

the

 

total

 

heat

 

capacity

 

by

 

St-DSC,

 

the

 

red,

 

green

 

and

 

blue

 

lines

are

 

the

 

reversing

 

specific

 

heat

 

capacity

 

measured

 

by

 

TMDSC

 

at

 

modulation

 

periods

p

 

=

 

60,

 

90,

 

120

 

s,

 

respectively,

 

the

 

yellow

 

circles

 

represent

 

the

 

reversing

 

heat

 

capacity

measured

 

in

 

quasi-isothermal

 

mode

 

of

 

modulation,

 

the

 

dashed

 

lines

 

are

 

the

 

solid

and

 

liquid

 

specific

 

heat

 

capacities,

 

as

 

taken

 

from

 

Ref.

 

[22]

.

 

(b)

 

Enlargement

 

of

 

the

 

plot

shown

 

in

 

(a)

 

in

 

the

 

area

 

of

 

changing

 

baseline

 

c

p

.

 

(For

 

interpretation

 

of

 

the

 

references

to

 

color

 

in

 

this

 

figure

 

legend,

 

the

 

reader

 

is

 

referred

 

to

 

the

 

web

 

version

 

of

 

this

 

article.)

lap

 

up

 

to

 

130

C,

 

in

 

correspondence

 

of

 

the

 

onset

 

of

 

the

 

melting

endotherm,

 

which

 

starts

 

at

 

temperatures

 

slightly

 

lower

 

than

 

T

c

,

probably

 

due

 

to

 

some

 

residual

 

crystallization

 

during

 

cooling

 

to

room

 

temperature.

 

The

 

overlapping

 

of

 

reversing

 

and

 

total

 

c

p

data

reveals

 

that

 

negligible

 

latent

 

heat

 

exchanges

 

take

 

place

 

up

 

to

 

the

onset

 

of

 

melting

 

and

 

that

 

the

 

increase

 

of

 

the

 

experimental

 

c

p

values

up

 

to

 

the

 

beginning

 

of

 

melting

 

is

 

to

 

be

 

linked

 

to

 

devitrification

 

of

the

 

rigid

 

amorphous

 

segments

 

of

 

PLLA.

 

Unfortunately,

 

the

 

overlap-

ping

 

of

 

reversing

 

melting

 

to

 

the

 

c

p

increase

 

due

 

to

 

devitrification,

before

 

the

 

intersection

 

of

 

the

 

experimental

 

reversing

 

c

p

data

 

with

the

 

two-phase

 

baseline,

 

does

 

not

 

allow

 

to

 

estimate

 

the

 

exact

 

point

of

 

full

 

devitrification

 

of

 

the

 

RAF

 

of

 

PLLA

 

coupled

 

with

 

the

 

 

crystals,

which

 

however

 

seems

 

to

 

attain

 

full

 

mobility

 

at

 

temperatures

 

close

to

 

the

 

onset

 

of

 

crystal

 

melting.

The

 

three-phase

 

composition

 

of

 

PLLA

 

after

 

isothermal

 

cold

crystallization

 

at

 

various

 

temperatures

 

is

 

illustrated

 

in

 

Fig.

 

7

.

 

Crys-

tallinity

 

increases

 

with

 

the

 

crystallization

 

temperature

 

in

 

the

 

whole

analyzed

 

range,

 

with

 

a

 

discontinuity

 

around

 

110–120

C,

 

as

 

often

reported

 

in

 

the

 

literature

 

[49–53]

.

 

This

 

irregular

 

trend

 

is

 

to

 

be

 

linked

to

 

growth

 

of

 

PLLA

 

crystals

 

in

 

the

 

two

 

different

 

polymorphs

 

and

the

 

corresponding

 

varied

 

crystallization

 

kinetics.

 

The

 

mobile

 

amor-

phous

 

fraction

 

decreases

 

with

 

T

c

for

 

all

 

the

 

analyzed

 

crystallization

temperatures,

 

with

 

the

 

only

 

exception

 

of

 

a

 

slightly

 

lower

 

w

A

value

160

140

120

100

80

0.2

0.4

0.6

w

C

 , w

A

 , w

RA

T

c

 (°C)

 w

C

 w

A

 w

RA

Fig.

 

7.

 

Crystalline

 

(

w

C

),

 

mobile

 

amorphous

 

(

w

A

),

 

and

 

rigid

 

amorphous

 

(

w

RA

)

 

frac-

tions

 

of

 

PLLA

 

after

 

isothermal

 

cold

 

crystallization

 

at

 

various

 

T

c

.

measured

 

after

 

crystallization

 

at

 

85

C

 

compared

 

to

 

crystallization

at

 

95

C.

 

This

 

decrease

 

is

 

probably

 

related

 

to

 

the

 

extended

 

crystal-

lization

 

time

 

at

 

85

C

 

(66

 

h)

 

compared

 

to

 

the

 

other

 

T

c

(18

 

h),

 

which

may

 

induce

 

a

 

larger

 

extent

 

of

 

secondary

 

crystallization,

 

with

 

possi-

ble

 

insertion

 

of

 

thin

 

lamellae

 

in

 

the

 

interlamellar

 

amorphous

 

layer

or

 

interlamellar

 

stacks

 

[54]

.

 

The

 

broad

 

and

 

weak

 

endotherm

 

in

 

the

DSC

 

data

 

of

 

Fig.

 

3

 

around

 

100

C,

 

discussed

 

above,

 

confirms

 

the

 

exis-

tence

 

of

 

a

 

small

 

population

 

of

 

thin

 

and

 

defective

 

lamellae

 

with

 

very

poor

 

thermal

 

stability

 

in

 

PLLA

 

crystallized

 

at

 

85

C

 

for

 

66

 

h.

It

 

is

 

interesting

 

to

 

note

 

that

 

a

 

decrease

 

of

 

the

 

crystallization

 

tem-

perature

 

from

 

95

 

to

 

85

C

 

corresponds

 

to

 

a

 

considerable

 

increase

 

of

the

 

rigid

 

amorphous

 

fraction.

 

Upon

 

melt

 

crystallization,

 

it

 

has

 

been

often

 

reported

 

that

 

a

 

higher

 

rate

 

of

 

crystal

 

formation,

 

like

 

upon

crystallization

 

at

 

T

c

=

 

95

C

 

compared

 

to

 

T

c

=

 

85

C

 

[50]

,

 

leads

 

to

short

 

times

 

for

 

the

 

adjustment

 

of

 

the

 

crystals

 

into

 

the

 

locally

 

ener-

getically

 

most

 

favorable

 

states.

 

Internal

 

stresses

 

are

 

not

 

released

during

 

crystal

 

growth,

 

and

 

concentrate

 

at

 

the

 

interface

 

between

 

the

crystal

 

and

 

amorphous

 

phases,

 

resulting

 

in

 

a

 

large

 

rigid

 

amorphous

fraction

 

[16]

.

 

The

 

formation

 

of

 

secondary

 

crystals

 

upon

 

prolonged

crystallization

 

at

 

85

C

 

may

 

also

 

be

 

linked

 

to

 

an

 

increased

 

coupling

between

 

the

 

amorphous

 

and

 

crystalline

 

areas:

 

rearrangements

 

of

the

 

amorphous

 

regions

 

localized

 

in

 

proximity

 

of

 

the

 

growing

 

sec-

ondary

 

lamellae

 

are

 

subjected

 

to

 

geometrical

 

restrictions,

 

in

 

which

the

 

melt

 

undergoes

 

larger

 

constraints,

 

with

 

consequent

 

forma-

tion

 

of

 

rigid

 

amorphous

 

phase.

 

This

 

may

 

confirm

 

the

 

hypothesis

often

 

appeared

 

in

 

the

 

literature,

 

of

 

a

 

connection

 

between

 

secondary

crystallization

 

and

 

vitrification

 

of

 

the

 

rigid

 

amorphous

 

segments

[40–46]

.

 

A

 

reduction

 

in

 

crystallization

 

temperature

 

corresponds

also

 

to

 

lower

 

chain

 

mobility,

 

especially

 

in

 

the

 

temperature

 

range

under

 

consideration,

 

that

 

is

 

very

 

close

 

to

 

the

 

glass

 

transition

 

of

the

 

mobile

 

amorphous

 

fraction,

 

which

 

may

 

complicate

 

rearrange-

ments

 

of

 

the

 

chains

 

at

 

the

 

crystal-amorphous

 

boundary,

 

leading

 

to

an

 

increased

 

fraction

 

of

 

amorphous

 

material

 

under

 

local

 

stress

 

at

the

 

crystal

 

surfaces.

The

 

w

RA

vs.

 

T

c

plot

 

of

 

Fig.

 

7

 

displays

 

a

 

maximum

 

at

 

125

C.

 

At

high

 

temperatures

 

w

RA

decreases

 

with

 

T

c

,

 

as

 

commonly

 

reported

in

 

the

 

literature

 

for

 

a

 

number

 

of

 

semicrystalline

 

polymers

 

[16]

.

 

At

95

C

 

 

T

c

 

125

C

 

the

 

opposite

 

trend

 

can

 

be

 

observed.

 

An

 

increase

in

 

crystallization

 

temperature

 

in

 

this

 

range

 

corresponds

 

to

 

a

 

larger

fraction

 

of

 

␣ to

 



crystals,

 

as

 

shown

 

in

 

Fig.

 

2

 

[55]

.

 

It

 

is

 

likely

 

that

crystallization

 

of

 

PLLA

 

into

 

the

 

ordered

 

 

modification

 

leads

 

to

 

a

larger

 

coupling

 

of

 

the

 

amorphous

 

and

 

crystalline

 

chain

 

segments,

compared

 

to

 

the

 

conformationally

 

disordered

 



arrangement.

 

A

similar

 

influence

 

of

 

the

 

varied

 

order

 

in

 

the

 

crystal

 

structure

 

was

background image

116

M.L.

 

Di

 

Lorenzo

 

et

 

al.

 

/

 

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

reported

 

for

 

isotactic

 

poly(1-butene)

 

[11]

.

 

In

 

PB-1

 

large-amplitude

motion

 

occurs

 

within

 

the

 

backbone

 

of

 

the

 

condis

 

crystals

 

of

 

form

II,

 

as

 

the

 

main

 

chains

 

adopt

 

locally

 

distributed

 

conformations

 

with

transitions

 

among

 

them

 

[56,12,57]

.

 

The

 

conformational

 

disordered

arrangement

 

in

 

PB-1

 

implies

 

segmental

 

motions

 

of

 

the

 

chains

within

 

the

 

lattice,

 

which

 

reduces

 

the

 

strain

 

on

 

the

 

amorphous

 

parts

of

 

the

 

molecules

 

coupled

 

to

 

the

 

crystal,

 

resulting

 

in

 

a

 

lesser

 

amount

of

 

RAF

 

in

 

semicrystalline

 

PB-1

 

with

 

crystals

 

of

 

form

 

II,

 

compared

 

to

the

 

most

 

stable

 

and

 

ordered

 

modification

 

I

 

[11]

.

 

Additionally,

 

as

mentioned

 

above,

 

the

 

unit

 

cell

 

of

 

the

 



form

 

is

 

slightly

 

larger

 

than

that

 

of

 

the

 

 

structure,

 

which

 

corresponds

 

to

 

a

 

looser

 

chain

 

arrange-

ment

 

within

 

the

 



crystals

 

of

 

PLLA.

 

It

 

may

 

be

 

hypothesized

 

that,

similarly

 

to

 

PB-1,

 

tighter

 

arrangement

 

in

 

the

 

 

modification

 

results

in

 

a

 

higher

 

strain

 

of

 

the

 

coupled

 

amorphous

 

chain

 

portions

 

at

 

the

crystal-amorphous

 

interface,

 

which

 

in

 

turn

 

causes

 

a

 

higher

 

fraction

of

 

rigid

 

amorphous

 

chain

 

segments

 

compared

 

to

 

the

 



form

 

[11]

.

It

 

needs

 

to

 

be

 

underlined

 

that

 

the

 

three-phase

 

structure

 

of

 

PLLA

developed

 

upon

 

crystallization

 

at

 

various

 

temperatures

 

was

 

ana-

lyzed

 

after

 

cooling

 

to

 

room

 

temperatures.

 

Some

 

additional

 

crystal

growth

 

may

 

take

 

place

 

during

 

cooling

 

from

 

T

c

,

 

as

 

probed

 

in

 

Fig.

 

6

for

 

T

c

=

 

145

C.

 

Vitrification

 

of

 

rigid

 

amorphous

 

portions

 

associated

to

 

crystals

 

growth

 

at

 

temperatures

 

below

 

T

c

cannot

 

be

 

excluded,

which

 

can

 

affect

 

the

 

data

 

reported

 

in

 

Fig.

 

7

.

 

Similarly,

 

for

 

a

 

num-

ber

 

of

 

crystallization

 

temperatures

 

the

 

crystallization

 

time

 

was

extended

 

beyond

 

completion

 

of

 

primary

 

crystallization,

 

as

 

detailed

in

 

Section

 

2

,

 

and

 

secondary

 

crystallization

 

may

 

occur

 

during

 

the

prolonged

 

exposure

 

at

 

T

c

[58]

.

 

Since

 

secondary

 

crystallization

 

may

be

 

linked

 

to

 

RAF

 

formation

 

[40–46]

,

 

the

 

prolonged

 

permanence

 

at

T

c

may

 

affect

 

the

 

three-phase

 

composition

 

of

 

PLLA.

4.

 

Conclusions

Quantitative

 

St-DSC

 

and

 

TMDSC

 

of

 

the

 

semicrystalline

 

PLLA

have

 

been

 

used

 

to

 

evaluate

 

the

 

thermodynamics

 

of

 

its

 

three-

phase

 

structure

 

which

 

is

 

globally

 

metastable.

 

The

 

contributions

from

 

vibrational

 

molecular

 

motion

 

to

 

the

 

heat

 

capacity

 

provide

the

 

baseline

 

for

 

the

 

solid

 

state

 

of

 

all

 

three

 

phases.

 

Combined

 

St-

DSC

 

and

 

TMDSC

 

analyses,

 

including

 

the

 

quasi-isothermal

 

mode

 

of

operation,

 

is

 

necessary

 

for

 

a

 

quantitative

 

assignment

 

of

 

the

 

ther-

mal

 

events,

 

which

 

is

 

not

 

accessible

 

by

 

conventional

 

DSC

 

alone

 

in

the

 

case

 

of

 

simultaneous

 

thermal

 

processes

 

that

 

may

 

lead

 

to

 

con-

troversial

 

interpretation

 

of

 

the

 

experimental

 

data.

 

An

 

example

 

is

demonstrated

 

in

 

the

 

case

 

of

 

the

 

low

 

temperature

 

melting

 

of

 

poor

and

 

defective

 

PLLA

 



crystals,

 

a

 

thermal

 

event

 

that

 

may

 

be

 

con-

fused

 

with

 

a

 

partial

 

mobilization

 

of

 

amorphous

 

chain

 

portions

 

on

the

 

basis

 

of

 

qualitative

 

St-DSC

 

investigations

 

only.

The

 

complex

 

multiphase

 

structure

 

and

 

the

 

thermal

 

behavior

 

of

PLLA

 

are

 

largely

 

affected

 

by

 

crystal

 

polymorphism.

 

The

 

content

 

of

crystal

 

phase,

 

as

 

well

 

as

 

the

 

mobile

 

amorphous

 

and

 

rigid

 

amor-

phous

 

fractions,

 

depend

 

not

 

only

 

on

 

crystallization

 

kinetics

 

and

annealing,

 

but

 

also

 

on

 

the

 

crystal

 

modification,

 

with

 

a

 

higher

 

rigid

amorphous

 

content

 

in

 

the

 

presence

 

of

 

the

 

stable

 

 

form.

 

This

 

results

not

 

only

 

from

 

the

 

higher

 

density

 

of

 

the

 

crystal

 

phase

 

in

 

the

 

 

struc-

ture,

 

but

 

also

 

from

 

the

 

varied

 

mobility

 

of

 

the

 

crystals

 

coupled

 

with

the

 

RAF,

 

conformationally

 

disordered

 

in

 



form

 

and

 

more

 

rigid

 

in

the

 



form

 

I.

 

In

 

other

 

words,

 

in

 

PLLA

 

the

 

presence

 

of

 

a

 

specific

 

crys-

tal

 

modification

 

has

 

implications

 

not

 

only

 

on

 

the

 

arrangements

 

and

thermal

 

stability

 

of

 

the

 

chains

 

within

 

the

 

crystal

 

phase,

 

but

 

also

on

 

the

 

amorphous

 

chain

 

portions

 

coupled

 

with

 

the

 

more

 

or

 

less

ordered

 

polymorphs.

Acknowledgements

Financial

 

support

 

for

 

this

 

research

 

was

 

received

 

by

 

European

Commission

 

through

 

the

 

7FP

 

project

 

HORTIBIOPACK

 

(Grant

 

agree-

ment

 

n.

 

232551).

References

[1] C.

 

Alemán,

 

B.

 

Lotz,

 

J.

 

Puiggalí,

 

Crystal

 

structure

 

of

 

the

 

␣-form

 

of

 

poly(

l-lactide),

Macromolecules

 

34

 

(2001)

 

4795–4801.

[2] S.

 

Sasaki,

 

T.

 

Asakura,

 

Helix

 

distortion

 

and

 

crystal

 

structure

 

of

 

the

 

 

form

 

of

poly(

l-lactide),

 

Macromolecules

 

36

 

(2003)

 

8385–8390.

[3] P.

 

Pan,

 

Y.

 

Inoue,

 

Polymorphism

 

and

 

isomorphism

 

in

 

biodegradable

 

polyesters,

Prog.

 

Polym.

 

Sci.

 

34

 

(2009)

 

605–640.

[4]

 

W.

 

Hoogsteen,

 

A.R.

 

Postema,

 

A.J.

 

Pennings,

 

G.

 

ten

 

Brinke,

 

Crystal

 

structure,

conformation,

 

and

 

morphology

 

of

 

solution-spun

 

poly(

l-lactide)

 

fibers,

 

Macro-

molecules

 

23

 

(1990)

 

634–642.

[5] J.

 

Puiggalí,

 

Y.

 

Ikada,

 

H.

 

Tsuji,

 

L.

 

Cartier,

 

T.

 

Okihara,

 

B.

 

Lotz,

 

The

 

frustrated

 

struc-

ture

 

of

 

poly(

l-lactide),

 

Polymer

 

41

 

(2000)

 

8921–8930.

[6] L.

 

Cartier,

 

T.

 

Okihara,

 

Y.

 

Ikada,

 

H.

 

Tsuji,

 

J.

 

Puiggalí,

 

B.

 

Lotz,

 

Epitaxial

 

crystalliza-

tion

 

and

 

crystalline

 

polymorphism

 

of

 

polylactides,

 

Polymer

 

41

 

(2000)

 

8909–

8919.

[7]

 

P.

 

Pan,

 

B.

 

Zhu,

 

W.

 

Kai,

 

T.

 

Dong,

 

Y.

 

Inoue,

 

Effect

 

of

 

crystallization

 

temperature

on

 

crystal

 

modifications

 

and

 

crystallization

 

kinetics

 

of

 

poly(

l-lactide),

 

J.

 

Appl.

Polym.

 

Sci.

 

107

 

(2008)

 

54–62.

[8]

 

P.

 

Pan,

 

W.

 

Kai,

 

B.

 

Zhu,

 

T.

 

Dong,

 

Y.

 

Inoue,

 

Polymorphous

 

crystallization

 

and

multiple

 

melting

 

behavior

 

of

 

poly(

l-lactide):

 

molecular

 

weight

 

dependence,

Macromolecules

 

40

 

(2007)

 

6898–6905.

[9]

 

J.

 

Zhang,

 

Y.

 

Duan,

 

H.

 

Sato,

 

H.

 

Tsuji,

 

I.

 

Noda,

 

S.

 

Yan,

 

Y.

 

Ozaki,

 

Crystal

 

modifications

and

 

thermal

 

behavior

 

of

 

poly(

l-lactic

 

acid)

 

revealed

 

by

 

infrared

 

spectroscopy,

Macromolecules

 

38

 

(2005)

 

8012–8021.

[10] P.

 

Pan,

 

B.

 

Zhu,

 

W.

 

Kai,

 

T.

 

Dong,

 

Y.

 

Inoue,

 

Polymorphic

 

transition

 

in

 

disordered

poly(

l-lactide)

 

crystals

 

induced

 

by

 

annealing

 

at

 

elevated

 

temperatures,

 

Macro-

molecules

 

41

 

(2008)

 

4296–4304.

[11]

 

M.L.

 

Di

 

Lorenzo,

 

M.C.

 

Righetti,

 

B.

 

Wunderlich,

 

Coupling

 

between

 

crystal

 

melt-

ing

 

and

 

rigid

 

amorphous

 

fraction

 

mobilization

 

in

 

poly(ethylene

 

terephthalate),

Macromolecules

 

42

 

(2009)

 

9312–9320.

[12]

 

D.

 

Maring,

 

M.

 

Wilhelm,

 

H.W.

 

Spiess,

 

B.

 

Meurer,

 

G.

 

Weill,

 

Dynamics

 

in

 

the

 

crys-

talline

 

polymorphic

 

forms

 

I

 

and

 

II

 

and

 

form

 

III

 

of

 

isotactic

 

poly-1-butene,

 

J.

Polym.

 

Sci.

 

B:

 

Polym.

 

Phys.

 

38

 

(2000)

 

2611–2624.

[13]

 

J.

 

Zhang,

 

K.

 

Tashiro,

 

A.J.

 

Domb,

 

H.

 

Tsuji,

 

Confirmation

 

of

 

disorder

 

 

form

 

of

poly(

l-lactic

 

acid)

 

by

 

the

 

X-ray

 

fiber

 

pattern

 

and

 

polarized

 

IR/Raman

 

spec-

tra

 

measured

 

for

 

uniaxially-oriented

 

samples,

 

Macromol.

 

Symp.

 

242

 

(2006)

274–278.

[14]

 

B.

 

Wunderlich,

 

J.

 

Grebowicz,

 

Thermotropic

 

mesophases

 

and

 

mesophase

 

tran-

sitions

 

of

 

linear,

 

flexible

 

macromolecules,

 

Adv.

 

Polym.

 

Sci.

 

60/61

 

(1984)

 

1–59.

[15]

 

H.

 

Suzuki,

 

J.

 

Grebowicz,

 

B.

 

Wunderlich,

 

Heat

 

capacity

 

of

 

semicrystalline,

 

linear

poly(oxymethylene)

 

and

 

poly(oxyethylene),

 

Makrom.

 

Chem.

 

186

 

(1985)

 

1109.

[16] B.

 

Wunderlich,

 

Reversible

 

crystallization

 

and

 

the

 

rigid–amorphous

 

phase

 

in

semicrystalline

 

macromolecules,

 

Prog.

 

Polym.

 

Sci.

 

28

 

(2003)

 

383–450.

[17]

 

M.

 

Pyda,

 

B.

 

Wunderlich,

 

Reversing

 

and

 

nonreversing

 

heat

 

capacity

 

of

 

poly(lactic

acid)

 

in

 

the

 

glass

 

transition

 

region

 

by

 

TMDSC,

 

Macromolecules

 

38

 

(2005)

10472–10479.

[18]

 

P.H.

 

Hermans,

 

A.

 

Weidinger,

 

On

 

the

 

determination

 

of

 

the

 

crystalline

 

fraction

 

of

polyethylenes

 

from

 

X-ray

 

diffraction,

 

Makromol.

 

Chem.

 

44

 

(1961)

 

24–36.

[19] D.G.

 

Archer,

 

Thermodynamic

 

properties

 

of

 

synthetic

 

sapphire

 

(alpha-Al

2

O

3

)

standard

 

reference

 

material

 

720

 

and

 

the

 

effect

 

of

 

temperature-scale

 

differ-

ences

 

on

 

thermodynamic

 

properties,

 

J.

 

Phys.

 

Chem.

 

Ref.

 

Data

 

22

 

(1993)

 

1441–

1453.

[20] A.

 

Wurm,

 

M.

 

Merzlyakov,

 

C.

 

Schick,

 

Reversible

 

melting

 

probed

 

by

 

tempera-

ture

 

modulated

 

dynamic

 

mechanical

 

and

 

calorimetric

 

measurements,

 

Colloid.

Polym.

 

Sci.

 

276

 

(1998)

 

289–296.

[21]

 

R.

 

Androsch,

 

I.

 

Moon,

 

S.

 

Kreitmeier,

 

B.

 

Wunderlich,

 

Determination

 

of

 

heat

 

capac-

ity

 

with

 

a

 

sawtooth-type,

 

power-compensated

 

temperature-modulated

 

DSC,

Thermochim.

 

Acta

 

357–358

 

(2000)

 

267–278.

[22]

 

M.

 

Pyda,

 

R.C.

 

Bopp,

 

B.

 

Wunderlich,

 

Heat

 

capacity

 

of

 

poly(lactic

 

acid),

 

J.

 

Chem.

Thermodyn.

 

36

 

(2004)

 

731–742.

[23] M.L.

 

Di

 

Lorenzo,

 

Calorimetric

 

analysis

 

of

 

the

 

multiple

 

melting

 

behavior

 

of

poly(

l-lactic

 

acid),

 

J.

 

Appl.

 

Polym.

 

Sci.

 

100

 

(2006)

 

3145–3151.

[24]

 

J.

 

Zhang,

 

K.

 

Tashiro,

 

H.

 

Tsuji,

 

A.J.

 

Domb,

 

Disorder-to-order

 

phase

 

transition

and

 

multiple

 

melting

 

behavior

 

of

 

poly(

l-lactide)

 

investigated

 

by

 

simultaneous

measurements

 

of

 

WAXD

 

and

 

DSC,

 

Macromolecules

 

41

 

(2008)

 

1352–1357.

[25]

 

A.

 

Mago ´n,

 

M.

 

Pyda,

 

Study

 

of

 

crystalline

 

and

 

amorphous

 

phases

 

of

 

biodegradable

poly(lactic

 

acid)

 

by

 

advanced

 

thermal

 

analysis,

 

Polymer

 

50

 

(2009)

 

3967–3973.

[26]

 

D.

 

Brizzolara,

 

H.J.

 

Cantow,

 

K.

 

Diederichs,

 

E.

 

Keller,

 

A.J.

 

Domb,

 

Mechanism

 

of

the

 

stereocomplex

 

formation

 

between

 

enantiomeric

 

poly(lactides),

 

Macro-

molecules

 

29

 

(1996)

 

191–197.

[27]

 

S.

 

Sasaki,

 

T.

 

Asakura,

 

Helix

 

distortion

 

and

 

crystal

 

structure

 

of

 

the

 

␣-form

 

of

poly(

l-lactide),

 

Macromolecules

 

36

 

(2003)

 

8385–8390.

[28]

 

T.

 

Miyata,

 

T.

 

Masuko,

 

Morphology

 

of

 

poly(-lactide)

 

solution-grown

 

crystals,

Polymer

 

38

 

(1997)

 

4003.

[29]

 

T.

 

Kawai,

 

N.

 

Rahman,

 

G.

 

Matsuba,

 

K.

 

Nishida,

 

T.

 

Kanaya,

 

M.

 

Nakano,

 

H.

 

Okamoto,

J.

 

Kawada,

 

A.

 

Usuki,

 

N.

 

Honma,

 

K.

 

Nakajima,

 

M.

 

Matsuda,

 

Crystallization

 

and

melting

 

behavior

 

of

 

poly

 

(

l-lactic

 

acid),

 

Macromolecules

 

40

 

(2007)

 

9463–9469.

[30]

 

A.

 

Hensel,

 

C.

 

Schick,

 

Relation

 

between

 

freezing-in

 

due

 

to

 

linear

 

cooling

 

and

the

 

dynamic

 

glass

 

transition

 

temperature

 

by

 

temperature-modulated

 

DSC,

 

J.

Non-Cryst.

 

Solids

 

235–237

 

(1998)

 

510–516.

[31] S.

 

Montserrat,

 

Y.

 

Calventus,

 

J.M.

 

Hutchinson,

 

Effect

 

of

 

cooling

 

rate

 

and

 

frequency

on

 

the

 

calorimetric

 

measurement

 

of

 

the

 

glass

 

transition,

 

Polymer

 

46

 

(2005)

12181.

[32]

 

J.M.

 

Hutchinson,

 

M.

 

Ruddy,

 

Thermal

 

cycling

 

of

 

glasses.

 

III.

 

Upper

 

peaks,

 

J.

 

Polym.

Sci.

 

Polym.

 

Phys.

 

Ed.

 

28

 

(1990)

 

2127–2163.

background image

M.L.

 

Di

 

Lorenzo

 

et

 

al.

 

/

 

Thermochimica

 

Acta

 

522 (2011) 110–

 

117

117

[33]

 

Y.

 

Wang,

 

J.L.

 

Gómez

 

Ribelles,

 

M.

 

Salmerón

 

Sánchez,

 

J.F.

 

Mano,

 

Morphologi-

cal

 

contributions

 

to

 

glass

 

transition

 

in

 

poly(

l-lactic

 

acid),

 

Macromolecules

 

38

(2005)

 

4712–4718.

[34]

 

E.

 

Zuza,

 

J.M.

 

Ugartemendia,

 

A.

 

Lopez,

 

E.

 

Meaurio,

 

A.

 

Lejardi,

 

J.R.

 

Sarasua,

 

Glass

transition

 

behavior

 

and

 

dynamic

 

fragility

 

in

 

polylactides

 

containing

 

mobile

 

and

rigid

 

amorphous

 

fractions,

 

Polymer

 

49

 

(2008)

 

4427–4432.

[35]

 

M.

 

Drieskens,

 

R.

 

Peeters,

 

J.

 

Mullens,

 

D.

 

Franco,

 

P.J.

 

Lemstra,

 

D.G.

 

Hristova-

Bogaerds,

 

Structure

 

versus

 

properties

 

relationship

 

of

 

poly(lactic

 

acid).

 

I.

 

Effect

of

 

crystallinity

 

on

 

barrier

 

properties,

 

J.

 

Polym.

 

Sci.

 

B:

 

Polym.

 

Phys.

 

47

 

(2008)

2247–2258.

[36]

 

M.L.

 

Di

 

Lorenzo,

 

B.

 

Wunderlich,

 

Melting

 

of

 

polymers

 

by

 

non-isothermal,

temperature-modulated

 

calorimetry:

 

analysis

 

of

 

various

 

irreversible

 

latent

heat

 

contributions

 

to

 

the

 

reversing

 

heat

 

capacity,

 

Thermochim.

 

Acta

 

405

 

(2003)

255–268.

[37]

 

C.

 

Schick,

 

A.

 

Wurm,

 

A.

 

Mohammed,

 

Colloid.

 

Polym.

 

Sci.

 

279

 

(2001)

 

800–806.

[38] C.

 

Schick,

 

A.

 

Wurm,

 

A.

 

Mohammed,

 

Thermochim.

 

Acta

 

396

 

(2003)

 

119–132.

[39]

 

M.L.

 

Di

 

Lorenzo,

 

M.C.

 

Righetti,

 

M.

 

Cocca,

 

B.

 

Wunderlich,

 

Coupling

 

between

crystal

 

melting

 

and

 

rigid

 

amorphous

 

fraction

 

mobilization

 

in

 

poly(ethylene

terephthalate),

 

Macromolecules

 

43

 

(2010)

 

7689–7694.

[40] B.B.

 

Sauer,

 

B.S.

 

Hsiao,

 

Effect

 

of

 

the

 

heterogeneous

 

distribution

 

of

 

lamellar

 

stacks

on

 

amorphous

 

relaxations

 

in

 

semicrystalline

 

polymers,

 

Polymer

 

36

 

(1995)

2553–2558.

[41]

 

S.

 

Sohn,

 

A.

 

Alizadeh,

 

H.

 

Marand,

 

On

 

the

 

multiple

 

melting

 

behavior

 

of

 

bisphenol-

A

 

polycarbonate,

 

Polymer

 

41

 

(2000)

 

8879–8886.

[42]

 

H.

 

Xu,

 

S.

 

Ince,

 

P.

 

Cebe,

 

Development

 

of

 

the

 

crystallinity

 

and

 

rigid

 

amorphous

fraction

 

in

 

cold-crystallized

 

isotactic

 

polystyrene,

 

J.

 

Polym.

 

Sci.

 

B:

 

Polym.

 

Phys.

41

 

(2003)

 

3026–3036.

[43]

 

H.

 

Lu,

 

P.

 

Cebe,

 

Heat

 

capacity

 

study

 

of

 

isotactic

 

polystyrene:

 

dual

 

reversible

crystal

 

melting

 

and

 

relaxation

 

of

 

rigid

 

amorphous

 

fraction,

 

Macromolecules

 

37

(2004)

 

2797–2806.

[44]

 

M.C.

 

Righetti,

 

E.

 

Tombari,

 

M.

 

Angiuli,

 

M.L.

 

Di

 

Lorenzo,

 

Enthalpy-based

 

deter-

mination

 

of

 

crystalline,

 

mobile

 

amorphous

 

and

 

rigid

 

amorphous

 

fractions

 

in

semicrystalline

 

polymers

 

poly(ethylene

 

terephthalate),

 

Thermochim.

 

Acta

 

462

(2007)

 

15–24.

[45]

 

M.C.

 

Righetti,

 

E.

 

Tombari,

 

M.L.

 

Di

 

Lorenzo,

 

Crystalline,

 

mobile

 

amorphous

 

and

rigid

 

amorphous

 

fractions

 

in

 

isotactic

 

polystyrene,

 

Eur.

 

Polym.

 

J.

 

44

 

(2008)

2659–2667.

[46]

 

M.L.

 

Di

 

Lorenzo,

 

The

 

melting

 

process

 

and

 

the

 

rigid

 

amorphous

 

fraction

 

of

 

cis-

1,4-polybutadiene,

 

Polymer

 

50

 

(2009)

 

578–584.

[47]

 

M.L.

 

Di

 

Lorenzo,

 

B.

 

Wunderlich,

 

Temperature-modulated

 

calorimetry

 

of

 

the

crystallization

 

of

 

polymers

 

analyzed

 

by

 

measurements

 

and

 

model

 

calculations,

J.

 

Therm.

 

Anal.

 

Calorim.

 

57

 

(1999)

 

459–472.

[48]

 

Y.

 

Wang,

 

S.S.

 

Funari,

 

J.

 

Mano,

 

Influence

 

of

 

semicrystalline

 

morphology

 

on

the

 

glass

 

transition

 

of

 

poly(

l-lactic

 

acid),

 

Macromol.

 

Chem.

 

Phys.

 

207

 

(2006)

1262–1271.

[49]

 

H.

 

Abe,

 

Y.

 

Kikkawa,

 

Y.

 

Inoue,

 

Y.

 

Do,

 

Morphological

 

and

 

kinetic

 

analyses

 

of

 

regime

transition

 

for

 

poly[(S)-lactide]

 

crystal

 

growth,

 

Biomacromolecules

 

2

 

(2001)

1007–1014.

[50] M.L.

 

Di

 

Lorenzo,

 

Crystallization

 

behavior

 

of

 

poly(

l-lactic

 

acid),

 

Eur.

 

Polym.

 

J.

 

41

(2005)

 

569–575.

[51] H.

 

Tsuji,

 

T.

 

Miyase,

 

Y.

 

Tezuka,

 

S.K.

 

Saha,

 

Physical

 

properties,

 

crystallization,

 

and

spherulite

 

growth

 

of

 

linear

 

and

 

3-arm

 

poly(

l-lactide)s,

 

Biomacromolecules

 

6

(2005)

 

244–254.

[52]

 

H.

 

Tsuji,

 

Y.

 

Tezuka,

 

S.K.

 

Saha,

 

M.

 

Suzuki,

 

S.

 

Itsuno,

 

Spherulite

 

growth

 

of

 

l-

lactide

 

copolymers:

 

effects

 

of

 

tacticity

 

and

 

comonomers,

 

Polymer

 

46

 

(2005)

4917–4927.

[53] M.L.

 

Di

 

Lorenzo,

 

The

 

crystallization

 

and

 

melting

 

processes

 

of

 

poly(

l-lactic

 

acid),

Macromol.

 

Symp.

 

234

 

(2006)

 

176–183.

[54]

 

B.

 

Wunderlich,

 

Macromolecular

 

Physics,

 

vol.

 

2:

 

Crystal

 

Nucleation,

 

Growth

Annealing,

 

Academic

 

Press,

 

New

 

York,

 

1976.

[55]

 

M.

 

Cocca,

 

M.L.

 

Di

 

Lorenzo,

 

M.

 

Malinconico,

 

V.

 

Frezza,

 

Influence

 

of

 

crystal

polymorphism

 

on

 

mechanical

 

and

 

barrier

 

properties

 

of

 

poly(

l-lactic

 

acid),

 

sub-

mitted

 

for

 

publication.

[56]

 

W.H.

 

Beckham,

 

K.

 

Schmidt-Rohr,

 

W.H.

 

Spiess,

 

Conformational

 

disorder

 

and

 

its

dynamics

 

within

 

the

 

crystalline

 

phase

 

of

 

the

 

form

 

ii

 

polymorph

 

of

 

isotactic

poly(1-butene),

 

ACS

 

Symp.

 

Ser.

 

598

 

(1995)

 

242–253.

[57]

 

T.

 

Miyoshi,

 

S.

 

Hayashi,

 

F.

 

Imashiro,

 

A.

 

Kaito,

 

Side-chain

 

conformation

 

and

dynamics

 

for

 

the

 

form

 

ii

 

polymorph

 

of

 

isotactic

 

poly(1-butene)

 

investigated

 

by

high-resolution

 

solid-state

13

C

 

NMR

 

spectroscopy,

 

Macromolecules

 

35

 

(2002)

6060–6063.

[58]

 

J.F.

 

Mano,

 

Y.

 

Wang,

 

J.C.

 

Viana,

 

Z.

 

Denchev,

 

M.J.

 

Oliveira,

 

Cold

 

crystallization

 

of

PLLA

 

studied

 

by

 

simultaneous

 

SAXS

 

and

 

WAXS,

 

Macromol.

 

Mater.

 

Eng.

 

289

(2004)

 

910–915.


Document Outline