background image

 

Centralna Komisja Egzaminacyjna 

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. 

Uk

ład gr

af

iczny © CKE

 2010 

 

 

 

Miejsce 

na naklejkę 

z kodem 

WPISUJE ZDAJĄCY  

KOD PESEL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  dysleksja 

 

 

 

EGZAMIN MATURALNY 

Z MATEMATYKI 

 

POZIOM PODSTAWOWY 

 
1.  Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron 

(zadania 1–34). Ewentualny brak zgłoś przewodniczącemu 
zespołu nadzorującego egzamin. 

2.  Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to 

przeznaczonym. 

3.  Odpowiedzi do zadań zamkniętych (1–25) przenieś 

na kartę odpowiedzi, zaznaczając je w części karty 
przeznaczonej dla zdającego. Zamaluj   pola do tego 
przeznaczone. Błędne zaznaczenie otocz kółkiem 

 

i zaznacz właściwe. 

4.  Pamiętaj,  że pominięcie argumentacji lub istotnych 

obliczeń w rozwiązaniu zadania otwartego (26–34) może 
spowodować,  że za to rozwiązanie nie będziesz mógł 
dostać pełnej liczby punktów. 

5.  Pisz czytelnie i używaj tylko długopisu lub pióra 

z czarnym tuszem lub atramentem. 

6.  Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 
7.  Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 
8.  Możesz korzystać z zestawu wzorów matematycznych, 

cyrkla i linijki oraz kalkulatora. 

9.  Na tej stronie oraz na karcie odpowiedzi wpisz swój 

numer PESEL i przyklej naklejkę z kodem. 

10. Nie wpisuj żadnych znaków w części przeznaczonej 

dla egzaminatora. 

 

 
 
 
 

SIERPIEŃ 2012 

 
 
 
 
 
 
 
 
 
 
 
 
 

Czas pracy: 

170 minut 

 
 
 
 
 
 
 
 
 

Liczba punktów  

do uzyskania: 50 

 

MMA-P1_1P-124 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

ZADANIA ZAMKNIĘTE 

 

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. 

 

 

Zadanie 1. (1 pkt) 

Długość boku kwadratu 

2

 jest o 10% większa od długości boku kwadratu 

1

. Wówczas pole 

kwadratu 

2

 jest większe od pola kwadratu 

1

 

A.  o 10% 

B. o 

110% 

C. o 21% 

D.  o 121% 

 

Zadanie 2(1 pkt) 

Iloczyn 

5

8

9

3

  jest równy 

A.

 

4

3

 

B.

 

9

3

 

C.

 

1

9

 

D. 

9

9

 

 

Zadanie 3. (1 pkt) 

Liczba 

3

3

log 27 log 1

 jest równa 

 

A.

 0 

B.

 1 

C.

 2 

D. 

3 

 

Zadanie 4. (1 pkt) 

Liczba 

2

2 3 2

 jest równa 

A. 

14

  

B.

 22  

C.

 

14 12 2

 

 

D. 

22 12 2

 

 

Zadanie 5. (1 pkt) 

Liczba 

 

2

 jest miejscem zerowym funkcji liniowej 

 

2

f x

mx

. Wtedy  

 

A. 

3

m

 

B. 

1

m

 

C. 

2

m

 

 

D. 

4

m

 

 

 

Zadanie 6. (1 pkt) 

Wskaż rysunek, na którym jest przedstawiony zbiór rozwiązań nierówności 

4

7

x

 

A. 

3

x

–11

 

B.

 

11

x

–3

 

C.

 

3

x

–11

D.

 

11

x

–3

 

 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

3

BRUDNOPIS 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

 

Zadanie 7. (1 pkt) 

Dana jest parabola o równaniu 

2

8

14

y x

x

 . Pierwsza współrzędna wierzchołka tej 

paraboli jest równa 

 

A. 

8

x

 

 

B.

 

4

x

 

 

C.

 

4

x

 

D. 

8

x

 

 

Zadanie 8. (1 pkt) 

Wskaż fragment wykresu funkcji kwadratowej, której zbiorem wartości jest 

2,

  .  

A. B. C. D. 

-3

-2

-1

1

2

3

-4

-3

-2

-1

1

2

3

4

x

y

 

-3

-2

-1

1

2

3

-4

-3

-2

-1

1

2

3

4

x

y

-3

-2

-1

1

2

3

-4

-3

-2

-1

1

2

3

4

x

y

-2

-1

1

2

3

-4

-3

-2

-1

1

2

3

4

x

y

 

Zadanie 9. (1 pkt) 

Zbiorem rozwiązań nierówności 

6

0

x x

 jest 

A.

 

6, 0

 

B.

 

 

0, 6

 

C.

 

 

, 6

0,

  



 

D. 

 

, 0

6,





 

 

Zadanie 10. (1 pkt) 

Wielomian 

 

6

3

2

W x

x

x

 jest równy iloczynowi 

A.

 



3

2

1

2

x

x

 

B.

 



3

3

1

2

x

x

   C. 



2

4

2

1

x

x

  D. 

4

2

1

x

x

  

 

Zadanie 11. (1 pkt) 

Równanie 





3

2

0

3

2

x

x

x

x

 ma 

A.

 dokładnie jedno rozwiązanie 

B.

 dokładnie dwa rozwiązania 

C.

 dokładnie trzy rozwiązania 

D.

 dokładnie cztery rozwiązania 

 

Zadanie 12. (1 pkt) 

Dany jest ciąg 

 

n

a

określony wzorem 

 

2

n

n

n

a

 dla 

1

n

. Wówczas 

A. 

3

1
2

a

  

B.

 

3

1
2

a

   C. 

3

3
8

a

  D. 

3

3
8

a

   

 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

5

BRUDNOPIS 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

Zadanie 13. (1 pkt) 

W ciągu geometrycznym 

 

n

a

 dane są: 

1

36

a

,

2

18

a

. Wtedy 

 

A. 

4

18

a

   

B.

 

4

0

a

  

C.

 

4

4,5

a

 

D. 

4

144

a

 

 

Zadanie 14. (1 pkt) 

Kąt 

  jest ostry i 

7

sin

13

. Wtedy  tg

 jest równy  

A. 

7
6

 

B.

 

7 13

120

 

C. 

7

120

 

D. 

7

13 120

 

 

Zadanie 15. (1 pkt) 

W trójkącie prostokątnym dane są długości boków (zobacz rysunek). Wtedy 

2 10

9

11

 

A. 

9

cos

11

 

B.

 

9

sin

11

 

C. 

11

sin

2 10

 

D. 

2 10

cos

11

 

 

Zadanie 16. (1 pkt) 

Przekątna 

AC prostokąta  ABCD ma długość 14. Bok AB tego prostokąta ma długość 6. 

Długość boku BC jest równa 

 

A.

 8 

B.

  4 10  

C.

  2 58  

D. 

10 

 

Zadanie 17. (1 pkt) 

Punkty 

A,  B i C leżą na okręgu o środku  S  (zobacz rysunek). Miara zaznaczonego kąta 

wpisanego ACB jest równa 

230

A

C

B

S

 

A.

 

65

 

B.

 

100

 

C.

 

115

 

D. 

130

 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

7

BRUDNOPIS 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

Zadanie 18. (1 pkt) 

Długość boku trójkąta równobocznego jest równa  24 3 . Promień okręgu wpisanego w ten 
trójkąt jest równy 

 

A. 

36 

B.

 18 

C. 

12 

D. 

 

Zadanie 19. (1 pkt) 

Wskaż równanie prostej przechodzącej przez początek układu współrzędnych i prostopadłej 

do prostej o równaniu 

1

2

3

y

x

 

 . 

A.

 

3

y

x

 

B.

 

3

y

x

   

C. 

3

2

y

x

  

D.

 

1

2

3

y

x

  

 

Zadanie 20. (1 pkt) 

Punkty 

2, 4

B

 

 i 

 

5,1

C

  są dwoma sąsiednimi wierzchołkami kwadratu ABCD. Pole 

tego kwadratu jest równe 

 

A.

 74 

B.

 58 

C.

 40 

D. 

29 

 

Zadanie 21. (1 pkt) 

Dany jest okrąg o równaniu 

 

2

2

4

6

100

x

y

. Środek tego okręgu ma współrzędne 

A.

 

4, 6

 

 

B.

  

 

4, 6

 

C.

  

4, 6

 

D.

  

4, 6

 

 

Zadanie 22. (1 pkt) 

Objętość sześcianu jest równa 64. Pole powierzchni całkowitej tego sześcianu jest równe 

 

A. 

512 

B.

 384 

C. 

96 

D. 

16 

 
Zadanie 23. (1 pkt)
 

Przekrój osiowy stożka jest trójkątem równobocznym o boku a. Objętość tego stożka wyraża 
się wzorem 

A. 

3

3

6

a

 

B.

 

3

3

8

a

 

C. 

3

3

12

a

 

D. 

3

3

24

a

 

 

Zadanie 24. (1 pkt) 

Pewna firma zatrudnia 6 osób. Dyrektor zarabia 8000 zł, a pensje pozostałych pracowników 
są równe: 2000 zł, 2800 zł, 3400 zł, 3600 zł, 4200 zł. Mediana zarobków tych 6 osób jest 
równa 

 

A. 

3400 zł 

B. 

3500 zł 

C. 

6000 zł 

D. 

7000 zł 

 

Zadanie 25. (1 pkt) 

Ze zbioru 

1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15

 wybieramy losowo jedną liczbę. Niech 

p oznacza prawdopodobieństwo otrzymania liczby podzielnej przez 4. Wówczas 

A. 

1
5

p

  

B.

 

1
5

p

  

C.

 

1
4

p

  

D. 

1
4

p

  

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

9

BRUDNOPIS 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

10

ZADANIA OTWARTE 

 

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach 

pod treścią zadania.

 

 

Zadanie 26. (2 pkt)

 

Rozwiąż nierówność  

2

8

7 0

x

x

  . 

 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

Odpowiedź: ………………………………………………………………………………..….. . 

 

Zadanie 27. (2 pkt)

 

Rozwiąż równanie 

3

2

6

9

54 0

x

x

x

 . 

 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

Odpowiedź: …………………………………………………………………….…………….. . 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

11

Zadanie 28. (2 pkt)

 

Pierwszy wyraz ciągu arytmetycznego jest równy 3, czwarty wyraz tego ciągu jest równy 15. 
Oblicz sumę sześciu początkowych wyrazów tego ciągu. 

 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

Odpowiedź: ………………………………………………………………………….…..….. . 

 

Zadanie 29. (2 pkt)

 

W trójkącie równoramiennym ABC dane są 

6

AC

BC

 i 

30

ACB

 

 (zobacz rysunek). 

Oblicz wysokość AD trójkąta opuszczoną z wierzchołka A na bok BC

 

A

B

C

30

D

 

                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

Odpowiedź: ………………………………………………………………………...……...….. . 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

12

Zadanie 30. (2 pkt)

 

Dany jest równoległobok  ABCD. Na przedłużeniu przekątnej  AC wybrano punkt E tak, że 

1
2

CE

AC

 (zobacz rysunek). Uzasadnij, że pole równoległoboku  ABCD jest cztery razy 

większe od pola trójkąta  DCE

 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

B

C

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

13

Zadanie 31. (2 pkt)

 

Wykaż,  że jeżeli 

0

c

, to trójmian kwadratowy 

2

y x

bx c

  ma dwa różne miejsca 

zerowe. 

 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

14

Zadanie 32. (4 pkt)

 

Dany jest trójkąt równoramienny ABC, w którym 

AC

BC

 oraz 

 

2,1

A

 i 

 

1,9

C

Podstawa AB tego trójkąta jest zawarta w prostej 

1
2

y

x

. Oblicz współrzędne wierzchołka B

 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

15

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

Odpowiedź: ………………...………………………………………………………….…..….. . 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

16

Zadanie 33. (4 pkt)

 

W ostrosłupie prawidłowym czworokątnym  ABCDS o podstawie ABCD i wierzchołku  S 
trójkąt  ACS jest równoboczny i ma bok długości 8. Oblicz sinus kąta nachylenia ściany 
bocznej do płaszczyzny podstawy tego ostrosłupa (zobacz rysunek). 

 

 

S

A

B

C

D

 

S

A

B

C

 

                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

17

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

Odpowiedź: ……………………………………………………………………………..…..  . 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

18

Zadanie 34. (5 pkt)

 

Kolarz pokonał trasę 114 km. Gdyby jechał ze średnią prędkością mniejszą o 9,5 km/h, 
to pokonałby tę trasę w czasie o 2 godziny dłuższym. Oblicz, z jaką średnią prędkością jechał 
ten kolarz. 

 

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

19

                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                 

Odpowiedź: ……………………………………………………………………………..…..  . 

www.tomaszgrebski.pl

www.tomaszgrebski.pl

background image

Egzamin maturalny z matematyki 

Poziom podstawowy 

20

BRUDNOPIS 

 

www.tomaszgrebski.pl

www.tomaszgrebski.pl