background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

1/21

 

 

Asynchronous Transfer Mode (ATM) 

Passive Optical Networks (PONs) 

Definition 

This tutorial discusses the economics, operator and customer benefits, and 
technological development of optical distribution networks with asynchronous 

transfer mode passive optical networks (ATM PONs). ATM–PON infrastructure 
is widely cited by telecommunications carriers and equipment vendors as 
potentially the most effective broadband access platform for provisioning 

advanced multimedia services as well as legacy services such as tier 1 (T1). Since 
1995, an influential group of worldwide carriers and equipment vendors has been 
developing requirement specifications for a full-service access network with ATM 

PON as the core technology. 

Overview 

The deployment of fiber-optic technology to homes and businesses is poised to 
change the way telecommunications services—primarily voice, data, and video 

services—will be delivered to the twenty-first century, information-based 
economy. Interest is high among business and residential consumers for 
advanced, broadband services such as fast Internet access, electronic commerce, 

video on demand, digital broadcasting, teleconferencing, and telemedicine, 
among others. However, the lack of available bandwidth to deliver these services 

effectively to the last mile of homes and businesses has stifled development of 
new multimedia applications. 

An optical distribution network with ATM PON as the core technology promises 

benefits to end users as well as carriers and service providers. When optical 
network access is achieved in scale, businesses and consumers will realize 
opportunities for advanced services at relatively low costs. Because of cost 

savings inherent with the ATM–PON platform, telecommunications carriers and 
service providers will realize efficiencies in provisioning future applications and 

upgrading bandwidth to satisfy customers' demands. 

Topics 

1.  The Case for Fiber-Optic Access 

2.  How ATM PONs Work 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

2/21

 

3.  Benefits of ATM PONs 
4.  Technology Comparison with xDSL 
5.  Full-Service Access Network Initiative 
6. Major Players 

7.  The Future of ATM PONs 

Self-Test 
Correct Answers 
Glossary 

1. The Case for Fiber-Optic Access 

Fiber-optic technology, offering virtually unlimited bandwidth potential, is 
widely considered to be the ultimate solution to deliver broadband access to the 
last mile. Today's narrowband telecommunications networks are characterized by 

low speed, service-provisioning delays, and unreliable quality of service. This 
limits the ability of a consumer to enjoy the experience at home or the ability of 

workers to be efficient in their jobs. The last mile is the network space between 
the carrier's central office (CO) and the subscriber location. This is where 
bottlenecks occur to slow the delivery of services. The subscriber's increasing 

bandwidth demands are often unpredictable and challenging for 
telecommunications carriers. Not only must carriers satisfy today's bandwidth 
demands by leveraging the limits of existing infrastructure, they also must plan 

for future subscriber needs. 

A new network infrastructure that allows more bandwidth, quick provisioning of 

services, and guaranteed quality of service (QoS) in a cost-effective and efficient 
manner is now required. Today's access network, the portion of a public switched 
network that connects CO equipment to individual subscribers, is characterized 

by predominantly twisted-pair copper wiring. 

Fiber-optic technology, through local access network architectures such as fiber-

to-the-home/building (FTTH/B), fiber-to-the-cabinet (FTTCab), and fiber-to-
the-curb (FTTC) offers a mechanism to enable sufficient network bandwidth for 
the delivery of new services and applications. ATM–PON technology can be 

included in all these architectures, as shown in Figure 1

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

3/21

 

Figure 1. ATM–PON Architectures 

 

In general, the optical section of a local access network can either be a point-to-

point, ring, or passive point-to-multipoint architecture. This tutorial focuses on 
the passive point-to-multipoint architecture (PON). The main component of the 
PON is an optical splitter device that, depending on which direction the light is 

traveling, splits the incoming light and distributes it to multiple fibers or 
combines it onto one fiber. 

The PON, when included in FTTH/B architecture, runs an optical fiber from a CO 

to an optical splitter and on into the subscriber's home or building. The optical 
splitter may be located in the CO, outside plant, or in a building. 

FTTCab architecture runs an optical fiber from the CO to an optical splitter and 
then on to the neighborhood cabinet, where the signal is converted to feed the 
subscriber over a twisted copper pair. Typically, the neighborhood cabinet is 

about 3 kft from the subscriber's home or business. 

FTTC architecture runs an optical fiber from the CO to an optical splitter and 
then on to a small curb-located cabinet, which is near (typically within 500 ft) to 

the subscriber. It is then converted to twisted copper pair. 

The PON can be common to all of these architectures. However, it is only in the 

FTTH/B configurations that all active electronics are eliminated from the outside 
plant. The FTTCab and FTTC architectures require active outside-plant 
electronics in a neighborhood cabinet or curb. This tutorial will focus on FTTH/B 

architectures. 

When fiber is used in a passive point-to-multipoint (PON) fashion, the ability to 

eliminate outside plant network electronics is realized, and the need for excessive 
signal processing and coding is eliminated. The PON, when deployed in an 
FTTH/B architecture, eliminates outside plant components and relies instead on 

the system endpoints for active electronics. These endpoints are comprised of the 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

4/21

 

CO–based optical line terminal (OLT) on one end and, on the other, the optical 
network termination (ONT) at the subscriber premises. Fiber-optic networks are 

simple, more reliable, and less costly to maintain than copper-based systems. As 
these components are ordered in volume for potentially millions of fiber-based 

access lines, the costs of deploying technologies such as FTTH, FTTB/C, and 
FTT/Cab become economically viable. 

One optical-fiber strand appears to have virtually limitless capacity. 

Transmission speeds in the terabit-per-second range have been demonstrated. 
The speeds are limited by the endpoint electronics, not by the fiber itself. For the 
ATM–PON system today, speeds of 155 Mbps symmetrical and 622 Mbps/155 

Mbps asymmetrical are currently being developed. As the fiber itself is not the 
constraining factor, the future possibilities are endless. Furthermore, because 

fiber-optic technology is not influenced by electrical interferers such as cross-talk 
between copper pairs or AM band radio, it ensures high-quality 
telecommunications services in the present and future. In addition, fiber does not 

exhibit radio frequency (RF) emissions that can interfere with other electronics 
and is regulated by the Federal Communications Commission (FCC). 

While copper-based transport technologies remain ubiquitous, the long-term 

industry belief holds that it is inevitable that fiber will replace copper throughout 
the access infrastructure. Because copper infrastructure is embedded in 

communications systems, this transformation to optical transport is expected to 
occur over many years. Over time, new builds ("Greenfield") will be all fiber 
based, and existing builds will be rehabilitated by replacing copper with fiber or 

by overlaying new fiber on the existing copper infrastructure. Electronic 
equipment, as well, must be replaced with optical equipment. 

2. How ATM PONs Work 

Recent technological advances and economies of scale have drawn increasing 

interest to optical-distribution networks with ATM PON. A functional overview of 
ATM–PON architecture is presented in Figure 2

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

5/21

 

Figure 2. Functional Overview of ATM–PON Architecture 

 

Figure 2 shows the ONT placed at the customer premises, which suggests 

FTTH/B architecture. The carrier's demarcation point would be the subscriber 
side of the ONT, typically in the form of a T1, Ethernet, integrated services digital 

network (ISDN), plain old telephone service (POTS), etc. 

For FTTCab and FTTC architecture, an optical network unit (ONU), rather than 
an optical network termination (ONT), is used. It is placed in the outside plant 

and must be temperature-hardened and properly enclosed. The final drop to the 
network termination (NT) at the customer premises may be copper or fiber. The 
carrier demarcation point is the subscriber side of the NT in the form of a T1, 

Ethernet, ISDN, POTS, and etc. 

Access to bandwidth on the PON may be obtained by several methods, including 

time division multiple access (TDMA), wave division multiple access (WDMA), 
code division multiple access (CDMA), and subcarrier multiple access (SCMA). 
TDMA in the upstream and TDM in the downstream were chosen by the Full-

Service Access Network (FSAN) group and submitted to the International 
Telecommunications Union (ITU) for standardization, based on their simplicity 

and cost-effectiveness. 

As shown in Figure 2, the network components supporting ATM PON consist of 
OLT, ONT, and a passive optical splitter. One fiber is passively split up to 64 

times between multiple ONTs that share the capacity of one fiber. Passive 
splitting requires special actions for privacy and security, and a TDMA protocol is 
necessary in the upstream direction. The use of the optical splitter in the PON 

architecture allows users to share bandwidth, thus dividing the attendant costs. 
Costs are further reduced by a decrease in the number of opto-electronic devices 

needed at the OLT; one interface may be shared among many ONTs. 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

6/21

 

The ATM–PON system uses a double-star architecture. The first star is at the 
OLT, where the wide-area network interface to services is logically split and 

switched to the ATM–PON interface. The second star occurs at the splitter where 
information is passively split and delivered to each ONT. The OLT is typically 

located in the carrier's CO. The OLT is the interface point between the access 
system and service points within the carrier's network. When data content from 
the network reaches the OLT, it is actively switched to the passive splitter using 

TDM in the downstream. The OLT behaves like an ATM edge switch with ATM–
PON interfaces on the subscriber side and ATM–synchronous optical network 
(SONET) interfaces on the network side. 

The ONT will filter the incoming cells and recover only those that are addressed 
to it. Each ATM cell has a 28-bit addressing field associated with it called a 

virtual path identifier/virtual channel identifier (VPI/VCI). The OLT will first 
send a message to the ONT to provision it to accept cells with certain VPI/VCI 
values. The recovered ATM cells are then used to create the service interface 

required at the subscriber side of the ONT (see Figure 2). 

Because TDMA is used in the upstream direction, each ONT is synchronized in 
time with every other ONT. The process by which this happens is called ranging 

the ONTs. Basically, the OLT must determine how far away in distance each ONT 
is so they can be assigned an optimal time slot in which to transmit without 

interfering with other ONTs. The OLT will then send grant messages via the 
physical layer operation, administration, and maintenance (PLOAM) cells to 
provision the TDMA slots that are assigned to that ONT. The ONT will then adapt 

the service interface to ATM and send it to the PON using the TDMA protocol. 

Ethernet and T1s are two examples of what can be transported over the ATM–
PON. As ATM–PON is service-independent, all legacy services and future 

services can be readily transported. 

The basic frame format between the OLT and ONT for the symmetrical 155 Mbps 

rate is shown in Figure 3

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

7/21

 

Figure 3. ATM–PON Frame Formats 

 

The asymmetrical version of 622 Mbps/155 Mbps downstream/upstream is 

similar but beyond the scope of this document. 

As can be seen in Figure 3 the downstream payload capacity is reduced to 149.97 

Mbps because of the PLOAM cells. These cells are responsible for allocating 
bandwidth (via Grant cells), synchronization, error control, security, ranging, and 
maintenance. 

In the upstream direction the capacity is reduced to 149.19 Mbps because there 
are 3 overhead bytes per ATM cell. In addition to the three overhead bytes per 
cell there are PLOAM cells in the upstream direction, the rate of which is defined 

by the OLT for each ONT, depending on the required functionality. The 
minimum PLOAM rate in the upstream direction is one PLOAM every 100 ms. 

This equates to approximately one PLOAM every 655 frames, which is negligible. 
Although the maximum PLOAM rate is undefined, it is also expected to be 
negligible. The 3 overhead bytes contain a minimum of 4 bits of guard time to 

provide enough distance in time to prevent collisions with cells from other ONTs. 
This field length is actually programmable by the OLT. The preamble field is used 

to acquire bit synchronization and amplitude recovery. The Delimiter field is used 
to indicate the start of an incoming cell. 

Given that a single fiber is used for both the upstream and downstream paths, 

two wavelengths of light are used—1550 nm for the downstream and 1310 nm for 
the upstream. Although one wavelength can also be used, two provide better 
optical isolation between the laser transmitters and receivers and eliminate the 

need for expensive beam-splitting devices. Instead, low-cost planar light circuits 
(PLCs) can be used, which enable low-cost manufacturing techniques to be 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

8/21

 

employed, somewhat similar to the production of silicon chips. ATM cells are 
directly converted to light and sent to the PON. Because of the broadcast nature 

of the PON, encryption techniques are employed to prevent security breaches. In 
the upstream direction, the ONT uses the TDMA protocol and again directly 

converts ATM cells to light for transport over the PON (see Figure 2). 

A typical ATM–PON system can furnish up to 64 customer locations on a single, 
shared strand of fiber running at 155 Mbps. Most, however, will likely utilize 32 

locations in the distribution and drop portion of the network in the near term. In 
the future, the ATM–PON specification does allow for up to 64 locations to be 
served. 

3. Benefits of ATM–PONs 

The ATM–PON system offers a number of benefits for carriers and end users. 

Because fiber is less costly to maintain than copper based systems, carriers 
benefit by being able to reduce costs and thereby increase profit margins or 

simply lower prices to end users to ward off competitive threats. 

ATM–PON transmission is conducted through a single strand and thereby 
conserves fiber. Using a single fiber strand for up to 64 end users provides great 

cost savings over the current point-to-point architecture. 

ATM PON conserves optical interfaces at the OLT because a single fiber is used to 
service as many as 64 end-user locations. Thus, a 64 to 1 reduction in optical 

interfaces is achieved in comparison to point-to-point optical systems. 

Another advantage of the ATM–PON system is the aggregation and 

concentration of ATM cells in the OLT. This concentration allows the carriers to 
serve many more customers than if only TDM–based techniques are used. At the 
same time, QoS benefits of ATM allow the carriers to provide service-level 

agreements (SLAs) and rest assured that service is guaranteed. It is estimated 
that ATM–PON technology can achieve savings of 20 to 40 percent over circuit-

based access systems. ATM PON realizes these savings through the use of ATM 
concentration and statistical multiplexing in addition to sharing active opto-
electronic components through the splitter elements. 

Because the ONTs share the same fiber and optical splitter, the bandwidth can 
also be shared. In the future, dynamic bandwidth-allocation protocols will allow 
the carriers to serve more users by allocating bandwidth on an as-needed basis. 

These protocols are already part of the FSAN specification as an optional 
requirement. Therefore, more users can be served with a smaller number of 

OLTs, leading to additional savings. 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

9/21

 

Operational and maintenance savings will be derived from ATM PON. Because 
the system is based on ATM, a single management system can completely 

provision the bandwidth end to end. Also, if the service interface is a high-speed 
local-area network (LAN) such as 10/100Base–T, where the carrier's ATM circuit 

rather than the physical interface bit rate is the limiting factor to the bandwidth, 
then bandwidth can be incrementally provisioned over time as needed, up to the 
limitations of the physical interface. For example, if a small business needs only 1 

Mbps capacity at first but will require 2 Mbps a year from now, then the carrier 
must only provision greater ATM PVC rate, rather than having to do a truck roll 
to wire more T1 lines (as is currently done). 

Because the PON system will be ATM–based, it can adapt to virtually any service 
desired. Telco operators, for instance, can deliver all of their legacy services, such 

as T1 and T3 lines, or deliver new services, such as transparent LAN service (TLS) 
over the optical network (see Figure 4). This future-proofs the architecture. New 
revenue streams are derived by being able to provide transparent LAN services to 

end users quickly and easily. 

Figure 4. Transparent LAN over the Optical Network 

 

The ONT is proportioned for small- to medium-sized businesses and costs little. 

This low cost is achieved because there are more small businesses than large 
ones. Currently, service providers serve small businesses from synchronous 
optical network (SONET) ring nodes, and these are costly elements when 

compared to small ATM–PON ONTs. ATM PONs will mean new business for 
carriers and services providers, as they can eliminate the need to place small- and 

medium-sized businesses on SONET rings that exist in most metropolitan area 
networks. 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

10/21

 

Active components of the ATM–PON system are located at the customer 
premises or CO, rather than at remote outside plant terminals. Thus, costs 

associated with outside plant–battery backup systems and active electronics that 
must incur severe temperature variations are eliminated. Battery backup systems 

can be placed indoors at the customer premises and thus last much longer 
between maintenance intervals. In addition, the option of having the end user 
provide the battery backup from low-cost computer UPC systems can be offered 

on a per-user basis. With typical outside-plant systems (such as DLC or FTTCab) 
that are shared between many users, this option is simply not available. 

As ATM–PON architecture and processes mature, end users will benefit by being 

able to provision their own services, whenever they are needed, through an 
automated process. This process will either link the carriers' service management 

system (SMS) with the customers' network management system or allow the 
customer access to the SMS through a secured Web-browser interface. The CO 
then updates network elements and provisions the new bandwidth. 

4. Technology Comparison with xDSL 

This section will compare ATM–PON systems with xDSL technologies and 

describe the issues associated with each. 

ATM is an ultrahigh-speed, one-size-fits-all, cell-based data transmission 
protocol that may be run over many physical-layer technologies such as xDSL 

modems. These are attached to twisted-pair copper wiring and transmit data at 
speeds of 1.5 Mbps to 9 Mbps downstream to the subscriber and 64 Kbps to 1.5 

Mbps upstream, depending on the condition and distance of the copper line. 

Asymmetric digital subscriber line (ADSL), for instance, offers users an always-
on service, but its maximum downstream and upstream speeds are ultimately 

limited by distance and the aging copper infrastructure; typically, only speeds of 
1.5 Mbps over 12 kft are achieved. If the customer is not directly connected to a 

CO–based digital subscriber line access multiplexer (DSLAM), then an expensive 
upgrade to an existing outside-plant DLC system is usually the only solution. 

Very-high-speed DSL (VDSL) extends ADSL downstream speed to a potential 52 

Mbps, with a proportionately lower upstream speed, but offers a shorter distance 
range (1 kft to 3 kft) than ADSL. However, this too requires expensive outside 
plant electronics installed in a cabinet that must survive severe temperature 

variations. 

In addition to the distance problem, xDSL technology has inherent interference 

problems, a liability with copper-based technology. ATM PONs cannot be 
interfered with by AM band radio and other radio frequency interference 
(RFI)/electromagnetic interference (EMI) sources. XDSL is largely considered to 

be a short-term broadband solution; since it can be easily installed without an 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

11/21

 

expensive outside-plant infrastructure build, the existing copper plant can be 
used. The PON system, however, is believed to offer an ultimate, end-to-end 

broadband platform that is future-proofed. 

5. Full-Service Access Network Initiative 

Overseeing the development of passive optical networks as part of fiber-optic 
backbones is the Full-Service Access Network (FSAN) Initiative. FSAN is a group 

of 20 telecommunications companies working collaboratively with equipment 
suppliers to agree on a common broadband access system for provisioning both 
broadband and narrowband services. 

Since June 1995, the FSAN group has been working on the international initiative 
and recognizing that each member has differing needs, depending on regulatory, 
business, and structural environment in each country. FSAN is not a standards 

body, but rather submits specifications to standard bodies such as the 
International Telecommunications Union (ITU). Existing standards are 

incorporated where applicable. In October of 1998, the ITU adopted the G.983.1 
broadband optical access system based on PON. 

Members of the initiative throughout the process have intended to introduce 

elements of their results to appropriate standards bodies. On June 22, 1999, four 
FSAN members—NTT, British Telecom, BellSouth, and France Telecom—issued 
a common technical specification for ATM subscriber systems. Because each 

initiative member understood the need to develop future access networks, the 
group realized that industry-wide benefits could be achieved through adopting a 

common set of specifications. The consortium determined that the per-line cost 
of producing a full-service access network will decrease slowly with the 
production volume. 

The group concluded that as volume increases, the development of new 
technologies will enable significant reductions in per-line equipment and 

installation costs. Fiber-based broadband networks could be cost-effective to 
deploy if their component part were built in bulk quantities for tens of millions of 
access lines, rather than according to today's typical 300,000-line system order. 

The group's work has occurred in two phases. First, its task was to identify 
technical and economic barriers to the introduction of a broadband access 
network. It was determined that an ATM PON was the most promising 

technology to achieve large-scale, FSAN work deployment that could meet the 
evolving service needs of network users. The consortium felt that ATM PON was 

the best means of supporting a range of architectures such as FTTH, FTTB/C, 
and FTTH/CAB. Members have recognized that all operators require the same 
elements in their access network. The major differences come from the 

positioning of the optical network unit (ONT). All members see the need for a 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

12/21

 

PON system. Second, the group's work was to devise a common set of 
specifications for full-service access networks. Six working teams—systems 

engineering/architecture; optical access networks; home network/network 
termination; operation, administration, and maintenance (OAM&P); VDSL; and 

component technology—undertook the development process. 

6. Major Players 

Japan's Nippon Telegraph and Telephone Corporation (NTT) is recognized as a 
leading telecommunications carrier in the creation of high-speed optical-network 
access systems. Its leadership is demonstrated by its involvement in the FSAN 

Initiative as well as by its own cutting-edge research and development and 
collaboration with other carriers. NTT already has deployed narrowband and 
video-distribution FTTH and broadband ATM–PON systems. In 1999, it will 

introduce a fully FSAN–compliant, FTTB/C ATM–PON system. 

According to a press release issued by NTT and BellSouth in June 1998, the two 

companies announced that they would work together. NTT and BellSouth 
announced they would deliver a high-speed optical-network access platform, 
pooling their respective research and development resources to advance the 

availability of affordable FTTH technology. In June 1999, BellSouth unveiled 
plans to install a FTTH system to the Atlanta area using FSAN–compliant ATM–
PON technology. 

In the news release about the Atlanta installation, BellSouth announced that 
suburban Atlanta residents will be the first in North America to experience the 

nearly unlimited speed and bandwidth of passive optical networking delivered 
directly to their homes. BellSouth's vision for FTTH is for customers to buy 
communications appliances for voice, video, data or imaging applications at retail 

stores and plug them into their home optical telecommunications network. The 
BellSouth fiber network, by talking to the appliance, would deliver the necessary 

provisioning. Both BellSouth and NTT believe that customer orientation and 
demand will drive down the cost of FTTH equipment and accelerate its 
worldwide availability. Historically, both BellSouth and NTT have pioneered 

fiber-optic technology. In the late 1980s, BellSouth launched an FTTH trial near 
Orlando, Florida. Historically, NTT has actively promoted FTTH, particularly in 
the area of interface specifications for high-speed optical access systems. NTT's 

FTTB/C project, to be launched in 1999, will replace copper cable with fiber 
throughout most of NTT's subscriber system. 

7. The Future of ATM PONs 

As a future-proof technology, ATM PON will serve as a framework for 

applications yet to be developed or advanced. While commercial deployments of 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

13/21

 

ATM PON—with the exception of examples in limited areas in Japan by NTT—
have yet to occur, trials have been increased in 1999 and are expected to 

accelerate in 2000. Perhaps the biggest advantage for ATM PON is that interest 
in the technology exists on a global scale, a situation that may be attributed in 

great part to the collaboration of the FSAN Initiative. Carriers and equipment 
makers believe that extensive collaboration on ATM–PON physical-layer 
interoperability will lead to an increase in the production volume of silicon 

chipsets that can be created to the global specification. Interoperability among 
the technology's management layers will depend on alliances among strategic 
vendors. Settling on the core framework, however, is what will propel the 

technology forward. 

Carriers and service providers are expected to focus initially on business uses 

through FTTB, as real revenue streams typically originate in these areas. As 
production accelerates, operators will increasingly look to the mass residential 
market. Through the Internet age, small- and medium-sized businesses have 

been characterized as being on the down slope of technology. However, ATM 
PON, with its cost savings and flexibility, is capable of bringing more of these 
businesses on-line quickly. 

Future applications aimed at FTTH scenarios include asymmetric broadband 
services (such as digital broadcast, video on demand, distance learning, and fast 

Internet), symmetric broadband services (such as telecommunications services 
and teleconferencing opportunities), and narrowband telephone services (such as 
the public switched telephone network [PSTN] and integrated services digital 

network [ISDN]). 

Self-Test 

1.  The access network, which is the portion of a public switched network that 

connects access nodes to individual subscribers, is predominantly 

characterized today by which of the following? 

a.  fiber-optic cable 

b.  hybrid-fiber coaxial cable 

c.  twisted-pair copper wiring 

d.  electrical wiring 

2.  Fiber to the home (FTTH), fiber to the building/curb (FTTB/C), and fiber to 

the cabinet (FTTCab) are examples of which of the following? 

a.  local access network architectures 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

14/21

 

b.  digital loop carriers 

c.  transport protocols 

d.  fiber-optic components 

3.  A single optical-fiber strand's capacity lies in what range, according to recent 

demonstrations? 

a.  Mbps 

b.  kbps 

c.  virtually limitless 

d.  Gbps 

4.  Asynchronous transfer mode (ATM) is ____________. 

a.  a cell-based data transmission protocol 

b.  an opto-electronic component 

c.  a circuit-switched access systems 

5.  ATM PON is attractive to telecommunications carriers because it contains 

__________. 

a.  active electronics 

b.  no active electronics in outside plant 

c.  SONET rings 

d.  copper-based wiring 

6.  A typical ATM PON system can furnish up to _____________. 

a.  64 customer locations on a single, shared strand of fiber 

b.  72 customer locations on a single, shared strand of fiber 

c.  96 customer locations on a single, shared strand of fiber 

d.  128 customer locations on a single, shared strand of fiber 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

15/21

 

7.  The use of the splitter in the PON architecture allows network users to 

___________. 

a.  share bandwidth 

b.  provision bandwidth 

c.  increase bandwidth 

d.  ensure privacy and security 

8.  The optical line termination (OLT) in the ATM PON system is typically 

located _____________. 

a.  at the customer premises 

b.  in a curbside cabinet 

c.  in a residential gateway device 

d.  in the carrier's CO or POP 

9.  It is estimated that an ATM–PON system can achieve savings of 

___________. 

a.  20 percent to 40 percent over circuit-based access systems 

b.  40 percent to 60 percent over circuit-based access systems 

c.  60 percent to 80 percent over circuit-based access systems 

d.  80 percent to 100 percent over circuit-based access systems 

10. Full-service access network (FSAN) is ____________. 

a.  a standards body that regulates broadband networks 

b.  an access network for delivering broadband services 

c.  a group of 20 global telecommunications equipment manufacturers 

collaborating on specification requirements for broadband access 

systems 

d.  a group of 20 global telecommunications carriers collaborating on 

specification requirements for broadband access systems 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

16/21

 

11.  The main advantages afforded to the carriers of ATM PON are 

_________________. 

a.  cost savings due to lower maintenance costs than copper 

b.  cost savings due to use of single fiber for up to 64 users 

c.  cost savings due to easy bandwidth upgrading with no truck rolls 

d.  cost savings due to aggregation and concentration in the OLT 

e.  all of the above 

Correct Answers 

1.  The access network, which is the portion of a public switched network that 

connects access nodes to individual subscribers, is predominantly 
characterized today by which of the following? 

a.  fiber-optic cable 

b.  hybrid-fiber coaxial cable 

c.  twisted-pair copper wiring 

d.  electrical wiring 

See Topic 1. 

2.  Fiber to the home (FTTH), fiber to the building/curb (FTTB/C), and fiber to 

the cabinet (FTTCab) are examples of which of the following? 

a.  local access network architectures 

b.  digital loop carriers 

c.  transport protocols 

d.  fiber-optic components 

See Topic 1. 

3.  A single optical-fiber strand's capacity lies in what range, according to recent 

demonstrations? 

a.  Mbps 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

17/21

 

b.  kbps 

c.  virtually limitless 

d.  Gbps 

See Topic 1. 

4.  Asynchronous transfer mode (ATM) is ____________. 

a.  a cell-based data transmission protocol 

b.  an opto-electronic component 

c.  a circuit-switched access systems 

See Topic 2. 

5.  ATM PON is attractive to telecommunications carriers because it contains 

__________. 

a.  active electronics 

b.  no active electronics in outside plant 

c.  SONET rings 

d.  copper-based wiring 

See Topic 2. 

6.  A typical ATM PON system can furnish up to _____________. 

a.  64 customer locations on a single, shared strand of fiber 

b.  72 customer locations on a single, shared strand of fiber 

c.  96 customer locations on a single, shared strand of fiber 

d.  128 customer locations on a single, shared strand of fiber 

See Topic 2. 

7.  The use of the splitter in the PON architecture allows network users to 

___________. 

a.  share bandwidth 

b.  provision bandwidth 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

18/21

 

c.  increase bandwidth 

d.  ensure privacy and security 

See Topic 2. 

8.  The optical line termination (OLT) in the ATM PON system is typically 

located _____________. 

a.  at the customer premises 

b.  in a curbside cabinet 

c.  in a residential gateway device 

d.  in the carrier's CO or POP 

See Topic 2. 

9.  It is estimated that an ATM–PON system can achieve savings of 

___________. 

a.  20 percent to 40 percent over circuit-based access systems 

b.  40 percent to 60 percent over circuit-based access systems 

c.  60 percent to 80 percent over circuit-based access systems 

d.  80 percent to 100 percent over circuit-based access systems 

See Topic 3. 

10. Full-service access network (FSAN) is ____________. 

a.  a standards body that regulates broadband networks 

b.  an access network for delivering broadband services 

c.  a group of 20 global telecommunications equipment manufacturers 

collaborating on specification requirements for broadband access 
systems 

d.  a group of 20 global telecommunications carriers 

collaborating on specification requirements for broadband 
access systems 

See Topic 4. 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

19/21

 

11.  The main advantages afforded to the carriers of ATM PON are 

_________________. 

a.  cost savings due to lower maintenance costs than copper 

b.  cost savings due to use of single fiber for up to 64 users 

c.  cost savings due to easy bandwidth upgrading with no truck rolls 

d.  cost savings due to aggregation and concentration in the OLT 

e.  all of the above 

See Topic 3. 

Glossary 

ADSL 
asymmetric digital subscriber line 

ATM 

asynchronous transfer mode 

CDMA 

code division multiple access 

CO 
central office 

DLC 
digital loop carrier 

DSL 

digital subscriber line 

FTTB/C 

fiber-to-the-business/curb 

FTTCab 
fiber-to-the-cabinet 

FTTH 
fiber-to-the-home 

FSAN 
full-service access network 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

20/21

 

HDSL 
high bit-rate digital subscriber line 

ISDN 
integrated services digital network 

LAN 
local-area network 

NT 

network termination 

OAM&P 
operation, administration, and management protocol 

OLT 
optical line terminal 

ONT 
optical network termination/terminator 

ONU 

optical network unit 

PLC 
planar light circuit 

PON 
passive optical network 

POP 
point of presence 

POTS 

plain old telephone service 

QoS 
quality of service 

SDMA 
subcarrier division multiple access 

SLA 
service-level agreement 

SMS 

service management system 

background image

 

Web ProForum Tutorials 

http://www.iec.org 

Copyright © 

The International Engineering Consortium 

21/21

 

SONET 
synchronous optical network 

TDMA 
time division multiple access 

VDSL 
very high speed digital subscriber line 

WDMA 

wave division multiple access 


Document Outline