background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Introduction 
 
The existing wind turbine designs have several 
technical differences, and these are reflected in their 
interaction with the power system. In fixed speed 
systems, the rotor is coupled to the system through a 
gearbox and an induction generator [1]. They require 
reactive power from the grid, nearly always 
compensated by capacitors. They have the advantage 
of being simpler and cheaper. But these systems run 
at constant rotor speed, and wind speed fluctuations, 
translate into drive train torque fluctuations, which 
could cause the undesirable “flicker” effect [2]. 
 
Variable speed wind turbines can produce more 
energy for a given wind speed [3], by controlling the 
tip speed ratio for maximum efficiency. In this case, 
power converters are necessary to decouple 
mechanical rotor frequency and electrical grid 
frequency. 
 
Nowadays the two variable speed designs use the 
doubly fed induction generator (DFIG), and the 
permanent magnet synchronous generator (PMSG). 
The first option is for the moment the most 
widespread, however, PMSG allows low speed 
operation and gearless direct drive connection which 
results a very attracting choice. 
 
This paper is focused in a PMSG based direct drive 
turbine, connected to the grid by means of a full 
power converter. There are several ways of designing 
the conversion system, depending on power 
electronics, but it is necessary the conversion of the 
full power, using an AC/DC converter connected to 
the generator (generator side converter) and a DC/AC 
converter connected to the grid (grid side converter), 
with a DC-link between them. Some references use  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
an uncontrolled 3 phase diode rectifier [4],[5]. This 
way the DC link varies in an uncontrolled manner [6] 
and a DC/DC converter is inserted between the 
rectifier and the inverter. For this purpose, it is 
common the use of a boost converter [7], [5], 
[8],[9],[10]. Since the diode rectifier increases the 
current amplitude and distortion of the PMSG [11], 
the most extended topology uses controlled 
converters in both sides. Here, the use of field 
orientation control allows the generator to operate 
near its optimal working point in order to minimize 
the losses in the generator and power electronic 
circuit[12]. 
 
In all the consulted bibliography, the generator side 
converter controls the electromagnetic torque, and 
therefore the extracted power, while the grid side 
converter controls both the DC link voltage and the 
power factor. Moreover, when designing the control 
strategy, it seems that the generator-side converter 
must control the extracted power as it is located 
closer to the incoming power. Hence, the grid-side 
converter would control the DC voltage. In this paper 
we try to analyse the extent to which this is true.  

 
 

2 Control Strategies 

 

2.1 System Configuration 
 
A complete model of the wind turbine has been 
developed, from the blades to the grid. It comprises a 
permanent magnet synchronous generator, a rectifier 
(generator-side converter) and an inverter (grid-side 
converter) connected through a DC link. The model 
is integrated into a simulation platform based on 
Matlab/Simulink where both control strategies have 
been modelled: 

ANALYSIS OF CONTROL STRATEGIES OF A FULL CONVERTER IN A DIRECT DRIVE WIND TURBINE 

 

E. ROBLES,  U. AGUIRRE , J. L. VILLATE, I. GABIOLA, S. APIÑANIZ

 

 

 ROBOTIKER , Parque Tecnológico Edif. 202  48170 Zamudio (Bizkaia), Spain. 

erobles@robotiker.es

 

Tél : + 34 94 600 22 66,  Fax : + 34 94 600 22 99 

 
 

ABSTRACT: 

As wind energy evolves, it is tending towards a direct drive connection using synchronous generators 

without a gearbox. Variable speed wind turbines with synchronous machines require the conversion of the full power. One 
alternative is using full converters with a DC link. The objective of this paper is to study different control strategies of a 
back-to-back DC-link full converter for grid connected direct drive wind turbines. Traditionally, the generator side 
converter controls the electromagnetic torque, and thus, the generated power, while the grid side converter regulates the DC 
link voltage as well as the input power factor. In this paper we reverse the control function of each converter, so that, the 
generator side converter will regulate the DC link voltage, and the grid side converter will control the electromagnetic 
torque. Both alternatives are analysed and compared by means of simulations based on Matlab/Simulink models. The 
behaviour of both strategies is examined under abrupt wind speed variations and grid disturbances. Differences in rotor 
speed tracking, power generated, DC voltage, and grid currents are also analysed.  
 
 
Keywords:
 Variable Speed control, wind energy, PM synchronous generator, full converter. 

 

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

2

1. Traditional strategy. The grid side converter 

maintains the DC voltage, and the generator 
side converter controls the rotor speed, and 
thus the power, by means of the generator 
current.  

2.  New strategy. The generator side converter 

maintains the DC voltage, while the grid side 
converter controls the rotor speed, and thus 
the power, by means of the grid current. 

 
 
 
 
 
 
 
 
 
 

 

Fig.1: Configuration of the electrical power 

generation system. 

 

The system configuration is the same in both control 
strategies. The turbine supplies the mechanical torque 
to the generator depending on the wind speed and the 
rotor speed. The generator is decoupled from the grid 
by means of a DC-link.  
 
Both strategies work with the same controllers, but 
they are exchanged between generator side and grid 
side converter. We will therefore, explain the control 
and after, analyse how it is applied to each strategy. 
 
 
2.2 Aerodynamics 
 
The mechanical input power at the generator shaft 
can be obtained as: 

)

(

2

1

3

λ

ρ

Cp

AV

Pm

=

 

  (1) 

For a given wind turbine, the maximum power 
depends on the wind speed and the power coefficient, 
which is function of the tip speed ratio 

λ and the 

aerodynamic design.  
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.2: Electrical power vs. rotor speed for several 

wind speeds. 

 

For a given Cp(

λ) [7], power curves can be plotted as 

a function of the rotor speed for different values of 

the wind speed, as shown in Fig. 2. From this, it 
follows that  for each wind speed, there is an optimal 
rotor speed for extracting the maximum power. 
 
2.3 Power Control 
 
In this work, we base the power control on the rotor 
speed control. The speed control loop in Fig.3,  
assures that the wind turbine achieves the optimal 
speed reference. This control consists of a PID 
controller that, depending on the rotor speed error, 
generates the reference of the generator current (1. 
strategy) or grid current (2. strategy) that is to be 
achieved in the generator side (1) or grid side (2) 
converter.  
 

 

 

Fig.3: Rotor speed control loop. 

 
For each wind speed, electrical power and rotor speed 
are linked as shown in Fig. 2. The optimum speed is 
the one that makes the turbine work in the peak of the 
curve. When the turbine is in the ascending part of 
the curve, we demand more speed to the control, the 
current reference falls and so does the output power 
(electrical) with regard to the input power 
(mechanical). Hence, the turbine speeds up until 
input and output power are equal. When the turbine is 
in the descending part, rotor speed reference falls, 
increasing current reference and consequently output 
power. In this case, the turbine decelerates. The 
difference between mechanical and electrical power 
causes oscillations in the rotor speed. 
 
Synchronous generator model and internal switching 
control of each converter is realised in dq coordinates 
[13], [8]. A rotating reference system fixed to the 
rotor has been used [16]. According to this reference 
system, and the adopted sign criterion in the Park 
transformation, the output current reference of the 
rotor speed control loop, will be the id reference. Iq 
reference will be set to 0 in this paper because we do 
not do reactive control. 
 

 

 

Fig.4: Generator side converter (1)/ Grid side 

converter (2)  control in dq coordinates. 

 
 

With this control, we obtain the rotor speed reference 
from the measured wind speed. It is necessary to 
filter this speed since its high frequency components 

 

C

 

PMSG

 

To grid

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

3

do not supply energy but are an undesirable noise 
source for the controller. The wind speed 
measurement is not usually reliable, thus the 
additional use of a maximum power point tracking 
algorithm [14] is convenient. In case of wind speed 
measurement error, this algorithm can take the rotor 
to the real optimal speed which extracts the 
maximum power. 
 
2.4 DC-Link Control 
 
In the traditional control strategy, the grid side 
converter obtains the desired power factor, and 
maintains the DC voltage to a previously fixed value. 
The control is shown in Fig.5. This is the first 
strategy of this work. The second strategy applies the 
same control of Fig.5 to the generator side converter, 
which will maintain the DC voltage to the desired 
value. 
 

 

 

Fig.5: DC_Link Control Loop. Grid side converter 

(1)/ Generator side converter (2)  control in dq 

coordinates.  

 
The DC voltage error is the input of a PI controller, 
that obtains the id reference for the Grid (1) / 
Generator (2) currents. In this control, iq reference is 
also set to 0, but it can be used for controlling the 
reactive power. 
 
 
3 Simulation results 

 

The aim of this work is to compare both control 
strategies under external disturbances. For this 
purpose, two kind of simulations have been carried 
out: under wind speed variations, and under a voltage 
dip. We analyse the behaviour of the rotor speed, 
generated power, DC voltage, and grid currents. The 
disturbances are introduced from the steady state. 
 
Both models work in the same conditions for a 
plausible comparison. The parameters of the 
synchronous generator are set for 5 MW and 6,3kV. 
The turbine is connected to a 10kV grid, through a 
bus of 16kV, using a modulation index of 0,9. 
 
3.1 Wind Speed Variations 
 
Simulation starts with an average wind speed of 10 
m/s. Then, there is a step variation until 8 m/s. Once 
it is stable, wind changes abruptly until 12 m/s. Fig.6. 
 
None of the strategies has any problem in following 
the optimum rotor speed control Fig.7(a). Therefore, 

they rapidly extract the maximum power for each 
wind speed Fig.7(b). 
 

 

Fig.6: Simulated average wind speed. 

 
The only difference under this disturbance, is the 
maintenance of the DC-link voltage. In the traditional 
strategy (1), a little oscillation can hardly be seen. 
However, as shown in Fig. 8, in the new strategy (2), 
where the generator side converter maintains the DC-
link voltage, abrupt wind speed variations provoke 
big oscillations in the DC voltage.  
 

 

(a) 

 

 

 

(b) 

 

Fig.7: (a) Rotor speed, (b) input/output power 

behaviour under wind speed variation. 

 
 

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

4

 

 

Fig.8: DC-link voltage under wind speed variations. 

 

3.2 Voltage dip 
 
It is important to analyse the machine behaviour 
under voltage dips. New grid codes do not allow grid 
disconnection, thus, wind turbines must support some 
particular types of voltage dips, depending on the 
country. Nowadays, there are different techniques to 
reduce the impact of voltage dips, such as: Dynamic 
Voltage Restorer (DVR) and crowbar, but until their 
reaction, voltage dips affect the wind turbine.  
 

 

Fig.9: Simulated voltage dip. 

 
To compare both strategies, a single phase voltage 
dip (with the same shape as defined on E.on grid 
code) is introduced at second 121. Fig.9. In both 
cases rotor speed suffers a light variation but it 
stabilizes rapidly.  Fig. 10 (a). 
 
 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

Fig.10: (a) Rotor speed, (b) DC-link voltage, (c) Grid 
current in traditional strategy, (d) Grid current in new 

strategy. 

 
As shown in Fig.10 (b), under a voltage dip DC-link 
voltage suffers a great oscillation in case of the 
traditional strategy (1). The new strategy (2), where 
the generator converter maintains the DC-link, hardly 
notices the variation in the bus voltage. 
 
Grid currents have a similar behaviour. However, in 
the new strategy (2) they seem to have a slightly 
smaller peak and a faster recovery. 
 
 
4 Conclusions 
 
Different simulations have been carried out for both 
control strategies. Results show that in normal 
conditions both have a similar performance, and that 
the behaviour of each control strategy depends on the 

background image

European Wind Energy Conference & Exhibition. February-March 2006, Athens.  

 

5

kind of disturbance. We have proved that the 
converter closest to the disturbance has real problems 
in maintaining a constant DC voltage. When there is 
a wind speed variation, the best strategy is to control 
the bus through the grid-side converter. Under 
voltage dips, it is better to make the control of the DC 
voltage with the generator-side converter.  
 
In conclusion, both strategies have advantages and 
disadvantages. Under wind speed variations, there are 
other buffer components (blades, pitch control, 
generator) between the wind and the power converter. 
Whereas under grid voltage dips, there is nothing to 
smooth over the disturbance and it is transmitted 
directly to the converter. Therefore, it could be better 
to control the bus with the generator-side converter. 
 
The present work is mainly based on simulation. 
Future objective is the experimental validation of 
these results using a small-scale test bench with a 15 
kW permanent magnet generator. 
 
 
5 Acknoledgements 
 
This work has been developed with the support of the 
Education and Science Ministry of Spain under the 
programme “Torres Quevedo” for young researchers. 
 
 
6 References 
 
[1] H. Sharma, T. Pryor, S. Islam, “Effect of pitch 

control and power conditioning on power quality 
of variable speed wind turbine generators,” 
AUPEC 2001, 23-26 September 2001, Perth, 
Australia, pp 95-100. 

 
[2]  H. Slootweg, E. de Vries, “Wind Turbines: Fixed 

vs. Variable speed,” Renewable Energy World, 
Feb. 2003. 

 
[3] D.S. Zinger, E. Muljadi, “Annualized Wind 

Energy Improvement Using Variable Speeds,” 
IEEE Trans. on Industry Applications, Vol. 33, 
nº6, Nov/Dec 1997, pp. 1444-1447. 

 
[4] T. Zouaghi, “Variable Speed Drive modelling of 

Wind Turbine Permanent Magnet Synchronous 
Generator,” ICREP’04 International Conference 
on Renewable Energy and Power Quality, 
Barcelona, Spain, 2004. 

 
[5] J. Marques, H. Pinheiro, H. A. Gründling, J. R. 

Pinheiro and H. L. Hey, “A survey on variable 
speed wind turbine system,” Congresso Brasileiro 
de Eletrônica de Potência (COBEP), Fortaleza, 
CE. 

 
[6] Z. Chen, E. Spooner, “Grid interface options for 

variable speed, permanent-magnet generators,” 
IEEE Proc.-Electro. Power Appl., Vol. 145, Nº 4, 
July 1998.  

 

[7] Rodríguez Amenedo J.L, Burgos Díaz J.C, 

Arnalte Gómez S, “Sistemas eólicos de 
producción de energía eléctrica,” Ed. Rueda, 
2003. 

[8] M. Malinowski, S. Bernet, “Simple Control 

Scheme of 3level PWM Converter connecting 
wind turbine with grid,” Nordic Wind Power 
Conference (Chalmers University of 
Technology), 1-2 March, 2004. 

 
[9] 

D.C. Aliprantis, S.A. Papathanassiou, M.P. 
Papadopoulos, A.G.Kaladas, “Modeling and 
control of a variable-speed wind turbine equipped 
with permanent magnet synchronous generator,” 
Proc. Of ICEM/2000, Vol.3, pp.558-562. 

 
[10] 

A. Haniotis, S. Papathanassiou, A. Kladas, 

M. Papadopoulus, “Control issues of a Permanent 
Magnet Generator variable-speed Wind Turbine,” 
Journal on Wind Engineering, Vol. 26, no 6, pp. 
371-381, 2002. 

 
[11] Hao, S. Hunter, G. Ramsden, V. Patterson, D., 

“Control system design for a 20 kW wind turbine 
generator with a boost converter and battery bank 
load,” Power Electronics Specialists Conference, 
2001. PESC. 2001 IEEE 32nd Annual , Volume: 
4 , 2001,pp: 2203 –2206. 

 

 

[12] Schiemenz, I.; Stiebler, M., “Control of a 

permanent magnet synchronous generator used in 
a variable speed wind energy system,” Electric 
Machines and Drives Conference, 2000. IEMDC 
2001. IEEE International, 2001,pp 872 –877. 

 
 
[13] B. Kwon, J. Youm, “A Line-Voltage-Sensorless 

Synchronous Rectifier,” IEEE Transactions on 
Power Electronics, vol. 14, nº. 5, pp. 966-972, 
Sep. 1999. 

 
[14] R. J. Spiegel, “Assessment of a wind turbine 

intelligent controller for enhanced energy 
production and pollution reduction,” Wind 
Engineering Vol.25, No.1, pp. 23-32, 2001. 

 
[15] Newman MJ, Holmes DG, Nielsen JG, 

Blaabjerg F, “A dynamic voltage restorer (DVR) 
with selective harmonic compensation at medium 
voltage level,” IEEE Trans. on Industry 
Applications, Vol. 41, nº6, Nov/Dec 2005, pp.  
1744-1753. 

 
[16] CHEE-MUN ONG "Dynamic Simulation of 

Electric Machines Using MATLAB/Simulink" 
Editorial "Prentice Hall", 1998. 

 
 
 
 

background image

 !

 

 

" #  $ %

 !

 

 

" #  $ %

 !

 

 

" #  $ %

 !

 

 

" #  $ %

&&&&

'

! (

'

! (

'

! (

'

! (

)

* $+ $

, - -

!

! $+ $ ! *  +   +

.! + - . $$ .! $

$

,$./ $

$  !

* !/

!  

 

0

   

"

+ * $+ !

$

* !/ ,$./ $

1 ./ $

2

!/ . $-

$ 3 !/ 3

" *

$   ! $ ! -

$ 3

. $- !

* !/  

$(

/

4 .! -

3 !/

" "

!

! +, + 33

$! . $!

!  !

3    .(5! 5  .(

5 $( 3

. $- !

3

+ . $$ .! + +

.! + - * $+ !

$

 + ! $  , !/

$  !

+ . $- !

. $!

!/

.! 1  $ ! . ! 2

 $+ !/

!/

$  ! + " *

*/

!/

+

+ . $- !

 !

!/

$( - ! 

  *

  !/ " *

3 .!

$ !/

" "

*

-

!/ . $!

3 $.! $ 3  ./ . $- !

!/ !

$  !

+ . $- !

*

 ! !/

$( - ! 

 $+ !/

+

+ . $- !

*

. $!

!/

.! 1  $ ! . ! 2

!/   ! $ ! -

 

 $  ,

+  $+ . 1"  + , 1  $

3

1  ! $

 

+ $

6  !   7 1

$( 1 +

/

/ -

3

!/ !  !

0  1 $ + $+

 

"! * $+ "

+ -   ! $  $+

+ + !

 $.

33

$.

$

!

"

+ !  .( $

" *

$  ! +

- ! 

 $+

+ .

$!  

 

 $  ,

+

8 $ $ 1  . $+ ! $

!/ / -  

1   " 3 1 $.

8

/

/ -

3

 ./ . $!

!  !

, + " $+

$ !/

( $+

3

+ !

 $.

8

/

. $- !

.

! !

!/

+ !

 $.

  "

1

$

1  $!  $ $

  . $ ! $!

- ! 

/ $ !/

  * $+ "

+

-   ! $ !/

! !  !

,

! . $!

!/

!/

/ !/

+5

+ . $- !

$+

- ! 

+ "

!

!!

! 1 ( !/ . $!

3 !/

- ! 

* !/ !/

$  ! 5 + . $- !

C

PMSG

To grid

TRADITIONAL STRATEGY

The grid side converter maintains the DC 

voltage, and the generator side converter 

controls the rotor speed, and thus the 

power, by means of the generator 

current.

NEW STRATEGY

T

VOLTAGE 

DIP

CONTROL

STRATEGIES

1  

/ -

$ * $+

1  

/ -

$ * $+

1  

/ -

$ * $+

1  

/ -

$ * $+ "

+

"

+

"

+

"

+

!  .( $

!  .( $

!  .( $

!  .( $

33

$.

$ !/ 1  $! $ $.

3

33

$.

$ !/ 1  $! $ $.

3

33

$.

$ !/ 1  $! $ $.

3

33

$.

$ !/ 1  $! $ $.

3

!/

!/

!/

!/

5555 $(

$(

$(

$(

/ . $- !

.

! ! !/

/ . $- !

.

! ! !/

/ . $- !

.

! ! !/

/ . $- !

.

! ! !/

+ !

 $. / 

  "

1

$

+ !

 $. / 

  "

1

$

+ !

 $. / 

  "

1

$

+ !

 $. / 

  "

1

$

1  $!  $ $   . $ ! $!

- ! 

1  $!  $ $   . $ ! $!

- ! 

1  $!  $ $   . $ ! $!

- ! 

1  $!  $ $   . $ ! $!

- ! 

CONCLUSIONS:

8

0 "

1 $! 

-  + ! $

3

!/

!

$

 

1  5

!

!

$./ * !/   9 :

(

" 1 $ $!

1  $ !

$  !

8

!

!

; 6

*

"

+

$$ - ! -

$  !

FUTURE WORK:

.!

- $

$+

$ * !/ ; 6

,$./ $

.!

- $

$+

$ * !/ ; 6

,$./ $

.!

- $

$+

$ * !/ ; 6

,$./ $

.!

- $

$+

$ * !/ ; 6

,$./ $

$  !

 $+  

; *

$- !

$  !

 $+  

; *

$- !

$  !

 $+  

; *

$- !

$  !

 $+  

; *

$- !

WIND 

VARIATION