background image

Lecture Notes:  Introduction to Finite Element Method                      Chapter 7.  Structural Vibration and Dynamics 

© 1999 Yijun Liu, University of Cincinnati 

 

157 

Chapter 7.  Structural Vibration and Dynamics 

 

 

• 

Natural frequencies and modes 

• 

Frequency response (F(t)=F

sin

ωt

• 

Transient response (F(t) arbitrary) 

 
 

I. Basic Equations 

A. Single DOF System 

                                                          

 

                                                        

 

 

 

 

From Newton’s law of motion (ma = F), we have 

u

c

u

k

f(t)

u

m

&

&&

=

i.e. 

f(t)

u

k

u

c

u

m

=

+

+

&

&&

,                                                     (1) 

where u is the displacement, 

dt

du

u

/

 

=

&

 and 

.

/

 

 

2

2

dt

u

d

u

=

&

&

 

F(t)

m

m

f=f(t)

k

c

f(t)

u

c

ku

&




force

 

-

)

(

damping

 

-

stiffness

 

-

mass

 

-

t

f

c

k

m

x, u 

background image

Lecture Notes:  Introduction to Finite Element Method                      Chapter 7.  Structural Vibration and Dynamics 

© 1999 Yijun Liu, University of Cincinnati 

 

158 

Free Vibration:  

f(t) = 0 and no damping (c = 0) 

Eq. (1) becomes 

0

=

+

u

k

u

&

&

.                       

                                (2) 

(meaning: inertia force + stiffness force = 0) 

Assume:   

t)

(

U

u(t)

ω

sin

=

where 

ω

 is the frequency of oscillation, U the amplitude. 

Eq. (2) yields 

 

0

sin

sin

2

=

+

t)

ù

(

U

k

t)

ù

(

m

ù

U

 

i.e.,   

[

]

0

2

=

+

U

k

m

ω

For nontrivial solutions for U, we must have 

[

]

0

2

=

+

k

m

ω

,  

which yields 

m

k

=

ω

.               

 

 

 

 

 

   (3) 

This is the circular natural frequency of the single DOF 
system (rad/s).  The cyclic frequency (1/= Hz) is 

 

π

ω

2

=

f

              

 

 

 

 

 

   (4) 

background image

Lecture Notes:  Introduction to Finite Element Method                      Chapter 7.  Structural Vibration and Dynamics 

© 1999 Yijun Liu, University of Cincinnati 

 

159 

 

 

 

 

 

 

With non-zero damping c, where 

m

k

m

c

c

c

2

2

0

=

=

<

<

ω

     (c

c

 = critical damping)    (5) 

we have the damped natural frequency: 

2

1

ξ

ω

ω

=

d

,        

 

 

 

                   (6) 

where 

c

c

c

=

ξ

  (damping ratio). 

For structural damping: 

15

.

0

0

<

ξ

  (usually 1~5%) 

ω

ω

d

.    

 

 

 

                                  (7) 

Thus, we can ignore damping in normal mode analysis. 

 

 

 

 

u  

t  

U  

U  

T = 1 / f  

U n d a m p e d   F r e e   V i b r a t i o n  

u = U s i n w t  

  

Damped Free Vibration 

background image

Lecture Notes:  Introduction to Finite Element Method                      Chapter 7.  Structural Vibration and Dynamics 

© 1999 Yijun Liu, University of Cincinnati 

 

160 

B. Multiple DOF System 

Equation of Motion 

Equation of motion for the whole structure is 

)

(t

f

Ku

u

C

u

M

=

+

+

&

&

&

,  

 

 

 

           (8) 

in which:   

u 

 nodal displacement vector, 

 

 

 

M 

 mass matrix, 

 

 

 

C 

 damping matrix, 

 

 

 

K 

 stiffness matrix, 

 

 

 

f  

 forcing vector. 

Physical meaning of Eq. (8): 

Inertia forces + Damping forces + Elastic forces  

= Applied forces 

Mass Matrices 

Lumped mass matrix (1-D bar element): 

 

         

       1    

ρ,A,L    2                        

               

 

u

1   

           u

2

 

Element mass matrix is found to be 

4

4 3

4

4 2

1

matrix

 

diagonal

2

0

0

2

=

AL

AL

ρ

ρ

m

 

2

1

AL

m

ρ

=

2

2

AL

m

ρ

=

background image

Lecture Notes:  Introduction to Finite Element Method                      Chapter 7.  Structural Vibration and Dynamics 

© 1999 Yijun Liu, University of Cincinnati 

 

161 

In general, we have the consistent mass matrix given by 

  

dV

V

T

=

N

N

m

ρ

                                                 (9) 

where N is the same shape function matrix as used for the 
displacement field. 

This is obtained by considering the kinetic energy: 

       

( )

( ) ( )

u

N

N

u

u

N

u

N

u

m

u

m

&

43

42

1

&

&

&

&

&

&

&

&

=

=

=

=

=

Κ

V

T

T

V

T

V

T

V

T

dV

dV

dV

u

u

dV

u

mv

ρ

ρ

ρ

ρ

2

1

2

1

    

2

1

 

2

1

    

)

2

1

 

(cf.

          

          

          

2

1

2

2

 

 

 

Bar Element (linear shape function): 

 

[

]

  

          

          

3

/

1

6

/

1

6

/

1

3

/

1

    

1

1

2

1

u

u

AL

ALd

V

&

&

&

&

=

 −

=

ρ

ξ

ξ

ξ

ξ

ξ

ρ

m

 

 

(10) 

 

background image

Lecture Notes:  Introduction to Finite Element Method                      Chapter 7.  Structural Vibration and Dynamics 

© 1999 Yijun Liu, University of Cincinnati 

 

162 

Element mass matrices: 

 local coordinates 

 to global coordinates 

 assembly of the global structure mass matrix M

 

Simple Beam Element

 

 

 

     

 

4

22

3

13

22

156

13

54

3

13

4

22

13

54

22

156

420

    

2

2

1

1

2

2

2

2

θ

θ

ρ

ρ

&

&

&

&

&

&

&

&

v

v

L

L

L

L

L

L

L

L

L

L

L

L

AL

dV

T

=

=

V

N

N

m

 

(11) 

 

Units in dynamic analysis (make sure they are consistent): 

 

Choice I 

Choice II 

t (time) 

L (length) 

m (mass) 

a (accel.) 

f (force) 

ρ (density) 

kg 

m/s

2

 

kg/m

3

 

mm 

Mg 

mm/s

Mg/mm

3

 

1

1

    

θ

v

2

2

    

θ

v

ρ, A, L