background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

Macromolecular synthesis background 

 

1 – Basic definitions 

polymer

 : substance composed of 

macromolecules

 which 

have long sequences of one or more species of atoms or 
groups of atoms linked to each other by primary, usually 
covalent, bonds. 

polymer and macromolecules are used interchangeably, 

but the latter strictly defines the molecules of which the former is 
composed. 

macromolecules : formed by linking together 

monomer 

molecules

 through chemical reactions, the process by which 

this is achieved being known as 

polymerization

.  

 

a) skeletal structure 

linear

 : a chain with two ends 

non-linear

 :  

branched polymers

 : with side 

chains or 

branches

 of significant length 

which are bonded to the main chain at 

branch points

 (or 

junction points

network polymers

 : with three-

dimensional structures in which each 
chain is connected to all others by a 
sequence of junction points and other 
chains : 

" said to be 

crosslinked

 

characterized by their 

crosslink density

 or 

degree 

of crosslinking

 (number of junction points per unit 

volume) 

formed by polymerization or by linking together 
pre-existing linear chains (i.e. 

crosslinking

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

b) homopolymer and copolymer 

homopolymer

 : polymer derived from one species of 

monomer : 

-A-A-A-A-A-A-

    or      

-[A]

n

-

 

where n is the number of 

repeat units 

(or 

monomer units

linked together 

 

copolymer

 : polymer derived from more than one species 

of monomer : 

 

statistical copolymers

 : in which the sequential 

distribution of the repeat units obeys known statistical laws 

random copolymers

  : a special type of statistical 

copolymer in which the distribution of repeat units is truly 
random 

alternating copolymers

 : only two different types of 

repeat unit arranged alternately along the polymer chain 

block copolymers

 : linear copolymers in which the 

repeat units exist only in long sequences, or blocks, of the 
same type : 

-A-A-A-A-A-A-A-A

-B-B-B-B-B-B-B-B-B- 

: AB di-block copolymer

 

-A-A-A-A-A

-B-B-B-B-B-B-B-

A-A-A-A-

 

: ABA tri-block copolymer

 

graft copolymers

 : branched polymers in which the 

branches have a different chemical structure to that of the main 
chain 

statistical, random and alternating copolymers : 
properties intermediate to those of the corresponding 
homopolymers 

block and graft copolymers : properties characteristic of 
each of the constituent homopolymers 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

c) thermoplastics, elastomers and thermosets 

Thermoplastics

 (or "plastics") : linear or branched polymers 

which can be melted upon the application of heat : 

can be molded (and remolded) into virtually any shape 
using processing techniques (injection molding or 
extrusion) 

constitute by far the largest proportion of the polymers 
used in industry 

semi-crystalline

 materials with both crystalline and 

amorphous regions, characterized by their 

degree of 

crystallinity

 

 

crystalline phase with 

melting temperature T

m

 

amorphous phase (bowl of spaghetti) with

  glass 

transition temperature T

g

 : abrupt transformation from 

glassy state (hard) to rubbery state (soft) 
corresponding to the onset of chain motion

 

Elastomers

 : rubbery polymers of low crosslink density 

easily stretched to high extension (e.g. 3x to 10x their 
original dimensions) 

rapidly recover their original dimensions 

Thermosets

 : rigid network polymers in which chain motion is 

greatly restricted by a high degree of crosslinking 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

d) molar mass and degree of polymerization 

molar mass M

 : mass of 1 mole of the polymer (g.mol

-1

" for network polymers the molar mass is infinite 

degree of polymerization x

 : number of repeat units in the 

polymer chain 

"M = x M

0

 where M

0

 is the molar mass of the repeat unit 

polydispersity

 : polymers consist of macromolecules with 

a range of molar masses and for long chains, the molar mass 
distribution can be assumed to be continuous and is 
characterized in terms of 

molar mass averages 

M

i

 / g.mol

-1

M

n

M

w

weight

fraction

 

number-average molar mass

 :  

=

i

i

i

i

i

n

n

M

n

M

 

weight-average molar mass

 :  

=

i

i

i

i

2

i

i

w

M

n

M

n

M

 

by considering the discontinuous nature of the distribution in 
which the macromolecules exist in discrete fractions i (in 
intervals of M

0

) containing n

i

 molecules of molar mass M

i

 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

polydispersity index

 : 

1

M

M

I

n

w

=

 

and I = 1.00 in the case of a perfectly monodisperse polymer 

number-average degree of polymerization

 : 

0

n

n

M

M

x

=

 

weight-average degree of polymerization

 :  

0

w

w

M

M

x

=

 

 

 
 
2 – Classification of polymerization reactions 

the most basic requirement : each monomer must be 

capable of being linked to two (or more) other monomer by 
chemical reaction, i.e. monomers must have a 

functionality

 of 

two (or higher) 

" a multitude of chemical reactions and associated 

monomer types can be used to effect polymerization 

classification : based on the polymerization mechanisms :  

step polymerization

 (or step-growth polymerization) in 

which the polymer chains grow step-wise by reactions that can 
occur between any two molecular species 

chain polymerization

 (or chain-growth polymerization) 

in which a polymer chain grows only by reaction of monomer 
with a reactive end-group on the growing chain. They usually 
require an initial reaction between the monomer and an 

initiator

 

to start the growth of the chain 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

 
 

step polymerization 

chain polymerization 

first step 

none 

initiation

 :       

I    +    o    

    I-o*

 

                  

initiator 

              

active 

                                              centre

  

steadily throughout the polymerization 

dimer 

formation 

o    +    o    

    o-o 

I-o*    +    o    

    I-o-o

trimer 

formation 

o    +    o-o    

    o-o-o 

I-o-o*    +    o    

    I-o-o-o

tetramer 

formation 

o    +    o-o-o    

    o-o-o-o 

o-o    +    o-o    

    o-o-o-o 

I-o-o-o*    +    o    

    I-o-o-o-o

pentamer 

formation 

o    +    o-o-o-o    

    o-o-o-o-o 

o-o-o    +    o-o    

    o-o-o-o-o 

I-o-o-o-o*    +    o    

    I-o-o-o-o-o

growing 

chain 

principle 

reactions can occur between any 
two molecular species 

consequent upon every addition of 
monomer, the active centre is transferred 
to the newly-created chain end 

monomer 

consumption 

rapidly in the early stages (e.g. 
when 

n

x = 10, less than 1% of the 

monomer remains unreacted) 

steadily throughout the reaction 

 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

 

 

step polymerization 

chain polymerization 

polymer 

formation 

the degree of polymerization 
increases steadily throughout the 
reaction, but large macromolecules 
are obtained for very high extents of 
reaction 

high degrees of polymerization are 
attained at low monomer conversion, 
because at any moment the number of 
growing macromolecules is low, but as 
soon as the active centre is created, it 
reacts in few minutes with several 
thousands of monomer molecules before it 
dies through a 

termination

 reaction. 

polymer 

molar mass 

evolution as 

a function of 

reaction 

extent  

0

50

100

extent of reaction (%)

molar mass

 

0

50

100

extent of reaction (%)

molar mass

 

 Table 

 Fundamental differences in reaction mechanism between step polymerization 

and chain polymerization

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

3 – Step polymerization 

" involve successive reactions between pairs of mutually-

reactive functional groups which initially are provided by 
the monomer(s). 

" consider the reaction between terephthalic acid and 

ethylene glycol, both of which are 

difunctional

 : 

+    H

2

O

+      HOCH

2

CH

2

OH

C

O

OH

C

O

HO

C

O

OCH

2

CH

2

OH

C

O

HO

dimer

 

and later : 

C

O

OCH

2

CH

2

O

C

O

HO

H

C

O

OH

C

O

HO

+      n    HOCH

2

CH

2

OH

+   (2n-1)  H

2

O

n

n

poly(ethylene terephthalate) or PET

 

" polymerizations involving monomers of functionality 

greater than two produce non-linear polymers : if a 

trifunctional

 monomer was included, reaction at each of 

the three functional groups would lead initially to the 
formation of a branched polymer but ultimately to the 
formation of a network (three-dimensional 
macromolecules) : 

+      HOCH

2

CHOHCH

2

OH

C

O

OH

C

O

HO

terephthalic acid

glycerol

C

O

C

O

O

O

O

CH

2

CH

2

CH

O

C

O

C

O

C

C

O

 

 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 

 

a) polycondensation and polyaddition 

Polycondensation

  :  step polymerization involving reactions in 

which small molecules are eliminated (ex : polyamides, 
polyesters…). 

" 3 types of monomer system exist, where R and R' are 

divalent groups and A and B represent the mutually-
reactive functional groups : 

RA

2

 + R'B

2

 step polymerization

 :  

A-R-A  +  B-R’-B  

  A-R-AB-R’-B  

   ....  

     A-(R-AB-R’)

n

-B 

H

2

N (CH

2

)

6

NH

2

n

+    n

HOOC (CH

2

)

4

COOH

hexamethylene diamine

adipic acid

(CH

2

)

6

NH

NH

H

C

O

(CH

2

)

4

C

O

OH

n

+   (2n-1)  H

2

O

polyamide-6,6 or nylon-6,6

ex :

 

"  drawback : very slight excesses of one monomer 

significantly reduce the attainable degree of 
polymerization because the polymer chains become 
terminated with functional groups derived from the 
monomer present in excess (e.g. both end-groups are 
ultimately of type B if RB

2

 is in excess). Since these 

functional groups are unreactive towards each other, 
further growth of the chains is not possible. 

 

ARB step polymerization

 : 

A-R-B  +  A-R-B  

  A-R-BA-R-B  

   ....   

   A-(R-BA)

n

-R-B 

ex :

polyamide-6 or nylon-6

+   (n-1)  H

2

O

n

(CH

2

)

5

NH

H

OH

O

C

6-amino hexanoic acid

n

H

2

N (CH

2

)

5

COOH

 

"  advantage : with each condensation reaction the 

polymer chain grows but remains an 

ω

-amino carboxylic 

acid and so can react further. So an exact stoichiometric 
equivalence of the two functional groups is guaranteed. 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 10 

 

RA

2

 step polymerization

 : 

A-R-A  +  A-R-A  

  A-R-A-R-A  

   ....   

   A-(R-A)

n

-R-A 

 

" few examples : 

n    HO-R-OH      

      H-[O-R]

n

-OH    +      (n-1)  H

2

 

n   Cl-Si(CH

3

)

2

-Cl     +    (n+1)   H

2

O    

      H-[O-Si(CH

3

)

2

]

n

-OH      +      2n   HCl 

Polyadditions

 : step polymerizations in which the monomers 

react together without the elimination of other molecules  

" few important examples (RA

+ R'B

2

 reaction) : 

n   O=C=N-R-N=C=O   +   n   HO-R'-OH   

   -[C(O)-NH-R-NH-C(O)-O-R'-O]

n

 polyurethane 

 

n  O=C=N-R-N=C=O  +  n  H

2

N-R'-NH

2

  

  -[C(O)-NH-R-NH-C(O)-NH-R'-NH]

n

 polyurea 

 

b) molar mass control for linear step polymerization 

Theory based on : 

principle of equal reactivity of functional 

groups

 whatever the size of the reacting molecules 

" prediction of the molar mass of macromolecules at time t 

as a function of the 

extent of reaction p 

in the case of

 

an exact stoichiometric balance in the numbers of 
mutually-reactive functional groups : 

p

1

1

x

n

=

  and  

p

1

M

M

I

n

w

+

=

=

   

where 

initially

 

present

 

groups

 

functional

 

of

 

number

reacted

 

have

 

that

 

groups

 

functional

 

of

 

number

p

=

 

" very high extents are needed for producing high 

polymers 

" necessity for using monomers of high purity and 

reactions which are either highly efficient or can be 
forced towards completion 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 11 

" in practice, slight stoichiometric imbalances are used to 

control 

n

x  

" another way for limiting molar masses : the addition of 

very low quantities of a monofunctional monomer, which 
will prematurely stop the growth of macromolecules by 
creating some unreacting chain ends 

Important  drawback : the intramolecular reaction of terminal 
functional groups on the same molecule leading to 

ring 

formation

 (i.e. cyclic molecules) 

" disturbs the form of the molar mass distribution and 

reduces the ultimate molar mass attainable 

" polymerization 

in bulk

 (i.e. using only monomer(s) plus 

catalysts) 

 

c) gelation during non-linear step polymerization 

The inclusion of a monomer with a functionality greater than 

2 has a dramatic effect upon the structure and molar mass of 
the polymer formed 

" in the early stages : branched macromolecules and 

much more rapid increase of molar mass  

" as the reaction proceeds, further branching reactions 

lead to the first network molecule : the 

gel-point

 

manifested by 

gelation 

critical extent of reaction p

C

 for gelation always in the 

case of a stoichiometric balance in the numbers of 
mutually-reactive functional groups : 

f

2

p

C

=

      with     

=

i

i

i

i

i

n

f

n

f

 

where  f  is the number-average functionality (n

i

 is the 

initial number of molecules of monomer i which has 
functionality f

i

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 12 

4 – Chain polymerization : free-radical polymerization 

Free-radicals

 : independently-existing species which 

possess an unpaired electron and normally are highly reactive 
with short life times 

Free-radical polymerization

 : chain polymerization in 

which each polymer molecule grows by addition of monomer to 
a terminal free-radical reactive site (

active centre

). 

 

a) initiation, propagation and termination 

Initiation stage

 : 

! the formation of free radicals from an initiator (e.g. by 

homolysis of a single bond) :  

ex :

C

O

O O C

O

2

C

O

O

benzoyl peroxide

benzoyloxy radicals

 

! the addition of one of these free radicals to a molecule of 

monomer. For vinyl monomers, the active centre is created 
when the free radical attacks the 

π

-bond : 

H

2

C CH

Y

R      +

A

R

CH

2

CH

Y

R

CH CH

2

R

Y

or

k

d

 

Propagation stage

 : growth of the polymer chain by rapid 

sequential addition of monomer to the active centre (1 
millisecond for each monomer addition) 

        +

CH

2

CH

Y

R

H

2

C CH

Y

or

CH

2

CH

Y

R

CH

2

CH

Y

CH

2

CH

Y

R

CH CH

2

Y

head-to-tail addition

head-to-head addition

k

p

 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 13 

Termination stage

 : two common mechanisms taking place 

simultaneously, but to different extents depending upon the 
monomer and the polymerization conditions : 

combination

 : 

CH

2

CH

Y

CH

2

HC

Y

+

CH

2

CH

Y

Y

CH CH

2

k

tc

 

disproportionation

 : 

+

CH

HC

Y H

CH

2

CH

Y

k

td

+

CH

HC

Y

CH

2

CH

2

Y

 

 

b) rate and degree of polymerization 

!

!

!

! 

steady-state conditions

 : rapidly, the rate of radical loss 

exactly equals the rate of radical formation 

!

!

!

! 

rate of polymerization R

p

 :       

½

[M][I]

k

fk

k

R

t

d

p

p

=

 

where k

p

, k

d

 and k

t

 are the rate constants for propagation, 

initiator dissociation and termination respectively and f is the 
initiator efficiency (i.e. the fraction of primary free radicals that 
successfully initiate polymerization) 

!

!

!

! number-average degree of polymerization of the 

polymer produced at time t : 

½

[I]

k

fk

q)

(1

[M]

k

time

 

unit

 

in

 

formed

 

polymer

 

of

 

moles

time

 

unit

 

in

 

consumed

 

monomer

 

of

 

moles

x

t

d

p

n

+

=

=

where q is the fraction of termination reactions proceeding by 
disproportionation  

"  by increasing [M] : 

n

x  and R

increase 

" increasing [I] gives rise to a reduction in 

n

x

 whilst 

causing an increase in R

p

 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 14 

 

c) chain transfer reactions 

-T   +    A

ktr

        +    T-A

 

where T and A are fragments linked in a single bond in a 
hypothetical molecule T-A (monomer, initiator, solvent and/or 
macromolecules) 

" if re-initiation is rapid the rate of polymerization is not 

affected and under steady-state conditions :  

[M]

k

A]

-

[T

k

[M]

k

]

I

[

k

fk

q)

(1

x

1

p

tr

p

2

1

t

d

n

+

+

=

 

chain transfer agents

 : compounds with high chain 

transfer constants (e.g. carbon tetrabromide, dodecyl 
mercaptan…) may be employed at low concentrations to 
control (reduce) molar mass 

chain transfer to polymer : no effect upon 

n

x

 but results in the 

formation of branched polymer molecules 

" intramolecular reactions : short-chain branches :  

CH

H

H

2

C

CH

2

CH

2

CH

2

CH

H

2

C

CH

2

CH

2

CH

3

+ n H

2

C=CH

2

branch

n-butyl

+  H

2

C=CH

2

CH

CH

2

CH

2

CH

2

CH CH

2

CH

3

H

CH

CH

2

CH

3

CH

2

CH CH

2

CH

3

+ n H

2

C=CH

2

branches

ethyl

 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 15 

"  intermolecular reactions : long-chain branches : 

CH

2

CH

COOCH

3

+

C

CH

2

COOCH

3

H

C

CH

2

COOCH

3

+

CH

2

CH

2

COOCH

3

+  n

CH

2

=CHCOOCH

3

COOCH

3

CH

2

C

COOCH

3

CH

CH

2

 

 

d) bulk polymerization and its alternatives 

Bulk polymerization

 is the simplest and involves only the 

monomer and a monomer-soluble initiator 

"  advantages : high rates of polymerization, high degrees 

of polymerization and polymer of high purity 

"  drawbacks : rapid increase of viscosity, inefficient 

stirring, difficult removing of the heat evolved upon 
polymerization 

autoacceleration

  or 

Tromsdorf-Norrish effect

 : 

increasing of R

p

 and molar mass due to the reduction of 

the long-chain radical mobility and therefore to their 
termination probability ; the initiation and propagation 
reactions are not affected because the monomer 
molecules are small and more mobile 

Solution polymerization

 in a solvent 

"  advantages : low viscosity, good heat transfer and low 

likelihood of autoacceleration 

"  drawbacks : laborious isolation of the polymer 

(evaporation or precipitation), solvent toxicity and hazard 

" commercial use restricted for applications which require 

the polymer to be used in solution 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 16 

Suspension polymerization

 : the reaction mixture is 

suspended as droplets in water (where it is insoluble) 

necessitates (i) vigorous agitation throughout the 
reaction and (ii) 

dispersion stabilizers

 dissolved in the 

aqueous phase [typically low molar polymers such as 
poly(vinyl alcohol)]. 

"  advantages : low viscosity and good heat transfer 
" each droplets acts as a small bulk polymerization reactor 

for which the normal kinetics apply 

" polymer in the form of beads (typically 0.1-2 mm 

diameter) easily isolated by filtration 

"  widely used on an industrial scale  

 

e) emulsion polymerization 

Second heterogeneous process where surfactants are used 
and initiator must not be soluble in monomer but soluble only in 
the aqueous dispersion medium 

reaction product : colloidally-stable dispersion of 
particulate polymer (0.05-1 µm) in water known as 

latex

 

anionic surfactants

 : molecules with hydrophobic 

hydrocarbon chains at one end of which is a hydrophilic 
anionic head group and its associated counter-ion (e.g. 
sodium lauryl sulfate : CH

3

-(CH

2

)-SO

4

-

,Na

+

critical micelle concentration CMC

 : above which 

surfactant molecules form into spherical aggregates (5 
nm) known as 

micelles

 which contain of the order of 100 

molecules 

" when a water-insoluble monomer is added to an 

aqueous solution containing a surfactant well above its 
CMC three phases are established :  

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 17 

dissolved
free radical

surfactant

molecule

monomer

molecularly

dissolved

monomer-

swollen

micelle

R

large droplet
of monomer
as reservoir

 

"  initiation : in the aqueous phase, the initiator molecules 

(e.g. persulfate : 

→

4

2

8

2

O

S

 

2

O

S

) react with monomer to 

produce oligomeric radical species which then diffuse 
into monomer-swollen micelles to initiate polymerization 

"  propagation within the micelles is supported by 

absorption of monomer from the aqueous phase, there 
being concurrent diffusion of monomer droplets into the 
aqueous phase to maintain equilibrium 

" interval $ : particle nucleation with the consumption of 

micelles ; the number N

p

 of latex particles per unit 

volume of latex then remains constant 

time

conversion (%)

0

100

$

$

$

$

%

%

%

%

&

&

&

&

 

" interval % : the rate of monomer diffusion exceeds the 

rate of polymerization so that the concentration [M]

p

 of 

background image

 

Introduction to Hybrid Organic-Inorganic Materials / Etienne Duguet / university Bordeaux-1 

2 - 18 

monomer within a particle remains constant. Since N

p

 is 

constant, the rate of polymerization also is constant. 
Because the particles are very small, termination can be 
considered to occur immediately upon entry of a second 
radical species into a particle containing a single 
propagating chain radical. The particle then remains 
dormant until entry of another radical initiates the 
propagation of a new chain radical : 

a

p

p

p

p

N

2

N

]

M

[

k

R

=

    and    

a

i

p

p

p

n

N

N

]

M

[

k

x

ρ

=

 

where N

a

 is the Avogadro constant and 

ρ

i

 is the molar 

rate of formation of radical species from the initiator 

" interval & : [M]

p

 and the rate of polymerization decrease 

continuously as the remaining monomer present in the 
particles is polymerized 

"  advantages : good heat transfer, low viscosity of the 

product latexes at high polymer concentrations and the 
ability to control particle morphology (e.g. formation of 

core-shell particle

 structures by successive additions of 

different monomers) 

"  drawback : contamination by the surfactant 
" polymers used either directly in the latex form (e.g. 

emulsion paints, adhesives, foamed carpet-backings) or 
after isolation by 

coagulation

 or 

spray-drying

 of the 

latex (e.g. synthetic rubber and thermoplastics) 

 

 

 
bibliography 

'  Introduction to Polymers by R.J. Young and P.A. Lovell – 
Chapman & Hall (1991)