background image

 
Rzeczywistość geograficzna jej złożoność i uproszczenia. 
3 podstawowe redukcje przestrzeni geograficznej: 
- redukcja klas – klasyfikacja obiektów świata realnego- obiekty zgrupowane w klasy; 
- redukcja kształtu – przyporządkowanie wszystkim obiektom reprezentacji w postaci linii, punktów lub 
powierzchniowe (obrysów); 
redukcja przestrzeni – 3D w 2D, obiekty poszczególnych klas tworzą dwuwymiarowe warstwy; 
Funkcje mapy w postaci tradycyjnej (analogowej): 
- prezentacja informacji o przestrzeni, model terenu; 
- baza danych, środek przechowywania przetworzonych danych źródłowych; 
6 wad mapy tradycyjnej (analogowej) jako środka przechowywania danych:  
- straty informacji podczas kartowania (nie wszystko z pomiaru widoczne było na mapie); 
- ograniczona pojemność rysunku mapy;  
- zmiany kartometryczne w czasie (deformacje mapy pod wpływem wilg, temp, zwijania);  
- zestawienie tematyczne wykonywane ręcznie (mapki branżowe, temat); 
- utrudniona aktualizacja; 
- trudne zabezpieczenie danych materialnych; 
Mapa numeryczna eliminuje: 
- straty informacji;  
- zmiany kartometryczne w czasie;  
- utrudniona aktualizacja- łatwą modyfikację zapisu,  
- zabezpieczenie informatyczne – łatwość kopiowania 
Mapa numeryczna sprzężona z informacją = przestrzeń + baza danych związana z tą przestrzenią  
- eliminuje ograniczoną pojemność 
System informacji o Terenie (SIT): jw.+ algorytmy do edycji tej przestrzeni; eliminuje: 
- straty informacji podczas kartowania; 
- ograniczoną pojemność;  
- zmiany kartometryczne w czasie; 
- zestawienie tematyczne wykonywane ręcznie; 
- utrudniona aktualizacja – łatwa modyfikacja zapisu; 
- zabezpieczenia i  kopiowanie = usuwa wady i dodaje algorytmy; 
System informacji o terenie a [System informacji geograficznej] podstawowe różnice:  
- skala: 1:500-1:5000 [≥10000];  
- wielkość obiektów:  typowe obiekty inżynierskie [obiekty przyrodnicze, demograficzne, geograficzne];  
- dokładność:  wysoka [mała, wystarczająca];  
- jednostka elementarna systematyczna: wektor [kratka rastra];  
- typowe modele zmiany 2D->1D: wektorowo [rastrowo];  
- wiarygodność pod względem prawa: może być gdy zbudujemy system na katastrze [nie może]; 
 
Informacja i systemy informacyjne.  
Definicje informacji:
  
tradycyjna – jednorazowa wiadomość, najczęściej ma zabarwienie emocjonalne lub nie ma;  
cybernetyczna – informacja jest zdarzeniem ze zbioru;  
- koncepcja Shannona oceny źródła informacji - do zdarzenia przypisujemy prawdopodobieństwo, usuwa 
niepewności S

1,

S

2 …   

P(S

1

),  P(S

2

)…;  H

(S)

=∑ P(S

i

) log

2

 1/ P(S

i

) [bit] największa niepewność gdy są 

jednakowe P(S

i

) ->1/q; 

- informacja w SIT jako interpretacja danych - informacja organizuje się w system informacji 
4 cechy informacji: 
- koszty uzyskania; 
- aktualność; 
- dostępność; 
- efektywność organizacji informacji; 
 
 

background image

 
Struktury danych jako formy pośrednie pomiędzy obiektami a fizycznym zapisem w komputerze. 
- tablica (podobna do macierzy)– elementy tego samego typu, kolumny i wiersze (gdy tablica ma jeden 
wiersz [kolumnę] to tablica jest zbiorem wektorów), elementy tablicy zapisane są w tablicy kolumnowo lub 
wierszowo i tak są czytane, tablica to zbiór wektorów o tym samym wymiarze;  
rekord – zbiór elementów różnych typów zapisane w kolejności, elementem rekordu jest pole, zbiór 
rekordów to plik;  
- lista – uporządkowany zbiór elementów, które mogą być pojedynczymi elementami lub listami; lista z 
pojedynczych elementów nazywa się lista liniowa, lista z innych list nazywa się listą strukturalną (lista list), 
kolejność elementów podana za pomocą uporządkowania lub wskaźników, musi  być podane wejście do 
listy;  
stos – jest tablicą liniową, dostęp tylko z jednej strony;  
kolejka – struktura do której wejście jest (elementy wprowadza się) z jednej a wyjście (a usuwa) z drugiej 
strony;  
drzewo – struktura ustanawiająca hierarchię, każdy element ma tylko jednego nad sobą i dowolną liczbę 
elementów podrzędnych; w węzłach  relacja 1:n, drzewo binarne – z każdego węzła po 2 elementy;  
graf (sieci) – klasa struktur reprezentujących sieć elementów, łącz każdy z każdym 
  
Zapis obrazu mapy w systemach informacji przestrzennej. 
Redukcje obrazu z 2D do 1D. Dwa sposoby takiej redukcji: 
  
1 sposób (model rastrowy) – Model w którym zapis przestrzeni 2D jest ukierunkowany na elementy 
składowe obrazu – regularna siatka pól elementarnych jest rozwijana do postaci liniowej, a z chwilą 
uformowania siatki pól (zwanej rastrem) karzdy obraz może być wyrażony wyłącznie poprzez geometrię 
elementów siatki;  
2 sposób (model wektorowy) - Model, w którym zapis przestrzeni 2D jest ukierunkowany na obiekty, w 
przestrzeni obrazu wyróżnia się obiekty, analizuje się je w pewnej kolejności, oraz, w ramach 
poszczególnych obiektów buduje się zapis ich elementów strukturalnych. 
 
Modele wektorowe. 
Model obiektowy nietopologiczny: 
- zapis
 struktur geometrycznych – do budowy obiektów wykorzystywane są struktury elementarne: 
punkty, linie łamane. Struktury elementarne zapisane są w katalogu współrzędnych (rekord) i w pliku 
powiązań punktów wektorem.  
brak topologii;  
zapis obiektów – plik zapisu obiektów punktowych - współrzędne, plik zapisu obiektów liniowych – 
uporządkowany ciąg współrzędnych lub wektorów, plik zapisu obiektów powierzchniowych – lista 
wektorów granicznych lub ciąg par współrzędnych w kolejności z zatrzaśnięciem obszaru )  
zalety – prosty, przejrzysty, obiektowy (każdy obiekt zapisany oddzielnie), każdy obiekt zapisany jest jako 
kompletny;  
wady – zapis nie oszczędny występuje nadmiarowość; zmiana granicy jednej działki nie powoduje 
równocześnie zmiany granicy działki przyległych; brak środków do ustalenia relacji między obiektami, 
wszystkie relacje można wyznaczać za pomocą geometrii obliczeniowej – trudne algorytmy; 
Źródłowy zapis jako nieuporządkowane listy wektorów (model spaghetti): 
 - zapis struktur geometrycznych - 
zbudowany ze skrajnie nieuporządkowanych elementach, dopuszcza 
się zapis wielokrotny części linii, brak kolejności wektorów;  
- brak topologii;  
zapis obiektów nie buduje się obiektów mimo to rysunek mapy odwzorowany jest poprawnie;  
- model spaghetti jako zapis źródłowy w pomiarach bezpośrednich –porządkujemy to w procesie 
tworzenia mapy a powtórzenia mają charakter kontrolny, jest modelem przejściowym, modelem 
pozyskiwania danych z pomiarów bezpośrednich, wartościowym; obiekty wiernie odzwierciedlają 
przestrzeń, służą do rysowania mapy; 
 
 
 

background image

 
Model topologiczny elementarny: 
załamania są węzłami, podstawową strukturę geometryczną jest wektor oparty na 2 węzłach, uwzględnić 
nieskończoną przestrzeń (otoczenie rysunku), jedyny zbudowany autentycznie z wektorów, węzły izolowane 
– same punkty, obiekty liniowe i powierzchniowe zbudowane z wektorów;  
zapis struktur – plik współrzędnych węzłów (katalog), plik powiązań węzłów w wektory ( zapis 
wektorów)  
zapis topologii – obszarów(oznaczenie obszaru -- uporządkowana lista wektorów +- tworzących obszar po 
prawej stronie – kontrola – każdy wektor występuje dwukrotnie  z przeciwnym znakiem), 
węzłów(oznaczenie węzła --uporządkowana lista incydentalnych wektorów), wektorów (oznaczenie  
wektora -- węzeł początkowy, węzeł końcowy, obszar po lewej, obszar po prawej);  
zapis obiektów – punktowych (oznaczenie obiektów, numer węzła) , liniowych (jak w modelu nie 
topologicznym), powierzchniowych (taki jak zapis topologii obszaru z tą różnicą że – nie ma nieskończonej 
przestrzeni, niekonieczne są znaki +-, wystarczy komplet wektorów);  
cechy modelu – podstawową jednostką jest wektor, wektor ma dwie funkcje – budowa obiektów 
liniowych, granice obiektów powierzchniowych, zmiana granicy automat,  redundancja ponieważ wektory 
wymagają dwukrotnego zapisu współrzędnych punktów stykających się; prosty do utworzenia, model 
przejściowy do modelu łańcuchowego;  
Model topologiczny łańcuchowy: 
 - struktura geometryczna- 
budowa węz – daje się tam gdzie stykają się ≥3 łańcuchy, pomiędzy węzłami 
są łańcuchy, łańcuch można rozłożyć na dowolną liczbę łańcuchów,   
własności łańcucha -  oznaczenie, rozpoczyna się i kończy w węźle, ma kierunek, dowolna liczba 
punktów pośrednich nadaje kształt, jeśli należy do warstwy powierzchni to na całej długości ma jeden 
niezmienny obszar po lewej i prawej stronie;  
zapis struktur geometrii – katalog węz, łańcuchy (oznaczenie łańcucha – lista par współrzędnych węzła 
początku, punktów pośrednich, węzła końcowego); łańcuchy to obiekty lub granice obiektów;  
zapis topologii węzłów -  węz (węz nieizolowany jest połączony łańcuchem), łań (oznaczenie łańcucha, 
węzeł początkowy, węzeł końcowy, obszar po lewej, obszar po prawej), obszar (oznaczenie obszaru -- 
uporządkowana lista łańcuchów +- po prawej stronie), obszar wielospójne (oznaczenie obszaru -- 
uporządkowana lista łańcuchów +- po prawej (wnętrze i zew obszar)   
zapis obiektów punktowych, liniowych i powierzchniowych – obiekty punktowe (oznaczenie obiektu, nr 
węzła); linie (oznaczenie obiektu liniowego, lista łańcuchów tworzących obiekt), powierzchniowe 
(identycznie jak topologia obszar niekoniecznego)  
cechy modelu 1) uwzględnia relacje w jednej warstwie, 2) jednostką strukturalną jest łańcuch wektorów, 
3) występują związki topologiczne (węzłów, łańcuchów, obszarów), 4) obiekty punktowe reprezentowane 
przez punkty lub węzły izolowane, 5) łańcuchy reprezentują obiekty lub ich części oraz tworzą granice 
obszarów, 6) warstwy zintegrowane z Bazą Danych zawierającą informacje: ID, topologia, geometria, inne, 
7)  model bardziej oszczędny, wyższa organizacja, 8) jest szeroko stosowany ale obecnie wypierany przez 
modele obiektowe, 9) dezintegracja zapisu obiektów, oddzielny zapis przestrzeni i informacji. 
Model obiektowy topologiczny: 
widzenie obiektów jako jednej całości, zlikwidowanie 2 dezintegracji, relacje nie tylko w warstwie ale 
zapis relacji pomiędzy wieloma warstwami, każdy obiekt zapisany jest w jednym wierszu,  każda klasa 
obiektów ma swoją tablicę relacji, obiekt jako całość w jednym rekordzie, relacje topologiczne między 
wieloma warstwami 25 reguł topologicznych, geobaza do zarządzania danymi opartymi na relacyjnej BD 
(zalety jednolitość obiektowość związki między wieloma warstwami), topologia między warstwami; 
porównanie modelu łańcuchowego i [obiektowego]  
widzenie obiektów przez operatora systemu: przez strukturę obrazu mapy węzłów i łańcuchów [obiekty 
jako spójna całość];  
- integracja przestrzeni i informacji: zapis fizyczny przestrzeni i informacji jest rozdzielony [przestrzeń 
zintegrowana z informacją, zapis w jednej tablicy];  
- ustalenie relacji między obiekt: w jednej warstwie [w wielu warstwach];  
- kontrola nad zbiorami obiektów rzeczywistości geograficznej: mocna kontrola w ramach jednej warstwy 
[globalna kontrola nad pełnym środowiskiem] 
 

background image

 
Model rastrowy (mozaikowy).  
– 
ziarniste widzenie przestrzeni, polega na arbitralnym podzieleniu obrazu na małe elementy -  piksele 
(teselacja), z chwilą zdefiniowania siatki rozróżniamy tylko piksele;  
3 czynniki: 1) dokładność odzwierciedlenia przez pola elementarne, 2) zapotrzebowanie na pamięć do 
zapisu obrazu, 3) zapotrzebowanie na czas budowy obrazu i na czas przesyłania obrazu na ekran,  
- kolejność i hierarchia podziału obrazu – 
1) wybór sposobu podziału przestrzeni 2D na piksele 
(kwadratowa, prostokątna, sześciokątna) 2) ustawienie kolejności przebiegania tych elementów (wpływa to 
na szybkość wykonywania operacji na obrazie, szybkość budowania obrazu) 3) przyjęcie jednorodnego 
jednostopniowego podziału lub wielostopniowego podziału hierarchicznego;  
przebieganie: 
- wierszowy (duże skoki); 
- serpentynowy (skoki zostały wyeliminowane ale została zaburzona kolejność przebiegania); 
- spiralne (są tu martwe przebiegi, została wprowadzona asymetria zewnętrzna części środka);  
- diagonalne Cantora (są tu martwe przebiegi, wprowadza dezintegrację, długie przebiegi);  
- Hilberta (jest to przebieganie hierarchiczne, z małych elementów możemy budować bloki, istnieje symetria 
prawej i lewej strony przebiegania, przyłączenie widełek musi skręcenie o 90

0

);  

- Peana (linia fraktalna umożliwia budowanie związków hierarchicznych, eliminuje duże skoki, oscyluje w 
lokalnej przestrzeni)  
- Grey’a (zastosowany w systemie odczytowym, małe błędy, symetria względem kierunków północ-
południe);  
- Sierpińskiego (polega na analizie w trójkątach) 
Zapis przestrzeni w tablicy zbioru globalnego: 
Jeżeli na obraz mapy nałożymy siatkę rastra to wszystkie obiekty wyrażone będą za pomocą piksela;  
Struktura i cechy zbioru globalnego:  
Zbiór globalny ma strukturę tablicy, zbiór wierszy = zbiór pikseli, zbiór kolumn = zbiór atrybutów obiektów 
(klas jeśli obiekty pogrupowane są w klasy);  
binarna postać elementów tablicy – każdy element tablicy przyjmuje wartość za zbioru {0,1}, każdy 
obiekt ma zadeklarowaną dużą ilość cech;  
rozszerzona postać elementów tablicy – zbiór globalny jest zbiorem całościowym, kompletnym – 
integracja przestrzeni i opisu (opis sprzężony z pikselami) budowanie ob. wymaga selekcji zbioru 
globalnego;  
Zbiór globalny w wersji rozwarstwionej: 
 
Jest to zbiór klas z odpowiadającymi im atrybutami. Zajmuje się jednym konkretnym atrybutem, tyle tablic 
ile atrybutów, nieoszczędny dużo0 wymaga kompresji;  
kompresja – piszemy element początkowy i końcowy, pisz element początkowy i ilość powtórzeń;  
hierarchiczne rozwinięcie obrazu – drzewo 4kowe – przebieg linii fraktalnej Peana – małe skoki, krótki 
przebieg w lokalnej przestrzeni, oscyluje w niewielkim obszarze, oszczędny zapis,  
Zbiór warstw tematycznych jako efektywny zapis w postaci list identyfikatorów pól o różnych 
wymiarach: 
 – 
sporządza listę agregatów (blok) które całkowicie mieszczą się w danych obiektach od największego do 
najmniejszego agregatu – wynik lista kodów agregatów, nie dzielą się dalej bo kolejne elementy mają takie 
same atrybuty – oszczędny zapis – obszar reprezentowany przez max agregaty; 
Trzy sposoby organizacji informacji: 
Globalny w postaci tablicy (kompletny i uniwersalny, nieoszczędny potrzebne selekcje); 
- Globalny rozwarstwiony  
- Zbiory warstw tematycznych (hierarchiczna zasada podziału, oszczędź szybki dostęp);  
Cechy modelu rastrowego: 
Prosta struktura zbioru; 
- ciągłość zapisu przestrzeni; 
- łatwość ustalania relacji pomiędzy elementami; 
- przejrzysta struktura zbioru globalnego oraz drzewa czwórkowego; 
- łatwa manipulowanie danymi i analizy; 
- arbitralna geometria;  

background image

 
Porównanie modelu wektorowego i [rastrowego]  
ukierunkowanie na obiekt [nie posiada bezpośredniej relacji do obiekt]; 
 odzier lepiej środek [zjawiska ciągłe]; 
- konieczny zapis topologii [regularne siatki- zależności topologiczne wpisane w zasady tworzenia modelu]; 
- obiekty [ciągła przestrzeń];  
- opis położenia – współrzędne kartograficzne [położenie piksela]; 
- dokładność – wysoka [obarczona błędami niezgodności siatki rastra z granicami obiektów]; 
- zapatrz ener – oszcz [duża], 
- integracja informacji z obiektami [z obszar agregat pix]; 
- duże skale [średnie] 
 
Bazy Danych: 
Hierarchiczna baza danych: 
przypomina strukturę grafu (ma strukturę drzewa); każdy węzeł odpowiada elementowi struktury danych; 
zbiory węzłów są to zbiory rekordów Zalety: -zdecydowanie prosta(prosta str. drzewa),-mała liczba 
relacji(najczęściej jest kilki) – szybkie przebiegi Wady: -olbrzymie powtórzenia zapisu, -każde 
poszukiwanie odbywa się zgodnie ze strukturą drzewa – trudności w modyfikacji; 
Sieciowa baza danych jako rozwinięcie bazy hierarchicznej  (zalety i wady): 
cechy: -rozwinięcie hierarchii umożliwia powiązanie bez każdorazowego wspinania się na strukturę drzewa, 
Zalety: -likwiduje powtórzenia. Wady: Usunięcie powtórzeń nastąpiło kosztem kompikacji struktury tej 
bazy danych;  
Relacyjna baza danych  
powszechnie stosowana(sklepy, banki) cechy: -mniejsza zależność uzyskiwania informacji od przyjętej 
struktury; 
- krotka(n-tka)-ciąg wartości atrybutów;  
-relacja albo tablica relacji-skończony zbiór krotek(praktycznie: kartoteka, plik).atrybuty muszą być 
uporządkowane, krotki nie są uporządkowane w relacji. Wiersze to krotki a atrybuty kolumny; każdy atrybut 
ma swoją dziedzinę wartości, jedna z tych wartości jest wpisana w krotce  
6 operacji na tablicach relacji (warunki i ograniczenia, interpretacja graficzna): 
- suma relacji(+)daje w wyniku działania relację –1 tablicę zawierającą wszystkie krotki, które należą do 
jednej z relacji; powtórzenia są usunięte. 
iloczyn (x) relacji daje w wyniku te krotki, które należą jednocześnie do obu relacji. 
różnica(-)relacji pozostawia te krotki w odjemnej dla których nie istnieją krotki w odjemniku. odjemnik 
jest wzorcem zabierania krotek. wzorzec może być dowolnie duży. 
projekcja: tworzenia pionowego podzbioru przez wybór (lub usunięcie)określonych atrybutów i usunięcie 
powtórzeń krotek. 
selekcja-tworzenie poziomego podzbioru relacji przez wybór krotek spełniających określone warunki. 
relacja wynikowa zawiera wybrane krotki. 
łączenie: scalenie 2-óch różnych relacji wg jednego wspólnego atrybutu  
 
Numeryczne modele przestrzeni terenowej. 
cyfrowa reprezentacja powierzchni topograficznej utworzona przez zbiór odpowiednio wybranych punktów 
tej powierzchni oraz algorytmy interpolacyjne umożliwiające odtworzenie jej kształtu na określonym 
obszarze  
sposoby budowania modelu: 
- budowanie modelu na węzłach siatki – zaleta -regularność, -prostota wady: rozmieszczenie punktów nie 
jest związane z formami terenowymi; uzyskiwanie danych: -bezpośrednio w terenie(niw. węzłów),-z 
modelu fotogram., -z innych modeli; tworzenie tych modeli: -wyznaczenie wysokości węzłów z pewnego 
otoczenia punktów, -wysokość wyznaczamy z 4 sektorów, punkt którego wys. wyznaczamy powinien być w 
środku, -wyznaczamy jako średnią ważoną korzystanie-punkty siatki regularnej w przestrzeni łączy się 
paraboloidą hiperboliczną(wielomian bilinarny? -dwuliniowy czyli krzywa dachowa);wysokość punktu 
dowolnego jest równa średniej ważonej z wysokości węzłów oczka siatki, przy czym wagi są to pola 
prostokątów leżących naprzeciwko; 

background image

 
 
- modele oparte na węzłach siatki nieregularnej;
 -tworzenie modelu: podstawowe zadanie-algorytm 
Dalaunay’a tworzymy by uniknąć transformacji punktów rozproszonych na węzły siatki oraz by zachować 
informacje o położeniu punktów ter. ponieważ to położenie związane jest z formami terenu; podstawowe 
zadanie: -połączenie punktów rozproszonych w siatkę trójkątów a raczej rzutów tych punktów w siatkę 
trójkątów:1.zadecydowanie który punkt należy połączyć by utworzyć siatkę. to łączenie nazywamy 
triangulacją. triangulację należy wykonać tak żeby: -tworzone trójkąty były możliwie zbliżone do 
równobocznych i możliwie małe, -każdy punkt ze zbioru punktów rozproszonych musi być uwzględniony, -
procedura musi być jednoznaczna Transf. Delaunay’a- materiałem wyjściowym są punkty rozproszone 
które reprezent. pow. topograf.  
1.obieramy jakąś odległość graniczną np. średnia odległość między punktami. 
2.pobieramy kolejny punkt i zataczamy okrąg tą odległością graniczną „r”. pewna część punktów jest na 
zewnątrz a część wewn. i te punkty kandydują, żeby je połączyć liniami tzn. bokami trójkątów z punktem 
P’. 
3.prowadzimy symetralne tych odcinków. 
4.budujemy poligony Thiesena -tworzą go pewne odcinki symetralnych do odcinków łączących dany 
wierzchołek ze zbiorem wierzchołków wyselekcjonowanych. poligon Thiesena odpowiadający punktowi P 
jest wielokątem o takiej własności że każdy punkt położony wewnątrz niego jest bliżej punktu P’ niż 
jakiegokolwiek punktu triangulacji. 
5.spośród punktów wyselekcjonowanych bierze się tylko te które tworzą poligon Thiesena i z nich tworzy 
się siatkę i przyjmuje się je jako poszukiwane wierzchołki wokół punktu P. 
6.pozostałe punkty się odrzuca 
- modele warstwicowe;