background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

1

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Introduction 
 
Wind energy has developed considerably over the 
last decade. Its implementation in the electrical 
system is already widespread in countries such as 
Germany, Denmark or Spain and an increasingly 
greater impact is predicted. The implementation of 
these technologies brings a set of advantages 
foremost amongst which is a reduction in CO2 
emissions and access to clean energy sources in those 
countries without fossil energy resources. 
 
Established trends point to an increase in unitary 
power, with ever greater machines being 
manufactured such as those shown in Fig. 1. This 
trend has led to the development of offshore wind 
farms, where large multimegawatt turbines may be 
installed. 
 
Nevertheless, important problems and challenges 
remain to be tackled if we are not to endanger the 
stability of the electrical system. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

Fig. 1. Evolution of unitary power. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this context, grid codes which define the new 
requirements for grid connection of wind farms have 
either been developed or are in process in those 
countries with a higher installed power. There are 
basically three main aspects covered in the grid codes 
(1): voltage and reactive power control, frequency 
control, and fault ride-through capabilities. 
 
There are three main types of wind turbine at the 
present time (2). On the one hand we have fixed-
speed turbines based on asynchronous generators 
with a squirrel-cage rotor, and on the other the 
variable speed turbines which use doubly-fed 
asynchronous generators or synchronous generators 
in a full converter configuration. (Fig. 2). 
 
Fig. 3 shows the evolution in the use of these 
generators over the last few years.  It can be observed 
that variable speed configurations are gaining ground 
over the asynchronous squirrel-cage generator. 
 
The aim of this paper is to review the power 
electronics solutions applicable to variable speed 
turbines, with a view to meeting the challenges 
facing wind generation (higher powered turbines and 
quality requirements and ever more demanding grid 
connections). 
 
The article begins with a review of the commutation 
devices which are currently available on the market.  
Three topologies are subsequently presented whose 
features make them attractive for use in wind 
applications. Finally, an analysis of a multilevel 
converter is carried out with the aim of validating the 
most advantageous features within the field of wind 
generation.   

 

INNOVATIVE SOLUTIONS IN POWER ELECTRONICS FOR VARIABLE SPEED WIND TURBINES 

 

J.L. VILLATE, E. ROBLES, P. IBÁÑEZ, I. GABIOLA, S. CEBALLOS

 

ROBOTIKER , Parque Tecnológico Edif. 202  48170 Zamudio (Bizkaia), Spain. 

joseluis@robotiker.es

 

Tél : + 34 94 600 22 66, Fax : + 34 94 600 22 99 

 
 

ABSTRACT: Wind energy has experienced a dramatic development over the last decade.  Offshore wind farms with multi-
megawatt machines and variable speed solutions are gaining ground. The power converter is a key component in modern 
wind turbines with higher power, higher efficiency and lower costs. In addition, the utilities demand increasingly exacting 
power quality requirements, which can only be met if research on power converters is done. This paper presents a survey of 
existing power electronics solutions for wind turbines, covering trends and new studies in this field. 
 
 
Keywords: Power electronics, variable speed wind turbines, multilevel converters, matrix converters. 

 

 

0

 

1000

2000

3000

4000

5000

1986198819901992 19941996 199820002002 2004

kW 

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

2

Fig. 2. Wind turbine configurations. (a) Synchronous 

generator. (b) Doubly fed asynchronous generator. 

(c) Squirrel Cage Generator.

 

 
 

Fig. 3. Evolution of wind generator technology. 

 
 
2 Semiconductor devices 
 
This section will make a brief analysis of the current 
state of semiconductor power devices.  These devices 
represent the basic element in a converter 
commutation process, since the efficiency of the 

converter depends on the characteristics of these 
devices. 
 
They may be classified into three groups depending 
on their degree of controllability. 
 

1.  Diodes. These are controlled by the 

currents and voltages of the power circuit. 

 
2.  Thyristors (SCR). These devices are 

activated through a control signal although 
they are then deactivated through the 
power circuit. 

 

3. Controllable switches. Activated and 

deactivated through a control signal. 

 
Amongst the latter group the MOSFET, IGBTs and 
IGCTs  should be stressed. 
 
MOSFET devices are used in lower power 
applications with high commutation frequencies. 

 

Their main disadvantage is a high resistance to 
conduction, though fortunately there are new 
technologies available on the market which have 
resulted in the appearance of 'CoolMos', in which 
conduction resistance has been reduced, thereby 
improving behaviour. 
 
The most used semiconductor devices are currently 
the IGBT's.  There are IGBTs from 600V to 3300V, 
capable of withstanding currents up to 3600A 
(depending on the voltage, see Fig. 4 [2]).  The IGBT 
has been improving its features over a period of time.  
Nevertheless, due to its particular structure, an 
ongoing improvement to an equal degree across all 
its features is not possible, which has led to 
specialised devices being developed to perfect 
particular features.  We may thus find ultrafast 
IGBTs possessing excellent speed features with 
acceptable losses, together with generic IGBTs and 
HVIGBTs (high voltage IGBTs) which allow for 
high working voltages permitting their use in 
medium voltage application. 
 
A trend towards the use of IGBTs with NPT (non 
punch through) structures can be seen in the market 
in order to facilitate parallel connection. 

 

Furthermore, we must not forget that this technology 
is both more robust in the presence of short circuits 
as well as cheaper to manufacture.  
 
Finally, the appearance of IGCTs represents a 
substantial improvement on GTOs since they 
combine the high voltages and low losses of the latter 
with the high frequencies and small commutation 
losses of the IGBTs.     
 
Developments within the last two components 
(IGBTs and IGCTs) together with a reduction in their 
cost have both been fundamental factors giving rise 
to the implementation of PWM VSC (voltage source 
converter) over the rectifiers and cicloconverters 
previously used. 

(c) 

 AC-AC

GRID

GEAR 

 AC-AC 

GRID

GEAR 

GRID

(a) 

(b) 

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

3

 
Fig. 4 [3] shows the power range of some 
semiconductor devices currently available on the 
market. 
 
All these devices are based on silicon, though the 
material best placed for using in the near future will 
be silicon carbide, due to its physical properties.  
Amongst other advantages from using this material 
we may stress its greater energy efficiency, improved 
reliability and reduced maintenance costs, together 
with greater operation frequencies, integration 
density and high operation temperatures.   
 
 

Fig. 4. Semiconductor devices currently available on 

the market. 

 
3 Power Converters 
 
In this section we will analyse the most attractive 
power converters for use in wind applications.  The 
first to be analysed will be the two-level back to back 
connection converter which is practically the only 
one which is currently used in this type of 
application.  We will then go on to propose three 
topologies (multilevel, matrix and AC link 
converters) whose features may prove useful in near 
future applications.  
 
PWM back to back converter 
 
Fig. 5 shows a diagram of this converter.  As shown 
it is made up of two 2-level converters linked by 
means of a DC bus. This bus allows us to uncouple 
the two converters, whereby one does not influence 
the other so that they may be controlled separately.  
However, the size and weight of the DC link can be 
high, making a reduction desirable as far as possible. 
This objective brings us on to some of the  following 
topologies, which are not exempt from problems 
themselves as shall be seen.    
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Fig. 5. Back to Back PWM two level converter. 

 
 
Multilevel Converters 
 
Multilevel converters are based on connecting 
together a set of various semiconductor devices, 
thereby allowing greater working voltages to be 
reached, which in turn increases the power they are 
able to handle.  This feature can be useful in current 
wind applications, since the unitary power of each 
wind turbine has increased exponentially over the 
past few years as we have seen.   
 
Its working principle is based on the generation of a 
staircase waveform formed by more than two levels 
of voltage. The waveforms thus generated present a 
more sinusoidal nature than those generated by two-
level converters thereby allowing a greater quality in 
generated energy.   
 
The main advantages deriving from the use of this 
type of topology are the following: 
 

• 

Possibility of reaching high output voltages 
without submitting the semiconductors to 
high voltages. 

 

• 

Better efficiency across the whole power 
range, relatively more stressed when 
working with low input powers [4]. 

 

• 

Low harmonic content in the voltages and 
currents generated, or in other words the 
possibility of reducing the commutation 
frequency of the semiconductor devices 
and size of the grid connection inductances 
while obtaining a similar quality as with a 
two-level converter. 

 
All these advantages make the multilevel converter a 
good alternative in wind energy applications. It helps 
to fulfil the objectives of improved quality in energy 
generated, and allows greater working powers to be 
reached whilst minimising losses. This in turn results 
in a simpler design of the dissipating elements. 
 
These days a large number of topologies of 
multilevel converters are being proposed, with the 
three main ones being “diode clamped topology", 
"flying capacitor topology" and "cascaded connection 
of H bridges"  [5].  Of these the most frequently used 
at the present time is the three level diode clamped 

C

 

 

 

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

4

converter since it requires a lesser number of 
capacitive components and voltage sources than the 
other two.  This topology is shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig 6. Three level diode clamped converter. 

 
 
Matrix Converters 
 
Fig. 7 shows the scheme of a three-phase matrix 
converter.  As may be observed, it is generally made 
up of an array of m bidirectional switches. 
 
Its working principle is based on connecting the 
output phases to the input ones for as long as 
necessary to be able to obtain the desired average 
voltage from the output and current from the input. 
 
The main characteristic of the matrix converter lies in 
its being a solution based wholly on silicon, without 
reactive elements to augment the weight, volume and 
cost of the converter. Although it is necessary to 
improve its working by introducing an input filter to 
improve the currents generated and clamping circuit, 
the size of these elements will always be smaller than 
those used in other topologies.   
 
Another important feature which should be stressed 
is that this converter is totally bi-directional and also 
very suitable to work in environments where the 
power generated is continuously changing. This 
makes it very attractive for use in wind systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. 3x3 Matrix converter. 

 

Its main disadvantages include the fact that if 
overmodulation is not produced, the maximum level 
produced at output is 0.866 times that of  the input.  
As such, in order to obtain the same power as in a 
back to back converter, it will be necessary to 
oversize the semiconductor devices besides 
increasing the conduction losses. 
 
Another aspect which is necessary to improve in this 
type of converter is its Ride-Through capability, 
since due to the absence of the continuous bus there 
are no energy storage elements. 
 
In conclusion, we may say that despite the very 
useful possibilities offered by this technology, it is 
still not sufficiently mature to apply in real-life 
situations, with several aspects such as the one above 
still needing a solution. Despite of this, there are 
some works that incorporate this technology in wind 
turbines [6]. 
 
AC-link converter 
 
Fig. 8 shows the scheme of this converter [7]. Its way 
of working is completely different to the converters 
commented on up to now.  In this case it is based on 
the transfer of load packets between input and output 
(using the central capacitor), depending on the power 
required for the application and the value of the 
currents needed to generate at both input and output 
at any given time. 
 
Amongst its advantages we can stress a reduction in 
the size of the central capacitor and filters in 
comparison with the back to back converter, high 
performance, use of slow commutation devices such 
as SCRs and the low dv/dt it generates. 
 
Another important feature is its low cost making it 
generally attractive for installation in turbines located 
in areas lacking in wind. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.  AC-link converter. 

 
 
4 Analysis of a multilevel converter 
 
In the previous section we have described three of the 
emerging topologies for use in wind applications.  Of 
these the most mature technology is that of multilevel 
converters, since despite being barely used in this 
field it is very tried and tested in other applications. 

 

 

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

5

 
Two of the main benefits presented by the topology  
described above will be analysed in this section, 
namely an increase in efficiency and quality 
improvement in the currents generated. 
 
Fig. 9  [8] shows the results in performance obtained 
by carrying out simulations of a two and three level 
clamped converter by levels of 2MW commuting at 
5KHz.  It may be observed that the multilevel 
converter presents a greater efficiency across the 
whole working power range.   
 
Experimental quality measurements of current 
injected into the grid at different percentages of 
nominal power have also been taken.  This 
measurements show that the three level diode 
clamped converter allows to reduce the THD in a 
20% compared with those generated by a two level 
converter. 

 

Fig. 9. Efficiency curves for two and three level 

converters. 

 
 
5 Conclusions 
 
This paper has carried out an analysis of 

 

semiconductor devices currently available on the 
market.   Three topologies of converters are proposed 
which may start to be installed in variable speed wind 
turbines in the foreseeable future, responding to the 
ever more exacting requirements demanded of wind 
generation.  
 
Finally, the features of one of the topologies 
proposed (the multilevel converter) is analysed, and 
compared with those of a two-level converter, 
practically the only topology in current use.  The 
results clearly show the advantages which would be 
brought by the use of multilevel topologies. 
 
 
6 Acknowledgements 
 
This work has been developed with the support of the 
Basque Government under the programme 
SAIOTEK and the Education and Science Ministry 
of Spain (project RECENER ENE/2004-07881-C03-
03/ALT). 

 
7 References 
 
[1]  I. Martínez de Alegría, J. Andreu, J.L. Martín, P. 

Ibáñez, J.L. Villate, H. Camblong, “Connection 
requirements for wind farm: A survey on 
technical requirements and regulation,” 
Renewable and Sustainable Energy Review. 

 
[2] L.H. Hansen, L. Helle, F. Blaabjerg, E. Ritchie, 

S. Munk-Nielsen, H. Bindner, P. Sorensen and B. 
Bak-Jensen, “Conceptual survey of Generators 
and Power Electronics for Wind Turbines,” RISØ 
National Laboratory, Roskilde, Denmark, 
December 2001. 

 
[3]  S. Bernet, “Recent Developments of High Power 

Converters for Industry and Traction 
Applicatios,” IEEE Trans. on Power Electronics, 
Vol. 15, nº6, pp. 1102-1117, November 2000. 

 
[4] L.M. Tolbert, F.Z. Peng and T.G. Habetler 

“Multilevel Inverters for Electric Vehicle 
Applications,” WPET’98. pp. 79-84, Dearborn, 
Michigan 22-23 October 1998. 

 
[5] J. Rodríguez, J-S Lai and F.Z. Peng, “Multilevel 

Inverters: A Survey of  Topologies, Controls and 
Aplications,” IEEE Trans. Indus. Electron., vol. 
49, no. 4, pp. 724-738,  August 2002. 

 
[6]  Patent. US 6856038, feb. 15 2005  Rebsdorf, 

A.V, Helle, L, “Variable speed wind turbine 
having a matrix converter”. (Industrial property: 
Vestas). 

 
[7] 
http://www.princetonpower.com/tech/ACLink_Tech
_Operation.pdf (Last access February 2006) 
 
[8] J.L. Villate, S. Ceballos, E. Robles, P. Ibáñez, I. 

Gabiola, “Experimental validation of multilevel 
Converters for Variable Speed Wind Turbines” 
EPE 2005. Dresden, September 2005. 

 
 
 

 

background image

    

!!!!

""""

#

! $

#

! $

#

! $

#

! $

%

&

%

&

%

&

%

&

'

'

'

'(

) (

(

) (

(

) (

(

) (

*

+,

+ (- . /

0 1 ( +2 ,

,( 3

2 , 4

1 3 +

, 2 ,

/

55 / (

6 +, 5 (3 6 / 3&

73 - 6

3 2/ +

+, 4 (

1

,

&

+

( -

+ +- - ( & +,

/ 1 6 ( 2 +4 ( (

) . 2 31 + + + 3 , (+ 6 +, & ( +

6 / / - / ( 1 6 ( / - / ( 55 2 +2.

+,

6 ( 2

+

,

+ ,,

+ &

, 3 +, +2(

+- .

0 2 +- 1 6 ( 8 &

. ( 8 & ( 3 +

6/ 2/ 2 + + .

3

5 (

(2/ + 1 6 ( 2 +4 ( (

, +

/

1 1 ( 1 (

+

& (4 .

5 0

+- 1 6 (

2 ( + 2

&

+ 5 ( 6 +, & ( +

( +,

+, + 6

& ,

+ /

5

,

+, & ( +

(

4

4 +-

6 (, / - / ( 1 6 ( +, 4 (

1

, 1 ( . (

,

/ , 4

1 3 +

5 55 / ( 6 +, 5 (3

/

( +, +, / + 6 ( 8 & ( 3 +

5 - ( , 2 ,

3 )

1 6 ( 2 +4 ( (

) . 2 31 + + + 3 , (+ 6 +, & ( +

/

1 1 (

+ .

/

3 ()

&

+

+ 1 6 (

3 2 +,& 2 ( , 4 2

+, + 6 2 +2 1

5 ( 1 6 ( 2 +4 (

+ 2 (2&

+

1 ( 2&

( / 1

+

,4 + -

5 3&

4

2 +4 ( (

(

,

55 2 +2.

+, 1 6 ( 8 &

.

(

& , ,*

9

Greater efficiency across the whole power range.

9

6 ( / (3 + 2 ,

(

+

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1997

1998

1999

2000

2001

2002

2003

Squirrel Cage Gen.

Synchronous Gen.

Doubly fed

Asynchronous Gen.

GRID

POWER 

ELECTRONICS 

SOLUTIONS

(3 + +

(3 + +

(3 + +

(3 + +

Magnet 

!

+ (

(

!

+ (

(

!

+ (

(

!

+ (

(

&

.

, +,& 2

+

&

.

, +,& 2

+

&

.

, +,& 2

+

&

.

, +,& 2

+

!

+ (

(

!

+ (

(

!

+ (

(

!

+ (

(

GEAR

AC-AC

AC-AC

GRID

GRID

a

b

c

A

B

C

Source: Recent Developments of High Power Converters for Industry and 

Traction Apllications.  Steffen Bernet

EVOLUTION IN SIZE AND CAPACITY OF WIND TURBINES (Source: Jos Beurskens - ECN)

85

87

89

91

93

95

97

99

01

03

05

?

0.05

0.3

0.5

1.3

1.6

2

4.5

5

8/10 MW

15 m

112 m

126 m

160 m

Voltage

Time (s)

3-LEVEL  CONVERTER

3-PHASE MATRIX CONVERTER

EFFICIENCY OF A 2 MW 3-LEVEL CONVERTER

POWER SEMICONDUCTOR DEVICES

VARIABLE SPEED WIND TURBINES

VOLTAGE DIP

WIND GENERATOR TECHNOLOGY

VESTAS

Source: Spanish grid code